
Lecture 1 – Program

1. Introduction

2. Probability concepts

3. Mean squared errors

4. Confidence intervals and hypothesis tests

5. Robustness and rank tests

(We skip Monte Carlo tests, pp. 8-10 in B&S)
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Basic idea

The basic idea for the development and eval-

uation of most methods in statistics is to con-

sider the data as generated by a probability

model, and judge the variability of the data

actually observed in relation to data generated

from the probability model.

Thus one has:

• Actual empirical data, the sample, which is

often described using numerical measures

such as the mean and the standard devia-

tion

• A probability model describing the distribu-

tion of the data, from which one can infer

the distribution of the numerical measures

used to summarize the empirical observa-

tions.
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Example (B& S, page 1)

Age of mineral samples (million years)
249 254 243 268 253 269 287
241 273 306 303 280 260 256
278 344 304 283 310

Here we can compute the (empirical) mean,
median and standard deviation:

x̄ = 276.9, med = 273.0, s = 27.1

In general we consider observations x1, . . . , xn

that are either:

• replications of the same measurement
(as in the example)

or

• observations on a random sample from
some population

Observations may be quantitative (numeric)
as in the example above, or qualitative (cat-
egoric). We will focus on quantitative data in
the first part of the course.

3



Random variables and distributions

Observations (measurements) can be more or
less variable (precise).
To describe the variability, we consider the data
as independent replications of a random vari-
ables X, having a distribution described by a
probability density, f(x), or a cumulative dis-
tribution function, F (x).

It is not possible to predict one realization of X, but
it is possible compute the probability that it falls in a
certain interval:

P (a < X ≤ b) =

∫ b

a

f(x) dx = F (b)− F (a)

Distributions are described by (theoretical)
summaries such as

• Mean or expectation: µ = E(X) =
∫∞
−∞ xf(x)dx

• Variance: σ2 = Var(X) =
∫∞
−∞(x− µ)2f(x)dx

• Standard deviation: σ = stan(X) =
√

Var(X)

(The formulas above apply for a continuously distributed

random variable. Similar formulas with sums apply for

discrete random variables, e.g., counts.)
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Law of large numbers

It is a common experience that empirical means

(i.e. averages) become more precise as the num-

ber of observations increases.

This empirical phenomenon has a mathematical

counterpart:

If x1, . . . , xn are independent replications of a

random variable X with expectation µ and vari-

ance σ2, then

• x̄n = 1
n

∑n
i=1 xi → µ

• s2n = 1
n−1

∑n
i=1 (xi − x̄n)2 → σ2

as n increases.

The summation sign
∑n

i=1 means that we should put

i = 1,2, . . . , n in the expression following the summation

sign and add together the n terms thus obtained.
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Central limit theorem

An implication of the law of large numbers is

that if x1, . . . , xn are independent replications

of a random variable X with expectation µ,

then x̄n − µ → 0.

But if we ”blow up” x̄n−µ at the right rate, the

magnified difference will converge, not toward

a number, but in the sense that the distribution

of the magnified x̄n − µ looks more and more

normal. This is the central limit theorem.

What is the rate?

Remember that:

Var(x̄n − µ) = Var(x̄n) =
σ2

n

This gives:

nVar(x̄n − µ) = Var
(√

n(x̄n − µ)
)
= σ2

This indicates that the right rate is
√

n
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Central limit theorem, contd.

Notation:

• Z ∼ N(0,1) means that Z is a standard
normal random variable.
(Note that E(Z) = 0 and Var(Z) = 1.)

• Φ(z) = P (Z ≤ z) is the cumulative
distribution function of a standard
normal random variable.

The mathematical formulation of the central
limit theorem is:

If x1, . . . , xn are independent replications of a
random variable X with expectation µ and vari-
ance σ2, then

P

(√
n(x̄n − µ)

σ
≤ z

)
→ Φ(z)

as n increases.
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Mean squared error

The purpose of an investigation is often to

estimate an unknown quantity. This may be a

parameter describing the probability model, or

a function of the model parameters.

To be specific, let us consider the situation

where the empirical mean x̄n is used to esti-

mate a quantity q (e.g. the median, m, of the

population distribution, F (m) = 1/2).

The quality of the estimation is judged by the

error

en = x̄n − q

Note that the estimation error is a random

quantity.

The mean squared error is defined as E(e2n),

and it is the squared estimation error

”in the long run”.
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Mean squared error, contd.

One may show that

E(e2n) =
σ2

n
+ (µ− q)2,

where E(x̄n) = µ.

This means that the mean squared error can be

decomposed in two parts: one due to random-

ness, which vanishes when the number of ob-

servations increase, and a (squared) bias term

which is due to systematic errors and does not

vanish.

If we have q = µ, then x̄n is unbiased, and the

mean square error equals Var(x̄n) = σ2/n.

When a normal approximation is appropriate,

the quality of the estimation may be assessed

by the 68−95−99.7 rule, e.g. 68% of all repli-

cated estimations will fall within ±σ/
√

n of the

true unknown value µ.

9



Confidence intervals

The typical form of a confidence interval is

estimate ± c · se(estimate).

where se(estimate) =
√

Var(estimate) is the

standard error of the estimate (and usually has

to be estimated, cf. below).

In general a confidence interval (c.i.) for an

unknown quantity q has the form (a, b), where

a and b are computed from the data.

The confidence coefficient 1 − α of a c.i. is

the probability that the interval contains the

unknown quantity:

P (a < q < b) = 1− α
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Example, c.i. for the mean

Suppose that x1, . . . ,n is a random sample from

N(µ, σ2) (i.e. the normal distribution with mean

µ and variance σ2)

(i) σ known

x̄n ∼ N(µ, σ2/n), and a confidence interval takes

the form (cf. above):

x̄n ± c · σ√
n

c is defined (implicitly) by

P (x̄n − c · σ√
n

< µ < x̄n + c · σ√
n
) = 1− α

One may find the values of c from a table of

the standard normal distribution. In particular

one finds the following values of c:

1− α 90% 95% 99%
c 1.645 1.960 2.576

11



(ii) σ unknown

When σ2 is unknown (as is usually the case),
we may estimate σ by the empirical standard
deviation sn.

A confidence interval then takes the form:

x̄n ± c · sn√
n

We now have to use the t-distribution with n-1
degrees of freedom to determine c.

As n grows larger, the quantiles of the
t-distribution(s) approach those of the
standard normal, cf. Table 3 page 7 in B&S.

Example, mineral samples

A 95% c.i. has limits

276.9− 2.10× 27.1/
√

19 = 263.8

and

276.9 + 2.10× 27.1/
√

19 = 290.0
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Hypothesis testing

Setup:

• Assume that H0 : µ ≤ µ0 denotes a set of

values of interest

• We observe x̄n and sn in a random sample

from a normal population

• Can we reject the null hypothesis H0?

This is usually done through the p-value.

The p-value is the probability that the test

statistic has a value equal to or more ”ex-

treme” than the one observed when H0 is true.

In other words we compute the evidence

against H0.
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Example, test of the mean

Again we have two situations:

(i) σ known

We reject H0 for large values of the test

statistic

z =
x̄n − µ0

σ/
√

n

Under H0 the test statistic is standard normally

distributed, and that can be used to compute

the p-value: p = P (Z > z).

(ii) σ unknown

We reject H0 for large values of the

test statistic

t =
x̄n − µ0

sn/
√

n

Under H0 the test statistic is t-distributed with

n-1 degrees of freedom, and that can be used

to compute the p-value: p = P (Tn−1 > t).
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Mineral samples

We have x̄n = 276.9, sn = 27.1, µ0 = 265.

We have

t =
276.9− 265

27.1/
√

19
= 1.91

This corresponds to a p-value of 3%.

Therefore, it is not plausible that the area where

the mineral samples were collected, is less than

µ0 = 265 million old.
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Robustness

Robustness refers to investigations of how sen-
sitive a method is to the underlying assump-
tions for its validity, and also to the search for
methods that cover a broad spectrum of pop-
ulation models.

It is also important to investigate to which de-
viations a method is sensitive.

In B&S a small investigation is carried out for a situation
corresponding to the mineral samples.

The population model is

xi = µ + σεi i = 1, · · · ,19

where ε1, . . . , ε19 are independent and either

• standard normal, or

• t-distributed with 5 degrees of freedom, or

• having density f(x) = exp(−(x + 1)) for x > 1.

The first and second distributions are

symmetric, the third is skewed to the right.
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Confidence intervals of the form

X̄n ± c
sn√
n

were computed for the mineral data for each of

the three population models (the appropriate

c-values were found by simulation for the latter

two population models)

From Table 5, page 11 in B&S, we see that the

c.i’s based on the t5-distribution are very close

to the ones based on the normal distribution,

while the one based on the last distribution is

shifted a bit (but not much) to the left.

In conclusion: Confidence intervals (and tests)

for the mean µ are quite robust to distribu-

tional assumptions. This is due to the central

limit theorem.
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B&S also study confidence intervals and tests

for the variance σ2.

These depend a lot on the assumed population

distribution; cf. Tables 5 and 6, page 11 in

B&S.

In conclusion: Confidence intervals (and tests)

for the variance σ2 are not robust to distribu-

tional assumptions.
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Rank-based methods

These methods are valid for a broad class of
population distributions.

Wilcoxon’s signed rank test

Consider the null hypothesis H0 : m ≤ 265
for the mineral sample, where m is the median
given by F (m) = 1/2.

Wilcoxon’s signed rank test is a nonparametric
test for this hypothesis, valid for all symmertic
population distributions

The test statistic is computed as follows:

• Subtract 265 from all observations, xi

• rank or sort |xi − 265|
• compute the sum, T+

obs, of the ranks corresponding
to observations with xi − 265 > 0.

• For small n: The distribution of T+ is tabulated.
Reject H0 if T+

obs large.

• For large n: Use that the distribution of
Z = (T+ − (n(n + 1)/4)/

√
n(n + 1)(2n + 1)/24

is approximately standard normal when
F (m) = 1/2.
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xi 249 254 243 268 253 269 287
241 273 306 303 280 260 256
278 344 304 283 310

xi − 265 -14 -11 -22 3 -12 4 22
-24 8 41 38 15 -5 -9
13 79 39 18 45

Rank 9 6 12.5 1 7 2 12.5
14 4 17 15 10 3 5
8 19 16 11 18

Sign - - - + - + +
- + + + + - -
+ + + + +

In this case T+
obs = 133.5. From a table

P (T+ ≤ 133) = 0.938.

Also, z = 1.55, and P (Z > 1.55) = 0.061, so

the normal approximation is good.

Note, that we weigh the xi − 265 > 0 by the ranks. If

instead, we only count the number of xi − 265 > 0, we

get the so-called Sign test. The critical values and p-

values are given by the Bin(n,1/2) distribution. In this

case, 12 of the xi − 265’s are positive. Since

P (X ≤ 11) = 0.8204, this test has a p-value of 18%.
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