Lecture 6 – Program

- Analysis of variance
- Experimental design

- ANOVA = ANalysis Of VAriance
 - 1. Comparison of several groups
 - 2. Variation within and between groups
 - 3. One-way layout and t-test
 - 4. Connection to regression
 - 5. Parameterization
 - 6. Two-way layout
 - 7. Interaction
 - 8. Higher-way layouts

Two-sample t-tests: Comparison of two groups

Example:

Two treatments: placebo and medication

Group 1: placebo

Group 2: new medication

Is blood pressure lower with medication?

One-way ANOVA: Comparison of k groups

Example: Three different medications

Group j: medication no. j

Is there a difference between the medications?

If yes, which results in lowest blood pressure?

Decomposing the variation:

Total variance =

Variance *within* groups

+ Variance *between* groups

Important quantities and notation

 $y_{ij} =$ observation number i in group j $(i = 1, ..., n_j \quad j = 1, ..., k)$

We assume that all observations are independent and that $y_{ij} \sim N(\mu_j, \sigma^2)$

 $\bar{y}_{.j}$ = mean in group j $\bar{y}_{..}$ = total mean.

Sum of squares:

Total: $SS_{tot} = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_{..})^2$ Between : $SS_{tre} = \sum_{j=1}^{k} n_j (\bar{y}_{.j} - \bar{y}_{..})^2$ Within : $SS_{res} = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_{.j})^2$

Important decomposition:

$$SS_{tot} = SS_{tre} + SS_{res}$$

Test of H_0 : $\mu_1 = \cdots = \mu_k$

Unbiased estimator of σ^2 :

$$\hat{\sigma}^2 = MS_{res} = SS_{res}/(n-k)$$

(n = total number of observations)

Under the null hypothesis σ^2 can also be estimated by

$$MS_{tre} = SS_{tre}/(k-1)$$

If the statistic

$$F = \frac{MS_{tre}}{MS_{res}} = \frac{SS_{tre}/(k-1)}{SS_{res}/(n-k)}$$

is much larger than 1, H_0 is not reasonable.

F is F-distributed with k-1 and n-k degrees of freedom under H_0 . This result is used to compute the p-value of the test.

Relation to two sample t-test

Number of groups is k = 2

Will test H_0 : $\mu_1 = \mu_2$

The test statistic

$$t = \frac{\overline{y}_{\cdot 1} - \overline{y}_{\cdot 2}}{se(\overline{y}_{\cdot 1} - \overline{y}_{\cdot 2})}$$

is t-distributed with $n_1 + n_2 - 2$ degrees of freedom under H_0 .

May show that $t^2 = F$

 t^2 is F-distributed with 1 and $n_1+n_2-2 = n-2$ degrees of freedom under H_0 .

The usual (two-sided) t-test for two samples is a special case of the F-test in a one-way ANOVA.

ANOVA-table for one-way layout:

Source	SS	$d\!f$	MS	F	p-value.
Treatment	SS_{tre}	k-1	MS_{tre}	$F = \frac{MS_{tre}}{MS_{res}}$	p
Residual	SS_{res}	n-k	MS_{res}		
Total	SS_{tot}	n-1			

p-value is obtained from:

 $p = P(F_{k-1,n-k} > \text{observed value of } F)$

Example (B&S, page 26):

Comparing blood coagulation times for rats given four diets

Diet	No. obs.	Mean	Sd
A	4	61	1.8
В	6	66	2.8
С	6	68	1.7
D	8	61	2.6

Anova-table:

Source	SS	df	MS	F	p-value
Diet	228	3	76.0	13.57	< 0.0001
Residual	112	20	5.6		
Total	340	23			

R commands (diet coded as factor):

fit<-lm(time~diet, data=rats)
anova(fit)</pre>

ANOVA as multiple regression

Reorder the observations (with covariates) in the form $y_1, y_2, ..., y_n$, where:

- the first n_1 belong to group 1,
- the next n_2 belong to group 2,

- etc.

Let x_{ij} be an indicator (dummy) equal to 1 if y_i is in group j and equal to 0 otherwise.

Then the model can be expressed as

$$y_i = \mu_1 x_{i1} + \mu_2 x_{i2} + \dots + \mu_k x_{ik} + \varepsilon_i$$

Here the errors are independent and $\varepsilon_i \sim N(0, \sigma^2)$.

In other words: a linear multiple regression without intercept.

Various parameterizations

1. Without intercept:

 $y_i = \mu_1 x_{i1} + \mu_2 x_{i2} + \dots + \mu_k x_{ik} + \varepsilon_i$

2. With group 1 as reference:

 $y_i = \mu_1 + (\mu_2 - \mu_1)x_{i2} + \dots + (\mu_k - \mu_1)x_{ik} + \varepsilon_i$

3. As deviations from the grand mean $\mu = (\mu_1 + \dots + \mu_k)/k;$ $y_i = \mu + (\mu_1 - \mu)x_{i1} + \dots + (\mu_k - \mu)x_{ik} + \varepsilon_i$

Option 2, called treatment-contrast, is default in R.

Option 3, called **sum-contrast**, is commonly used for ANOVA, and may be specified in R by the command: options(contrasts=c("contr.sum","contr.poly"))

Two-way ANOVA

Two categorical variables (or factors) A and B

Factor A has r levels, factor B has c levels

One observation for each combination of the levels of the factors

 y_{ij} = observation with level *i* for A and *j* for B Model (only main effects):

$$y_{ij} = \mu + a_i + b_j + \varepsilon_{ij}$$

Decomposition of sum of squares:

 $SS_{tot} = SS_A + SS_B + SS_{res}$

ANOVA-table:

Source	SS	$d\!f$	MS	F	p-value
A	SS_A	r-1	MS_A	MS_A/MS_{res}	p_A
В	SS_B	c-1	MS_B	MS_B/MS_{res}	p_B
Res	SS_{res}	n-c-r+1	MS_{res}		
Tot	SS_{tot}	n-1			

Two-way layouts and interaction

The expected response at level *i* for factor A and level *j* for factor B may differ from the sum of the main effects $a_i + b_j$.

Graphically this shows up as non-parallel lines in a plot of the expected values (B&S p. 64):

Model for interaction:

$$y_{ij} = \mu + a_i + b_j + (ab)_{ij} + \varepsilon_{ij}$$

 $(ab)_{ij} = interaction$

Two-way layout, contd.

A model for a two-way layout including intercept, main effects and interactions can *not* be estimated if there is only one observation per combination of factor levels or cell, (i, j).

To estimate interaction we need replications:

 $y_{ijk} = k$ th observation at levels A = i and B = j

Balanced design: Same number of replications m per combination of levels (i, j).

With a balanced design there is a unique decomposition of the sum of squares

$$SS_{tot} = SS_A + SS_B + SS_{AB} + SS_{res}$$

where SS_A og SS_B are defined earlier and SS_{AB} is the sum of squares for interaction.

ANOVA-table for balanced two-way layout with replications

Source	SS	$d\!f$	MS	F	p-value
A	SS_A	r-1	MS_A	MS_A/MS_{res}	p_A
В	SS_B	c-1	MS_B	MS_B/MS_{res}	p_B
AB	SS_{AB}	(r-1)(c-1)	MS_{AB}	MS_{AB}/MS_{res}	\bar{p}_{AB}
Residual	SS_{res}	n - rc	MS_{res}	,	
Total	SS_{tot}	n-1			

Relevant hypotheses:

\mathbf{H}_{AB} :	$(ab)_{ij} = 0$) No int	eraction
H_A :	$a_i = 0$	No main	effect of A
H_B :	$b_j = 0$	No main	effect of B

Non-balanced designs

ANOVA is used a lot for observational studies, and then it is usually difficult to obtain a balanced design.

In an non-balanced design the number of observations are not the same for all combinations (i, j).

The decomposition of sum of squares is *not* unique.

Usually one can estimate both main- and interaction effects, but the situation is not so neat as in a balanced design.

But one should try to adjust for confounding variables, even if they are correlated.

Higher-way layouts

E.g. three factors A, B og C.

Data:

 $y_{ijkl} =$ replication l with levels A = i, B = j og C = k

Model:

 $y_{ijkl} = \mu + a_i + b_j + c_k + (ab)_{ij} + (ac)_{ik} + (bc)_{jk} + (abc)_{ijk} + \varepsilon_{ijkl}$

ANOVA-table:

Source	SS	$d\!f^{\star}$	MS	F	р
A	SS_A		MS_A	F_A	p_A
В	SS_B		MS_B	F_B	p_B
С	SS_C		MS_C	F_C	\overline{p}_C
AB	SS_{AB}		MS_{AB}	F_{AB}	p_{AB}
AC	SS_{AC}		MS_{AC}	F_{AC}	p_{AC}
BC	SS_{BC}		MS_{BC}	F_{BC}	p_{BC}
ABC	SS_{ABC}		MS_{ABC}	F_{ABC}	p_{ABC}
Residual	SS_{res}		MS_{res}		
Total	SS_{tot}	n-1			

*) can be found in computer print-outs

The decomposition is unique when the design is balanced, but main- and interaction effects can be estimated and tested in more general situations.

Experimental design

- 1. Sample size and power calculations
- 2. Randomization
- 3. Blocking
- 4. Simultaneous variation of factors versus one at a time

Sample size and power calculations

Example: Two normal samples, σ known

 n_j observations in group j = 1, 2.

Question :

How large must n_1 and n_2 be in order that the probability is "large" for rejecting $H_0: \mu_1 = \mu_2$ when $\mu_2 - \mu_1 = \Delta$?

Here Δ is a user-specified difference of "substantial importance".

It is "optimal" to choose the same size for both samples, i.e. $n_1 = n_2 = n/2$ where n is the total number of observations. Test statistic:

$$Z = \frac{\bar{y}_2 - \bar{y}_1}{se(\bar{y}_1 - \bar{y}_2)} \sim \mathsf{N}(\sqrt{n}\Delta/(2\sigma), 1).$$

Reject two-sided hypothesis at 5% level if |Z| > 1.96

Reject one-sided hypothesis at 2.5% level if Z > 1.96

Consider one-sided test (for pedagogical reasons).

Can express Z as

$$Z = Z_0 + \sqrt{n}\Delta/(2\sigma)$$

where $Z_0 \sim N(0, 1)$.

If we want probability of rejection to exceed 80%, we should have:

$$0.80 \le P(Z > 1.96) = P\left(Z_0 > 1.96 - \sqrt{n}\frac{\Delta}{2\sigma}\right).$$

For $Z_0 \sim N(0, 1)$ we have

 $P(Z_0 > -0.84) = 0.80$

Therefore we should have

$$-0.84 > 1.96 - \sqrt{n}rac{\Delta}{2\sigma}$$

which gives

$$n \ge \frac{4(1.96 + 0.84)^2 \sigma^2}{\Delta^2},$$

E.g if $\mu_2 - \mu_1 = \Delta = \sigma$ $n \ge 4 * 2.8^2 = 31.36$, dvs. $n \ge 32$.

Usually σ is unknown, and we will have to use a t-test. This means that n must be slightly larger.

Sample size and power calculations in R

Example: Two sample t-test, σ unknown

Want power 80% for $\mu_2 - \mu_1 = \Delta = \sigma$

R command:

power.t.test(n = NULL, delta = 1, sd=1, power=0.80)

Two-sample t test power calculation

```
n = 16.71477
delta = 1
sd = 1
sig.level = 0.05
power = 0.8
alternative = two.sided
```

```
NOTE: n is number in *each* group
```

R can do power and sample size calculations for a number of tests. Give the command help.search("power") to get information on these

Summary of power calculations

- Parameter of interest, $\boldsymbol{\theta}$
- Nullhypothesis $H_0: \theta = \theta_0$
- Test statistics V
- Reject with level α if $V > v_0 = critical value$
- Power function $\gamma_n(\theta) = P(V > v_0 | \theta, n)$
- Alternative of interest to θ_0 is θ_1 .
- Wants power 1β for rejecting H_0 under the alternative of interest, i.e. n so large that $\gamma_n(\theta_1) > 1 - \beta$

Randomization

Want to compare effects of several treatments

Randomization means that we randomly assign the units to the treatments

Why randomize?

- To avoid systematic assignment to treatments, which can entail biased estimates of treatment effects
- In addition: The errors will be symmetrically distributed, so that the approximation to the normal distribution is good.

Randomization remove bias

Example:

Comparison of placebo and treatment

 $\boldsymbol{x_{i1}}$ dummy variable indicating whether unit \boldsymbol{i} receives treatment

 x_{i2} confounding covariate (often not observed)

Assume "true" model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

A two-sample t-test is the same as running the simple linear regression

$$y_i = a + bx_{1i} + \epsilon_i$$

We know that we then estimate

$$b = \beta_1 + \beta_2 \tau \frac{v_1}{v_2}$$

where $\tau = \operatorname{corr}(x_{i1}, x_{i2})$ and v_j is the standard deviation for x_{ij} (cf. R-exercise 3)

The estimate of the treatment effect is **biased** if $\tau \neq 0$ and $\beta_2 \neq 0$.

By **randomizing**, the treatment x_{i1} and the confounding covariate x_{i2} are independent

Then $\tau = 0$ and the estimate of the treatment effect is **unbiased** even if $\beta_2 \neq 0$.

Randomization and symmetric distribution of errors

Continue the example with placebo and treatment

Numerator of t-statistics is

$$\bar{y}_2 - \bar{y}_1 = \frac{2}{n} \sum_{i=1}^{n/2} (y_i - y_{i+n/2})$$

(assuming $x_{i1} = 1$ for the first n/2 units)

We may write:

 $y_i - y_{i+n/2} = \beta_1 + \beta_2 (x_{i2} - x_{i+n/2,2}) + (\varepsilon_i - \varepsilon_{i+n/2})$

Even if the distributions of the x_{i2} 's and the ε_i 's are skewed, the differences

 $x_{i2} - x_{i+n/2,2}$ and $\varepsilon_i - \varepsilon_{i+n/2}$

will typically be symmetrically distributed.

Blocking

Originally one divided a field into *blocks* to account for possible trends in soil fertility.

Today the term "block" is used when the observations are grouped according to the levels of one factor, which is *not* the factor of main interest (treatment)

Example: Production of penicillin (B&S, p. 61)

- Want to compare treatments
- Raw material consisting of various mixtures
- The mixtures have effect on the response y

Possible strategies:

- 1. Randomize without taking the blocks into account
- 2. Randomize within each block

ANOVA-table from 2. strategy

Source	SS	$d\!f$	MS	F	р
Treatmant (A)	SS_A	r-1	MS_A	F_A	p_A
Block (B)	SS_B	c-1	MS_B	F_B	p_B
Residual	SS_{res}	n-c-r+1	MS_{res}		
Total	SS_{tot}	n-1			

This is the same as for a two-way ANOVA without replicates.

If there is a substantial block effect, strategy 2 it to be preferred to strategy 1.

Summary of multi-factorial designs

$$y_i = a_i + \beta x_i + \varepsilon_i$$

To take into account a covariate x_i reduces the variance of the residuals and increases the significance (except a possible loss of df).

If x_i is categorical it can be used for blocking

For balanced block designs the sum of squares can be uniquely decomposed

Paroles:

- 1. Block what is possible
- 2. Randomize the rest

One by one variation

- Keep levels for factors B, C, D, etc. constant
- Vary level of factor A = treatment

Alternative:

• Vary all factors simultaneously

Advantages with the alternative

- Can analyze the effect of all factors in one design
- Can discover interactions
- Less residual variance