
Lecture 9 – Program

1. Survival data and censoring

2. Survival function and hazard rate

3. Kaplan Meier estimator

4. Log rank test

5. Proportional hazards and Cox regression.
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Data structure and basic questions

In this lecture the data have a different form

from what we have seen earlier:

subject time censoring covariates
1 y1 yes/no x11 · · ·x1p

2 y2 yes/no x21 · · ·x2p

· · · · · ·
· · · · · ·
· · · · · ·
n yn yes/no xn1 · · ·xnp

The response is the time (from a well defined

starting point) until a specific event occurs, or

the time until observation of the subject stops

(censoring).

Examples

• Time to disease onset

• Time from onset of a disease to death

• Duration of unemployment
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Objective as before: Explain variation in time

until ”event of interest” by variation in x1, · · · , xp.

We will often call the time until the event a

survival time, also when the event in question

is something else than death

New aspect: The event of interest does not

necessarily occur in the observation period. Then

we only know that the survival time is longer

than the observation period, but not exactly

how long. This is denoted as censoring. Also

these survival times contain important infor-

mation and must be included in the analysis.
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Example, clinical trials

Assume that we want to study the time from

disease onset until death

• New patients are diagnosed and included

in the study

• The patients are followed until

– death

– no longer want to participate

– study concluded

In the second and third case the survival times

are censored.
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Upper figure : calender time

Lower figure: time on study.
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Censored survival times , formally

We introduce:

Ti = survival time individual no i

Ci = time to censoring of individual i

Do not observe Ti (or Ci), but only

Xi = min (Ti, Ci) = censored survival time

Di =

{
1 if survival time is observed

0 if censoring time is observed

The response for subject i is (Xi, Di), i.e. a

combination of the continuous variable Xi and

the binary variable Di.

Using Xi as response without taking Di into

account does not make sense. We need sta-

tistical methods that use data on all subjects,

whether their survival times are observed or we

only observe time until censoring.
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Concepts for describing the distribution of

survival times

• Density f(t) : P(T ∈ [t, t + ∆〉 ) ≈ f(t)∆

• Survival function S(t) = P (T > t)

• Hazard rate λ(t) :

P(T ∈ [t, t + ∆〉 |T ≥ t) ≈ λ(t)∆

• Cumulative hazard Λ(t) =
∫ t
0 λ(s)ds

Note the following relations:

• λ(t) = f(t)/S(t)

• S(t) = exp(−Λ(t))

• Λ(t) = − log(S(t))

• F (t) = P(T ≤ t) = 1− S(t)
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The exponential distribution

• f(t) = λ exp(−λt)

• S(t) = exp(−λt)

• λ(t) = λ

• Λ(t) = λt
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Estimation of survival function

Example: Survival for patients with chronic

active hepatitis (D=dead, A=alive)
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Estimation of survival function, contd.

We want to estimate the survival function

without assuming that it belongs to a specific

parametric class of distribution (like exponen-

tial or gamma).

For illustration we look at the prednisolone

group. 19 of the 22 patients live more than

50 months.

Therefore:

Ŝ(50) =
19

22
= 0.864

But how do we find Ŝ(100)?

This can not be found as a simple propor-

tion, since we do not know whether the patient

censored at 56 months would live longer than

100 months or not.
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The Kaplan-Meier estimator

Introduce:

• Distinct times of events: t1 < t2 < · · ·
• mj = number of events observed at tj

• Y (tj) = number ”at risk” at tj

For tk ≤ t < tk+1 the survival function is

estimated by the product:

Ŝ(t) =

(
1− m1

Y (t1)

)
·
(
1− m2

Y (t2)

)
· · ·

(
1− mk

Y (tk)

)

This is the Kaplan-Meier estimator.

More compactly we may write:

Ŝ(t) =
∏

tj≤t

(
1− mj

Y (tj)

)
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Example, prednisolone group

tj Y (tj) mj
mj

Y (tj)
1− mj

Y (tj)
Ŝ(t)

2 22 1 1
22

21
22

21
22

6 21 1 1
21

20
21

21
22 · 20

21 = 20
22

12 20 1 1
20

19
20

19
20 · 20

22 = 19
22

54 19 1 1
19

18
19

18
19 · 19

22 = 18
22

68 17 1 1
17

16
17

16
17 · 18

22 = 0.770

89 16 1 1
16

15
16

15
16 · 0.770 = 0.722

96 15 2 2
15

13
15

13
15 · 0.722 = 0.626

143 8 1 1
8

7
8

7
8 · 0.626 = 0.547

146 6 1 1
6

5
6

5
6 · 0.547 = 0.456

168 3 1 1
3

2
3

2
3 · 0.456 = 0.304
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Example, contd. R-code

x<-c(2,6,12,54,56,68,89,96,96,125,128,131,140,141,
143,145,146,148,162,168,173,181)

d<-c(1,1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0,0)

library(survival)

survpred<-survfit(Surv(x,d)~1, conf.type="none")
summary(survpred)

time n.risk n.event survival std.err
2 22 1 0.955 0.0444
6 21 1 0.909 0.0613

12 20 1 0.864 0.0732
54 19 1 0.818 0.0822
68 17 1 0.770 0.0904
89 16 1 0.722 0.0967
96 15 2 0.626 0.1051

143 8 1 0.547 0.1175
146 6 1 0.456 0.1285
168 3 1 0.304 0.1509
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R-plot of Kaplan-Meier estimator

plot(survpred)
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Kaplan-Meier: standard error and

confidence intervals

The standard error of the Kaplan-Meier

estimator is estimated by Greenwood’s formula:

ŝe(Ŝ(t)) = Ŝ(t)

√√√√
∑

tj≤t

mj

Y (tj)(Y (tj)−mj)

A 95% confidence interval for S(t) is given by

Ŝ(t)± 1.96× ŝe(Ŝ(t))

Other options for confidence intervals are avail-

able (but note that R has a silly default!)
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Example, contd. R-code

survpred2<-survfit(Surv(x,d)~1,conf.type="plain")

plot(survpred2)
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Comparison of two groups

Want to compare survival in two groups

(e.g. control and treatment):

Group 1 : (Xi1, Di1); i = 1, ..., n1

Group 2 : (Xi2, Di2); i = 1, ..., n2

Ŝk(t) : Kaplan-Meier in group k (k = 1,2)

Comparison of the groups:

• Graphically : Plot Ŝ1(t) and Ŝ2(t)

• Testing : Log rank-test
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Graphical comparison

x<-c(2,3,4,7,10,22,28,29,32,37,40,41,54,61,63,71,127,
140,146,158,167,182,2,6,12,54,56,68,89,96,96,125,128,
131,140,141,143,145,146,148,162,168,173,181)
d<-c(rep(1,16),rep(0,6),c(1,1,1,1,0,1,1,1,1,0,0,0,0,0,
1,0,1,0,0,1,0,0))
gr<-c(rep(1,22),rep(2,22))

survboth<-survfit(Surv(x,d)~gr)
plot(survboth,lty=1:2,xlab="Time (months)",ylab="Survival")
legend(5,0.2,c("control","treatment"),lty=1:2)
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Log-rank test

O1 : number of events in group 1

O2 : number of events in group 2

E1 and E2 : expected number of events in the

two groups if the survival functions are the

same

Define for both groups combined:

Times of observed events: t1 < t2 < · · · < td
mj : number of events at tj
Y (tj) : number ”at risk” at tj

Define also:

Yk(tj) number ”at risk” in group k at tj

Then

Ek =
d∑

j=1

mj
Yk(tj)

Y (tj)
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Log-rank test, contd.

The test statistic

Z =
O2 − E2

ŝe(O2 − E2)

is approximately N(0,1)-distributed under the

null hypothesis that the survival functions are

the same in the two groups (H0)

Equivalently:

Z2 =
(O2 − E2)

2

ŝe(O2 − E2)2

is approximately χ2
1-distributed under H0
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Log-rank test, contd.

survdiff(Surv(x,d)~gr)

N Observed Expected (O-E)^2/E (O-E)^2/V

gr=1 22 16 10.6 2.73 4.66

gr=2 22 11 16.4 1.77 4.66

Chisq= 4.7 on 1 degrees of freedom, p= 0.0309

We get a ”conservative” version of the log rank

test if we compare

X2 =
(O1 − E1)

2

E1
+

(O2 − E2)
2

E2

with the χ2
1-distribution

(A test is ”conservative” if its P-value is too large.)
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Log-rank test:

Comparison of K > 2 groups

H0 : survival functions in all groups are equal

Ok = number of events in group k

Ek = expected number of events in group k

Log rank test statistic: Z2 ∼ χ2
K−1 under H0.

The test statistic is based on a comparison
of the Ok s and Ek s. Its expression is a bit
complicated, but it is computed by statistical
software

We get a ”conservative” version of the log rank
test if we compare

X2 =
K∑

j=1

(Oj − Ej)
2

Ej

with the χ2
K−1-distribution
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Proportional hazards: one covariate

Hazard rate for subject with covariate x:

λx(t) = λ0(t) exp(βx)

The baseline hazard λ0(t) is the hazard for a

subject with x = 0.

Interpretation: Hazard rate ratio (or loosely,

relative risk, RR):

RR =
λx1(t)

λx0(t)
= exp(β(x1 − x0))

In particular with x binary (i.e. values 0 and 1):

RR =
λ1(t)

λ0(t)
= exp(β)
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Example: Mortality rates among men and

women (Statistics Norway, 2000, smoothed)

Binary covariate: x indicator of men.

Propositional hazards model is not valid in age
interval 0-100 years

Propositional hazards model roughly valid in
interval 40-85 years with RR ≈ 1.8.
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Example: Melanoma data

205 patients with malignant melanoma oper-
ated 1962-77. Followed until death or censor-
ing (cf. Exercise)

Proportional hazards model:

λx(t) = λ0(t) exp(βx)

(i) Qualitative covariate:

x = indicator of ulceration

RR = exp(β) is hazard ratio between

those with and without ulceration

(ii) Quantitative covariate:

x1 = tumor thickness (in mm) subject 1,

x2 = thickness subject 2 = x1 + 1 mm:

RR = exp(β) = hazard ratio for 1 mm
difference in thickness
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Proportional hazards: several covariates

Hazard rate for individual with covariate vector

x = (x1, x2, ...., xp):

λx(t) = λ0(t) exp{β1x1 + β2x2 + ... + βpxp}

The baseline hazard λ0(t) is the hazard for an

individual with x1 = · · · = xp = 0.

Interpretation: Hazard ratio (RR)

Another subject with x′ = (x′1, x′2, ...., x′p) where

x′1 = x1 + 1 and x′j = xj otherwise:

RR1 =
λx′(t)
λx(t)

= exp{β1}
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Example: Melanoma data

Model:

λx(t) = λ0(t) exp(β1x1 + β2x2 + β3x3)

x1 = sex (M=1, F=0)

x2 = indicator of ulceration

x3 = thickness (in mm)

Consider x = (x1,0, x3) and x′ = (x1,1, x3)

Then

RR =
λx′(t)
λx(t)

= exp(β2)

is the hazard ratio between those with and

without ulceration adjusted for sex and thick-

ness.
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Cox’s regression model

For Cox’s regression model the baseline hazard
λ0(t) is an arbitrary non-negative function

Estimation in Cox’s model is based on a
partial likelihood

The partial likelihood is of the form

L(β) =
d∏

j=1

Lj(β)

where t1 < t2 < · · · < td are the times when
events are observed, and the factors Lj(β) only
depend on the regression parameters (and not
on the baseline hazard)

The partial likelihood has similar properties as
an ordinary likelihood, and similar methods as
for logistic regression and Poisson regression
may be used. E.g. confidence intervals, Wald
tests and tests based on the difference in de-
viance (i.e. twice the difference in log likeli-
hoods)
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Example, melanoma data

Data:

• status: 1=died from melanoma, 2=censored, 4=died
of other reasons

• lifetime: observed time to death/censoring (in years)

• ulcer: 1=ulcer, 2= no ulcer

• thickn: thickness in mm/100

• sex: 1=woman, 2=man

• age: age when operated
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Example, contd.
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Example, contd.

mod1<-coxph(Surv(lifetime,status==1)~thickn+ulcer+sex+age)

mod1

coef exp(coef) se(coef) z p
melanom$tumor 0.1089 1.115 0.0377 2.89 0.00390
melanom$ulcer -1.1645 0.312 0.3098 -3.76 0.00017
melanom$sex 0.4328 1.542 0.2674 1.62 0.11000
melanom$age 0.0122 1.012 0.0083 1.47 0.14000

Likelihood ratio test=41.6 on 4 df, p=2e-08 n= 205

Here the ”likelihood ratio test” is the same as

the ”null deviance” in the output for a gener-

alized linear model (e.g. logistic regression or

Poisson regression)
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Example, contd.

summary(mod1)

coef exp(coef) se(coef) z p
thickn 0.1089 1.115 0.0377 2.89 0.00390
ulcer -1.1645 0.312 0.3098 -3.76 0.00017
sex 0.4328 1.542 0.2674 1.62 0.11000
age 0.0122 1.012 0.0083 1.47 0.14000

exp(coef) exp(-coef) lower .95 upper .95
thickn 1.115 0.897 1.036 1.201
ulcer 0.312 3.204 0.170 0.573
sex 1.542 0.649 0.913 2.604
age 1.012 0.988 0.996 1.029

Rsquare= 0.184 (max possible= 0.937 )
Likelihood ratio test= 41.6 on 4 df, p=2e-08
Wald test = 39.4 on 4 df, p=5.72e-08
Score (logrank) test = 46.7 on 4 df, p=1.79e-09
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Example, contd.

mod0<-coxph(Surv(lifetime,status==1)~thickn+ulcer+sex)
mod0

coef exp(coef) se(coef) z p
thickn 0.113 1.120 0.0379 2.99 0.00280
ulcer -1.167 0.311 0.3115 -3.75 0.00018
sex 0.459 1.583 0.2668 1.72 0.08500

Likelihood ratio test=39.4 on 3 df, p=1.44e-08 n= 205

anova(mod0,mod1,test="Chisq")

Analysis of Deviance Table

Model 1: Surv(lifetime,status==1)~thickn+ulcer+sex
Model 2: Surv(lifetime,status==1)~thickn+ulcer+sex+age

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 202 527.01
2 201 524.78 1 2.23 0.14
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