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Basic ideas

We will often consider two (or more) variables

simultaneously.

Examples (B& S, page 15)
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There are two typical ways this is can be done:

(1) The data (x1, y1), . . . , (xn, yn) are
considered as independent replications of a
pair of random variables, (X, Y ).

(2) The data are described by a linear regres-
sion model

yi = a + bxi + εi, i = 1, . . . , n

Here y1, . . . , yn are the responses that are
considered to be realizations of random vari-
ables, while x1, . . . , xn are considered to be
fixed (i.e. non-random) and the εi’s are
random errors (noise)

Situation 1) occurs for observational studies,
while situation 2) occur for planned experi-
ments (where the values of the xis are under
the control of the experimenter).

In situation 1) we will often condition on the
observed values of the xi’s, and analyse the
data as if they are from situation 2)

In this lecture we focus on situation 1)
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Joint or simultaneous distributions

The most common way to describe the si-
multaneous distribution of a pair of random
variables (X, Y ), is through their simultaneous
probability density, f(x, y)

This is defined so that

P ( (X, Y ) ∈ A ) =
∫

A
f(x, y) dx dy

The marginal density of X is obtained by
integrating over all possible values of Y :

f1(x) =
∫ ∞
−∞

f(x, y)dy

and similarly for the marginal density f2(y) of Y .

If f(x, y) = f1(x) f2(y), the random variables
X and Y are independent.

Otherwise, they are dependent, which means
that there is a relationship between X and Y ,
so that certain realizations of X tend to occur
more often together with certain realizations
of Y than others.
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Covariance and correlation

The dependence between X and Y is often

summarized by the covariance:

γ = Cov(X, Y ) = E[(X − µ1)(Y − µ2)]

and the correlation coefficient:

ρ = corr(X, Y ) =
Cov(X, Y )

sd(X) sd(Y )

The following are important properties of the

correlation coefficient.

• corr(X, Y ) takes values in the interval [−1,1]

• corr(X, Y ) describes the linear relationship

between Y and X.

• If X and Y are independent corr(X, Y ) = 0,

but not (necessarily) the other way around
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Correlation: correlated data
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Correlation: uncorrelated data
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Correlation: uncorrelated data
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Transformations

Sometimes a transformation may improve the
linear relation
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Sample versions of covariance
and correlation

Data (x1, y1), . . . , (xn, yn) are independent
replicates of (X, Y ).

Empirical analogues to the population concepts
and basic results:

• Empirical covariance:

γ̂ =
1

n− 1

n∑

i=1

(xi − x̄n) (yi − ȳn)

• Empirical correlation coefficient:

ρ̂ =
γ̂

s1n s2n

• When n increases:

γ̂ → γ

ρ̂ → ρ
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Conditional distributions

The conditional density of Y given X = x

is given by

f2(y|x) =
f(x, y)

f1(x)

If X and Y are independent, so that f(x, y) = f1(x)f2(y),

we see that f2(y|x) = f2(y). This is reasonable, and

corresponds to the fact that there are no information in

a realization of X about the distribution of Y

Using the conditional density, one may find the
conditional mean and the conditional variance:

• Conditional mean: µ2|x = E(Y |x)

• Conditional variance : σ2
2|x = Var(Y |x)

When (X, Y ) is bivariate, normally distributed,
µ2|x is linear in x, and is known as the regres-
sion of Y on X = x (cf. below).
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Prediction

When X and Y are dependent, it is reasonable

that knowledge of the value of X can be used

to improve the prediction for the correspond-

ing realization of Y .

Let Ŷ (x) be such a predictor. Then:

• Ŷ (x)− Y is the prediction error

• Ŷopt(x) = E(Y |x) minimizes E[(Ŷ (x)−Y )2],

the mean squared prediction error

• E(Y |x) will often depend on unknown

parameters, and it may be complicated to

compute
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Linear prediction

It is convenient to consider linear predictors,

i.e. predictors of the form:

Ŷlin(x) = a + bx

Minimizing E[(a + bX − Y )2] w.r.t. a and b

yields:

b =
γ

σ2
1

and a = µ2 − bµ1

The minimum is E[(Ŷlin(x)−Y )2] = σ2
2 (1−ρ2).

Note that if ρ2 increases, the mean squared

error decreases.
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Linear prediction, contd.

Without knowledge of the value of X, the best
predictor is the unconditional mean of Y , i.e.
Ỹ0 = µ2.

This has mean squared error E[(Ỹ0−Y )2] = σ2
2.

Hence, a sensible measure of the quality of a
prediction is the ratio

E[(Ŷlin(x)− Y )2]

E[(Ỹ0 − Y )2]
= 1− ρ2.

For judging a prediction, the squared correla-
tion coefficient is the appropriate measure.

When a and b are unknown, we plug in the
empirical counterparts:

b̂ =
γ̂

σ̂2
1

and â = µ̂2 − b̂µ̂1 = ȳ − b̂x̄
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The bivariate normal distribution

When (X, Y ) is bivariate normal:

• The distribution is described by the five

parameters µ1, µ2, σ2
1, σ2

2 and ρ

• The marginal distributions of X and Y are

normal, X ∼ N(µ1, σ2
1), Y ∼ N(µ2, σ2

2)

• corr(X, Y ) = ρ and Cov(X, Y ) = ρ σ1 σ2

• The conditional distributions are normal

• E(Y |x) = µ2 + ρ σ2
σ1

(x− µ1)

• Var(Y |x) = σ2
2 (1− ρ2)

• b = ρ σ2
σ1

= γ
σ2
1

and a = µ2 − bµ1
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