
Lecture 3 – Program

1. Data structure and basic questions

2. Simple linear regression

3. Multiple linear regression

4. Least squares estimation

5. Hypothesis testing and confidence intervals

6. Proportion of explained variation (R2)

7. Confounding
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Data structure and basic questions

Data have the form:

unit response covariates
1 y1 x11 · · ·x1p

2 y2 x21 · · ·x2p

· · · · ·
· · · · ·
· · · · ·
n yn xn1 · · ·xnp

• Objective: Explain how the response y is

related to the covariates x1, · · · , xp

Sometimes predict new units where only

the covariates are available.

• The covariates are treated as fixed

• Model: yi = β0 + β1xi1 + · · ·+ βpxip + εi ,

where εi ∼ N(0, σ2) is an error term (noise)

• Decomposition:

Response = Systematic part + random part

2



Simple linear regression

Data (xi, yi), i = 1, ..., n

yi = response
(or dependent variable)

xi = covariate
(or explanatory variable)
(or independent variable)

Model:

yi = a + bxi + εi

where εi ∼ N(0, σ2) ; i = 1, ..., n ; are indepen-

dent error terms (noise)

3



Example: Nicotine in filter cigarettes

Response = amount of nicotine

Covariate = amount of CO

Amount of nicotine versus amount of CO :
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Simple linear regression in R

mod1<-lm(nicot~co, data=sigarett)
summary(mod1)

Residuals:
Min 1Q Median 3Q Max

-0.22123 -0.15784 0.02103 0.11821 0.29990

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.191639 0.089499 2.141 0.0414
co 0.060564 0.006814 8.888 1.67e-09

Residual standard error: 0.1611 on 27 degrees of freedom
Multiple R-Squared: 0.7453, Adjusted R-squared: 0.7358
F-statistic: 79 on 1 and 27 DF, p-value: 1.671e-09

(Slightly edited output)
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Amount nicotine versus CO with fitted line
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The computer program does not

distinguish between planned experiments

and observation studies.

But the difference is essential

when interpreting the results.
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Multiple linear regression

Data (yi, xi1, . . . , xip) i = 1, ..., n

yi = response
xip = covariate no. j j = 1, . . . , p

Model:

yi = β0 + β1xi1 + · · ·+ βpxip + εi

where

βj = regression coefficient for xij

The εi’s are independent and normally distributed

error terms (noise) that have expectation zero

and the same variance σ2
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Types of covariates and models

We assume that the response is a

quantitative (numeric) variable.

Three possibilities for the covariates:

• Quantitative covariates

• Qualitative (categorical) covariates

• Mixture of quantitative and

qualitative covariates
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Examples:

Nicotine in filter cigarettes

yi = amount of nicotine
xi1 = amount of CO
xi2 = amount of tar

Coagulation of blood for rats

yi = time to coagulation
xi1 = 1 if diet 1; 0 otherwise
xi2 = 1 if diet 2; 0 otherwise
xi3 = 1 if diet 3; 0 otherwise
xi4 = 1 if diet 4; 0 otherwise

Lung function for children

yi = FEV1
xi1 = height in cm
xi2 = weight in kg
xi3 = age in years
xi4 = 1 if boy; 0 if girl
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Scatter plot matrix of amount of nicotine, CO and tar
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Multiple linear regression in R

mod2<-lm(nicot~co+tar, data=sigarett)
summary(mod2)

Residuals:
Min 1Q Median 3Q Max

-0.174122 -0.013595 -0.003180 0.068722 0.112795

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.181645 0.046683 3.891 0.000621
co -0.018642 0.009910 -1.881 0.071201
tar 0.081837 0.009559 8.562 4.84e-09

Residual standard error: 0.08399 on 26 degrees of freedom
Multiple R-Squared: 0.9333, Adjusted R-squared: 0.9282
F-statistic: 181.9 on 2 and 26 DF, p-value: 5.165e-16

(Slightly edited output)
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Why multiple regression?

Typically several covariates need to be taken

into account when trying to explain the varia-

tion of the response

Two objectives that may be conflicting:

• Explain the influence of a covariate

on response

• Obtain a prediction rule for the

response as a function of the covariates
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Analysis of variance:

Only qualitative covariates

(more in Lecture 6)

Analysis of covariance:

Both qualitative and quantitative variables
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Coding of qualitative covariates

Suppose a qualitative (categorical) covariate

has r values.

The technical term for this type of covariate is

factor and its possible values are called factor

levels.

To include such a covariate in a multiple re-

gression model it levels have to be coded (i.e.

given numeric values), and that can be done

in several ways.
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First method

A) Two levels, e.g. female and male.

We use one dummy-variable:

xi1 =

{
1 if male
0 if female

B) Three levels, e.g. placebo, treatment 1, and

treatment 2. We use two dummy-variables:

xi1 =

{
1 treatment 1
0 else

xi2 =

{
1 treatment 2
0 else
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We use r−1 dummy-variables to code a factor

with r levels.

All the dummy variables will be equal to 0 for

the reference level (female, placebo)

For the first example above we may use the

model:

E(yi) = β0 + β1xi1

Then

E(yi) =

{
β0 + β1 for males
β0 for females

Thus β0 is the expected value of the response

for females (reference), and β1 as the differ-

ence of the expected value of the response for

males and females.
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Second method

In some applications it is more natural to treat
all levels symmetrically, and not single out one
as a reference level.

Consider as an example a situation where a
company wants to compare the sales, y, of a
product in four regions.

Let us introduce a dummy variable for each
region so that (i = 1, . . . ,4)

xi =

{
1 if region i
0 else

Then for i = 1, . . . ,4 :

E(yi) = β0 + β1x1 + · · ·+ β4x4

There is something suspect!
Considered as a system of linear equations,
there are 4 equations, and 5 unknowns.
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This can be solved by introducing a restriction
on the βj’s. A common restriction is:

β1 + β2 + β3 + β4 = 0

Now β1, · · · , β4 can be interpreted as measuring
the expected sales above the country average,
which is measured by β0

Coding in R

R has options for choosing which method to
use (in addition the covariate must be defined
as a factor).

The command

options(contrasts=c("contr.treatment","contr.poly"))

defines the lowest level as a reference category
(this is the default in R, but not in Splus)

The command

options(contrasts=c("contr.sum","contr.poly"))

specifies the sum constraint.

19



Estimation: least squares

Consider the sum of squared differences

between the responses yi and their expected

values E(yi) = β0 + β1xi1 + ... + βpxip :

SS(β0, β1, . . . , βp) =

n∑

i=1

(
yi − β0 − β1xi1 − · · · − βpxip

)2

Given the data, the sum of squares

SS(β0, β1, . . . , βp) is a second order polynomial

in the parameters β0, β1, . . . , βp

The values of values β0, β1, . . . , βp that mini-

mize the quadratic function SS(β0, β1, . . . , βp)

are the least squares estimators β̂0, . . . , β̂p

The minimum is found by setting the derivatives of

SS(β0, β1, . . . , βp) with respect to β0, β1, . . . , βp equal to

zero. This gives a linear system of equations that may

be solved explicitly using matrix algebra.

20



Simulated example

Generate 10 covariate values xi ∼ N(0,1) and

errors εi ∼ N(0,1)

Obtain the responses by

yi = 1 + 2xi + εi
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Comparison with other values of β0 and β1
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Plot of SS(β0, β1) versus β0 and β1 :
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Important quantities:

Fitted (or predicted) values:

ŷi = β̂0 + β̂1xi1 + · · ·+ β̂pxip

Residuals:

êi = yi − ŷi

= yi − β̂0 − β̂1xi1 − · · · − β̂pxip
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Estimation of residual variance: σ2 = Var(εi)

The minimum sum of squares, or the squared

sum of residuals, is denoted by

SSunexpl = SSres = SS(β̂0, . . . , β̂p) =

n∑

i=1

(yi − β̂0 − β̂1xi1 − · · · − β̂pxip)
2

The common estimate of σ2 is

σ̂2 =
SSunexpl

n− p− 1

The denominator is

n− p− 1 = n− (p + 1)

= Number of observations

− Number of coefficients

This is the residual degrees of freedom (df).
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Simple linear regression

Model: yi = β0 + β1xi + εi

Let x̄ and ȳ be the means of the xi’s and the

yi’s. Then

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)

∑n
i=1(xi − x̄)2

and

β̂0 = ȳ − β̂1x̄

The estimate of σ2 is σ̂2 = SSunexpl/(n − 2)

wIth

SSunexpl =
n∑

i=1

(yi − β̂0 − β̂1xi)
2.

Also

se(β̂1) =
√

V ar(β̂1) =
σ√∑n

i=1(xi − x̄)2
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Two covariates (B& S p. 30)

Model: yi = β0 + β1xi1 + β2xi2 + εi

Let x̄1 and x̄2 be the means of the covariates,
and let

vj =
1

n− 1

n∑

i=1

(xij − x̄j)
2

be the empirical variances (j = 1,2).

Introduce the empirical covariance

v12 =
1

n− 1

n∑

i=1

(xi1 − x̄1)(xi2 − x̄2)

and the correlation

τ = τ12 =
v12√
v1 v2

Then

se(β̂j) =
σ√

(1− τ2) (n− 1) vj

corr(β̂2, β̂2) = −τ
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Inference in multiple regression

Test for effect of at least one covariate,

i.e. test of the null hypothesis

H0 : β1 = β2 = · · · = βp = 0

Define the sum of squares

Total variation: SStot =
∑n

i=1(yi − ȳ)2

Explained variation: SSexpl = SStot − SSunexpl

A test for H0 is based on

F =
SSexpl /p

σ̂2
=

SSexpl /p

SSunexpl /(n− p− 1)

which is F-distributed with p and n− p− 1

degrees of freedom under H0.
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ANOVA table for multiple regression

Source SS df MS F

Regression SSexpl p MSexpl =
Sexpl

p
F = MSexpl

MSunexpl

Residual SSunexpl n− p− 1 MSunexpl =
Sunexpl

n−p−1

Total SStot n− 1

A large values of F indicates that H0 should
be rejected, i.e. we conclude that at least one
of the βj, j = 1, . . . , p is different from 0.

How large F should be for rejection of H0
is determined from the F -distribution.
The P-value is given by

P = P (Fp,n−k > observed value of F )

Note that the F -statistic can be considered as the ratio

of two estimators of the variance σ2.

The denominator is the unbiased estimator, σ̂2.

The numerator SSexpl /p has expectation equal to σ2

under H0 and larger than σ2 under the alternative.
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Test for H0 : βj = 0

βj 6= 0 means that covariate j has an influence

on the response.

The test statistic is

t =
β̂j

ŝej

where ŝej is the estimated standard error of β̂j.

We may show that ŝej = tj σ̂, where tj depends

only on the covariates.

Recall that σ̂2 is the sum of squares of the

residuals divided by n− p− 1.

Under H0 : t ∼ tn−p−1

H0 is rejected for for large absolute values of t
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Confidence interval for βj

The 95% confidence interval has the form

β̂j ± t0.975 ŝej

where t0.975 is the 97.5%-percentile of the

t−distribution with n− p− 1 df

t0.975 can be found in R by qt(0.975,n-p-1).

The t-distribution is close to N(0,1) when the

degrees of freedom is not too small.

Therefore, the 95% confidence interval is

approximately

β̂1 ± 2ŝej.

Confidence intervals with other confidence coefficients

1− α, are obtained by using t1−α/2 instead of t0.975.
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Test for H0 : βj = βj0

βj0 is any specified value (not necessarily 0).

Two possible procedures:

1. Use the confidence interval for βj:

If βj0 does not belong to the interval,

reject H0 at the 5% level

2. Use the test statistic

t =
β̂j − βj0

ŝej

which is t−distributed n−p−1 df under H0.

P-value may be computed.
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Multiple correlation and R2
p

R2
p =

SSexpl

SStot
= 1− SSunexpl

SStot

If p = 1 (one covariate) we have R2
1 = r2

i.e. the squared Pearson correlation coefficient
between covariate and response.

R2
p is the square of the multiple correlation

coefficient

In multiple regression models R2
p is a measure

of the proportional reduction of the total sum
of squares by using the model.

SSunexpl will decrease as we include more
covariates in the regression.
Therefore R2

p will increase with p.

When all the covariates are uncorrelated

R2
p = r21 + r22 + · · ·+ r2p

where rj is the Pearson correlation coefficient
between covariate j and the response.
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Uncorrelated covariates

For planned experiments one can choose the values of
the covariates so that they are uncorrelated. This is
also called orthogonality.

Orthogonality is a useful property:

• R2 can be decomposed.

• The estimates β̂j are the same as obtained by fitting
a simple linear regression for each covariate.

• The part of the estimate for ŝej = tj σ̂ depending
on the covariates is the same as in a simple linear
regression.

• Estimated residual variance σ̂2 is typically smaller.
Hence, ŝej is also smaller.

• Therefore, shorter confidence intervals are often
obtained.

• More precise predictions.
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Correlated covariates

This is the typical case in observational studies.

Confounding exists if different interpretations

of the relationship between the response and a

covariate of primary interest change according

to whether other covariates are are included or

not.

Example

• Two covariates: covariate 2 has an effect, covariate
1 has little or no effect.

• The covariates are positively correlated.

• A simple linear regression on covariate 1 shows
significant effect.

• When covariate 2 is included, there is little or no
significant effect of covariate 1.
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Nicotin, CO and tar revisited

Simple linear regression:

nicot = 0.192 + 0.060CO

P-value of coefficient of CO: < 0.0001

Multiple regression:

nicot = 0.182− 0.019CO + 0.082 tar

P-value and coefficient of CO: 0.071

P-value and coefficient of tar: < 0.0001
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Formal argument:Two covariates

True model: yi = β0 + β1xi1 + β2x2i + εi

Use only covariate 1: yi = a + bxi1 + εi

Then

b̂ = β̂1 + β̂2 τ

√
v2

v1

where τ is the empirical correlation between

the covariates, and vj is the empirical variance

of covariate j (cf. R-exercise 3).

The estimated effect in the model with only

covariate 1 is therefore a combination of

• the real effect of covariate 1

• the effect of covariate 2 via τ
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Lesson:

In an observational study there is always a pos-

sibility that there are confounding variables that

are not included in the model, so called lurking

variables.

In a multiple regression one must always take

account of covariates that may have an effect.

Ignoring them means that the explanation of

the relationship between the response and co-

variates of primary interest may be due to con-

founding.

It is also a useful information that a poten-

tial covariate turns out to have no significant

effect.
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Problems in multiple regression

Assume that there are two covariates that

satisfy

xi2 = γ0 + γ1xi1

Thus there is an exact linear relationship

between xi1 and xi2, and the two covariates

have correlation 1.

Including both in a regression model is

not meaningful, and the estimates cannot

be computed.

Usually a computer program, by default,

will ignore one of the variables, but from the

output it is not always obvious which one.
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Problems in multiple regression, cont.

Usually in a multiple regression, we do not have

correlation exactly equal to 1 between two or

more covariates (or linear combinations of co-

variates).

But we may have correlations that are close

to 1. This is called almost or near co-linearity.

Then one problem is that the estimates are

correlated, so the interpretation is more diffi-

cult.
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Example, two covariates

Remember

sej =
σ√

(1− τ2)vj(n− 1)

and

corr(β̂1, β̂2) = −τ.

where τ is the empirical correlation between

the covariates.

We see that when τ 6= 0 the standard errors

are larger, and also that the estimates are cor-

related. When the covariates are positively

correlated, the estimates are negatively corre-

lated. Hence, there is a trade-off between the

coefficients how to express the variation in the

covariates on the variation of the response.
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Simulation as in B&S, p. 33

β1 = β2 = 1, τ = 0 and0.9
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