
Lecture 6 – Program

• Analysis of variance

• Experimental design
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ANOVA = ANalysis Of VAriance

1. Comparison of several groups

2. Variation within and between groups

3. One-way layout and t-test

4. Connection to regression

5. Parameterization

6. Two-way layout

7. Interaction

8. Higher-way layouts
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Two-sample t-tests: Comparison of two groups

Example:

Two treatments: placebo and medication

Group 1: placebo

Group 2: new medication

Is blood pressure lower with medication?

One-way ANOVA: Comparison of k groups

Example: Three different medications

Group j: medication no. j

Is there a difference between the medications?

If yes, which results in lowest blood pressure?
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Decomposing the variation:
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Total variance =

Variance within groups

+ Variance between groups
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Important quantities and notation

yij = observation number i in group j

(i = 1, ..., nj j = 1, ..., k)

We assume that all observations are

independent and that yij ∼ N(µj, σ
2)

ȳ·j = mean in group j

ȳ·· = total mean.

Sum of squares:

Total: SStot =
∑k

j=1
∑nj

i=1(yij − ȳ··)2

Between : SStre =
∑k

j=1 nj(ȳ·j − ȳ··)2

Within : SSres =
∑k

j=1
∑nj

i=1(yij − ȳ·j)2

Important decomposition:

SStot = SStre + SSres
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Test of H0 : µ1 = · · · = µk

Unbiased estimator of σ2:

σ̂2 = MSres = SSres/(n− k)

(n = total number of observations)

Under the null hypothesis σ2 can also

be estimated by

MStre = SStre/(k − 1)

If the statistic

F =
MStre

MSres
=

SStre/(k − 1)

SSres/(n− k)

is much larger than 1, H0 is not reasonable.

F is F-distributed with k− 1 and n− k degrees

of freedom under H0. This result is used to

compute the p-value of the test.
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Relation to two sample t-test

Number of groups is k = 2

Will test H0 : µ1 = µ2

The test statistic

t =
ȳ·1 − ȳ·2

se(ȳ·1 − ȳ·2)

is t-distributed with n1 + n2 − 2 degrees

of freedom under H0.

May show that t2 = F

t2 is F-distributed with 1 and n1+n2−2 = n−2

degrees of freedom under H0.

The usual (two-sided) t-test for two samples

is a special case of the F-test in a one-way

ANOVA.
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ANOVA-table for one-way layout:

Source SS df MS F p-value.

Treatment SStre k − 1 MStre F = MStre

MSres
p

Residual SSres n− k MSres

Total SStot n− 1

p-value is obtained from:

p = P (Fk−1,n−k > observed value of F )
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Example (B&S, page 26):

Comparing blood coagulation times for

rats given four diets

Diet No. obs. Mean Sd
A 4 61 1.8
B 6 66 2.8
C 6 68 1.7
D 8 61 2.6

Anova-table:

Source SS df MS F p-value
Diet 228 3 76.0 13.57 <0.0001
Residual 112 20 5.6
Total 340 23

R commands (diet coded as factor):

fit<-lm(time~diet, data=rats)
anova(fit)
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ANOVA as multiple regression

Reorder the observations (with covariates)

in the form y1, y2, ..., yn, where:

- the first n1 belong to group 1,

- the next n2 belong to group 2,

- etc.

Let xij be an indicator (dummy) equal to 1

if yi is in group j and equal to 0 otherwise.

Then the model can be expressed as

yi = µ1xi1 + µ2xi2 + ... + µkxik + εi

Here the errors are independent and εi ∼ N(0, σ2).

In other words: a linear multiple regression

without intercept.
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Various parameterizations

1. Without intercept:

yi = µ1xi1 + µ2xi2 + ... + µkxik + εi

2. With group 1 as reference:

yi = µ1+(µ2−µ1)xi2+ ...+(µk−µ1)xik+εi

3. As deviations from the grand mean

µ = (µ1 + ... + µk)/k:

yi = µ + (µ1 − µ)xi1 + ... + (µk − µ)xik + εi

Option 2, called treatment-contrast, is default in R.

Option 3, called sum-contrast, is commonly used for

ANOVA, and may be specified in R by the command:

options(contrasts=c("contr.sum","contr.poly"))
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Two-way ANOVA

Two categorical variables (or factors) A and B

Factor A has r levels, factor B has c levels

One observation for each combination of the

levels of the factors

yij = observation with level i for A and j for B

Model (only main effects):

yij = µ + ai + bj + εij

Decomposition of sum of squares:

SStot = SSA + SSB + SSres

ANOVA-table:

Source SS df MS F p-value
A SSA r − 1 MSA MSA/MSres pA

B SSB c− 1 MSB MSB/MSres pB

Res SSres n− c− r + 1 MSres

Tot SStot n− 1
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Two-way layouts and interaction

The expected response at level i for factor A

and level j for factor B may differ from the

sum of the main effects ai + bj.

Graphically this shows up as non-parallel lines

in a plot of the expected values (B&S p. 64):
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Interaction

Model for interaction:

yij = µ + ai + bj + (ab)ij + εij

(ab)ij = interaction
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Two-way layout, contd.

A model for a two-way layout including inter-
cept, main effects and interactions can not be
estimated if there is only one observation per
combination of factor levels or cell, (i, j).

To estimate interaction we need replications:

yijk = kth observation at levels A = i and B = j

Balanced design: Same number of replica-
tions m per combination of levels (i, j).

With a balanced design there is a unique
decomposition of the sum of squares

SStot = SSA + SSB + SSAB + SSres

where SSA og SSB are defined earlier and SSAB

is the sum of squares for interaction.

14



ANOVA-table for balanced two-way layout

with replications

Source SS df MS F p-value
A SSA r − 1 MSA MSA/MSres pA
B SSB c− 1 MSB MSB/MSres pB
AB SSAB (r − 1)(c− 1) MSAB MSAB/MSres pAB
Residual SSres n− rc MSres

Total SStot n− 1

Relevant hypotheses:

HAB : (ab)ij = 0 No interaction

HA : ai = 0 No main effect of A

HB : bj = 0 No main effect of B
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Non-balanced designs

ANOVA is used a lot for observational studies,

and then it is usually difficult to obtain a

balanced design.

In an non-balanced design the number of

observations are not the same for all

combinations (i, j).

The decomposition of sum of squares is

not unique.

Usually one can estimate both main- and

interaction effects, but the situation is not

so neat as in a balanced design.

But one should try to adjust for confounding

variables, even if they are correlated.
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Higher-way layouts

E.g. three factors A, B og C.

Data:

yijkl = replication l with levels A = i, B = j og C = k

Model:

yijkl = µ+ai+bj+ck+(ab)ij+(ac)ik+(bc)jk+(abc)ijk+εijkl

ANOVA-table:

Source SS df? MS F p
A SSA MSA FA pA
B SSB MSB FB pB
C SSC MSC FC pC
AB SSAB MSAB FAB pAB
AC SSAC MSAC FAC pAC
BC SSBC MSBC FBC pBC
ABC SSABC MSABC FABC pABC
Residual SSres MSres

Total SStot n− 1

*) can be found in computer print-outs

The decomposition is unique when the design is bal-

anced, but main- and interaction effects can be esti-

mated and tested in more general situations.
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Experimental design

1. Sample size and power calculations

2. Randomization

3. Blocking

4. Simultaneous variation of factors

versus one at a time
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Sample size and power calculations

Example: Two normal samples, σ known

nj observations in group j = 1,2.

Question :

How large must n1 and n2 be in order that the

probability is ”large” for rejecting

H0 : µ1 = µ2 when µ2 − µ1 = ∆ ?

Here ∆ is a user-specified difference of

”substantial importance”.

It is “optimal” to choose the same size for

both samples, i.e. n1 = n2 = n/2 where n is

the total number of observations.
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Test statistic:

Z =
ȳ2 − ȳ1

se(ȳ1 − ȳ2)
∼ N(

√
n∆/(2σ),1).

Reject two-sided hypothesis

at 5% level if |Z| > 1.96

Reject one-sided hypothesis

at 2.5% level if Z > 1.96

Consider one-sided test

(for pedagogical reasons).

Can express Z as

Z = Z0 +
√

n∆/(2σ)

where Z0 ∼ N(0,1).
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If we want probability of rejection to
exceed 80%, we should have:

0.80 ≤ P (Z > 1.96) = P

(
Z0 > 1.96−√n

∆

2σ

)
.

For Z0 ∼ N(0,1) we have

P (Z0 > −0.84) = 0.80

Therefore we should have

−0.84 > 1.96−√n
∆

2σ
which gives

n ≥ 4(1.96 + 0.84)2σ2

∆2
,

E.g if µ2 − µ1 = ∆ = σ

n ≥ 4 ∗ 2.82 = 31.36, dvs. n ≥ 32.

Usually σ is unknown, and we will have to use
a t-test. This means that n must be slightly
larger.
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Sample size and power calculations in R

Example: Two sample t-test, σ unknown

Want power 80% for µ2 − µ1 = ∆ = σ

R command:

power.t.test(n = NULL, delta = 1, sd=1, power=0.80)

Two-sample t test power calculation

n = 16.71477
delta = 1

sd = 1
sig.level = 0.05

power = 0.8
alternative = two.sided

NOTE: n is number in *each* group

R can do power and sample size calculations for a num-

ber of tests. Give the command help.search("power")

to get information on these

22



Summary of power calculations

• Parameter of interest, θ

• Nullhypothesis H0 : θ = θ0

• Test statistics V

• Reject with level α if V > v0 = critical value

• Power function γn(θ) = P (V > v0 | θ, n)

• Alternative of interest to θ0 is θ1.

• Wants power 1 − β for rejecting H0 under

the alternative of interest, i.e.

n so large that γn(θ1) > 1− β
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Randomization

Want to compare effects of several treatments

Randomization means that we randomly assign

the units to the treatments

Why randomize?

• To avoid systematic assignment to

treatments, which can entail biased

estimates of treatment effects

• In addition: The errors will be

symmetrically distributed, so that

the approximation to the normal

distribution is good.
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Randomization remove bias

Example:
Comparison of placebo and treatment

xi1 dummy variable indicating whether unit i
receives treatment

xi2 confounding covariate (often not observed)

Assume ”true” model:

yi = β0 + β1xi1 + β2xi2 + εi

A two-sample t-test is the same as running the
simple linear regression

yi = a + bx1i + εi

We know that we then estimate

b = β1 + β2τ
v1

v2

where τ = corr(xi1, xi2) and vj is the standard
deviation for xij (cf. R-exercise 3)
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The estimate of the treatment effect is

biased if τ 6= 0 and β2 6= 0.

By randomizing, the treatment xi1 and the

confounding covariate xi2 are independent

Then τ = 0 and the estimate of the

treatment effect is unbiased even if β2 6= 0.
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Randomization and symmetric

distribution of errors

Continue the example with placebo and

treatment

Numerator of t-statistics is

ȳ2 − ȳ1 =
2

n

n/2∑

i=1

(yi − yi+n/2)

(assuming xi1 = 1 for the first n/2 units)

We may write:

yi−yi+n/2 = β1+β2(xi2−xi+n/2,2)+(εi−εi+n/2)

Even if the distributions of the xi2’s and the

εi’s are skewed, the differences

xi2 − xi+n/2,2 and εi − εi+n/2

will typically be symmetrically distributed.
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Blocking

Originally one divided a field into blocks
to account for possible trends in soil fertility.

Today the term ”block” is used when the
observations are grouped according to the
levels of one factor, which is not the factor
of main interest (treatment)

Example: Production of penicillin (B&S, p. 61)

• Want to compare treatments

• Raw material consisting of various mixtures

• The mixtures have effect on the response y

Possible strategies:

1. Randomize without taking the blocks
into account

2. Randomize within each block
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ANOVA-table from 2. strategy

Source SS df MS F p
Treatmant (A) SSA r − 1 MSA FA pA

Block (B) SSB c− 1 MSB FB pB

Residual SSres n− c− r + 1 MSres

Total SStot n− 1

This is the same as for a two-way

ANOVA without replicates.

If there is a substantial block effect,

strategy 2 it to be preferred to strategy 1.
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Summary of multi-factorial designs

yi = ai + βxi + εi

To take into account a covariate xi reduces
the variance of the residuals and increases the
significance (except a possible loss of df).

If xi is categorical it can be used for blocking

For balanced block designs the sum of squares
can be uniquely decomposed

Paroles:

1. Block what is possible

2. Randomize the rest
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One by one variation

• Keep levels for factors B, C, D, etc.
constant

• Vary level of factor A = treatment

Alternative:

• Vary all factors simultaneously

Advantages with the alternative

• Can analyze the effect of all factors in
one design

• Can discover interactions

• Less residual variance
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