
Lecture 7 – Program

1. Data structure and basic questions

2. The logistic regression model

3. Odds and odds ratio

4. Maximum likelihood estimation

5. Deviance and sum of squares

6. Multiple logistic regression
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Data structure and basic questions

As before the data have the form:
unit response covariates
1 y1 x11 · · ·x1p

2 y2 x21 · · ·x2p

· · · · ·
· · · · ·
· · · · ·
n yn xn1 · · ·xnp

But the response is no longer measured on a
quantitative scale.

The response is either

• taking the values 0 or 1, indicating a
certain characteristic of a subject

or

• a proportion in a group where all subjects
have the same values of all the covariates

Objective is as before: Explain the variation in
the response y by variation in the covariates
x1, · · · , xp
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Example: Coronary heart disease vs. age

Either individual data

ind chd age
1 0 20
2 0 23
3 0 24
4 0 25
5 1 25
· · · · ·
· · · · ·
· · · · ·

97 0 64
98 1 64
99 1 65
100 1 69

or grouped data

age number proportion with CHD
20-29 10 0.10
30-34 15 0.13
35-39 12 0.25
40-44 15 0.33
45-49 13 0.46
50-54 8 0.63
55-59 17 0.76
60-69 10 0.80

3



Proportion with coronary heart disease vs. age

(based on the grouped data)
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Why not linear regression?

• Have a S-shaped plot, so only approximately

linear in the middle

• When the responses are recorded as binary

data (0 or 1), they are far from being nor-

mally distributed. (We will have approxi-

mate normality for grouped data.)

• For a binary y we have

P (y = 1) = 1− P (y = 0) = p

Then E(y) = p and Var(y) = p (1 − p).

Thus the variance is not constant, but a

function of the mean.
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Linking response and covariate

We start out with the situation where there is

only one covariate

Let y be the observed proportion for a unit,

and let m be the number of individuals in the

unit. (For individual data we have m = 1, and

y can only take the values 0 or 1.)

Let the unit have covariate value x.

Considered as a random variable we know that

E(y) = p = p(x)

is varying with x.

We want to model how p(x) depends on x.
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Linking response and covariate, contd.

One option is to consider a linear model where

the dependency is described by

p(x) = β0 + β1 x

This will not capture:

• the S-shaped curve typically observed

• the fact that the expression β0 + β1x can

take on all values in (−∞ , ∞), while the

probability p(x) should stay within the

interval (0,1)
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Linking response and covariate contd.

The most common solution is to link the

expectation of the response p(x) and the linear

predictor η(x) = β0 + β1x by the relation

log

(
p(x)

1− p(x)

)
= η(x) = β0 + β1x

or equivalently by the relation

p(x) =
eη(x)

1 + eη(x)
=

eβ0+β1x

1 + eβ0+β1x
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The logistic function eη(x)

1+eη(x) when η(x) = x
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Alternatively we could have used another strictly
increasing continuous function defined on (−∞ , ∞)
with values in (0,1).

9



Odds and odds ratio

The quantity p(x)
1−p(x) is called the odds.

For the logistic model the odds becomes:

p(x)

1− p(x)
= eβ0+β1x

The odds ratio between two individuals with

covariates x′ and x is

OR =
p(x′)/(1− p(x′))
p(x)/(1− p(x))

= eβ1(x
′−x)

which shows that as in linear regression case,

the coefficient β1 measure the influence of co-

variates changes. In logistic regression the change

is in the odds ratio, not in the mean or expec-

tation of the response.
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Maximum likelihood estimation

Estimation in the logistic model is performed

using maximum likelihood estimation

We first describe maximum likelihood estima-

tion for the linear regression model:

• yi ∼ N(µi, σ
2) with µi = β0 + β1xi

• the yi are independent

For ease of presentation, we assume that σ2

is known

The density of yi takes the form:

f(yi, µi) =
1√
2πσ

exp{− 1

2σ2
(y−µi)

2}
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Maximum likelihood estimation contd.

The likelihood is the simultaneous density

L =
n∏

i=1

f(yi, µi) =

(
1√
2πσ

)n

exp{− 1

2σ2

n∑

i=1

(yi − µi)
2}

considered as a function of the parameters
β0 and β1 for the observed values of the yi

We estimate the parameters by maximizing the
likelihood. This corresponds to finding the
parameters that make the observed yi as likely
as possible

Maximizing L is the same as maximizing

logL = −n

2
log(2πσ2)− 1

2σ2

n∑

i=1

(yi − µi)
2,

which is the same as minimizing
∑n

i=1(yi−µi)
2.

For the linear regression model, maximum like-
lihood estimation coincides with least squares
estimation
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Maximum likelihood for logistic regression

Data: (yi, mi, xi); for i = 1,2, . . . , n

We assume that the frequencies fi = miyi are

binomially distributed, i.e.

P (fi = f) =
(mi

f

)
p(xi)

f{1− p(xi)}mi−f

In other words, for each covariate value xi we

have mi subjects, and the number of subjects

having the attribute or characteristic in ques-

tion are fi ∼ bin(mi, p(xi))

We further assume that the frequencies

f1, f2, . . . , fn are independent
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Max. likelihood for logistic regression, contd.

The likelihood becomes

L =
n∏

i=1

(mi

fi

)
p(xi)

fi{1− p(xi)}mi−fi.

Since

p(xi) =
eβ0+β1xi

1 + eβ0+β1xi

the likelihood is, for given observations, a func-
tion of the unknown parameters β0 and β1, i.e.
L = L(β0, β1).

We estimate β0 and β1 by the values of these
parameters that maximizes the likelihood.

These estimates are called the maximum

likelihood estimates (MLE) and are denoted
β̂0 and β̂1.
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Example, grouped CHD data

avage<-c(25.4, 32, 36.9, 42.3, 47.2, 51.9, 56.9, 63)
totno<-c(10,15, 12, 15, 13, 8, 17, 10)
nochd<-c(1, 2, 3, 5, 6, 5, 13, 8)

nochd/totno
0.10000 0.13333 0.25000 0.33333
0.46153 0.62500 0.76471 0.80000

mod<-glm(cbind(nochd,totno-nochd)~avage, family=binomial)
summary(mod)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.19938 1.11650 -4.657 3.21e-06 ***
avage 0.10857 0.02371 4.580 4.65e-06 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 28.7015 on 7 degrees of freedom
Residual deviance: 0.3903 on 6 degrees of freedom
AIC: 25.527

Number of Fisher Scoring iterations: 4
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Wald test for H0 : β1 = 0

β̂1 is approximately N(β1, se21)-distributed, where

ŝe1 is computed by a statistical package.

Hence, H0 : β1 = 0 is rejected at the 5% level

by the so-called Wald test if

∣∣∣∣∣
β̂1

ŝe1

∣∣∣∣∣ > 1.96.

The P-value for the test is given in the

computer output (based on the normal

approximation)

Example, grouped CHD data

Here β̂1 = 0.1086 and ŝe1 = 0.0237, and the

Wald test statistic becomes 0.1086/0.0237 =

4.58, which is highly significant
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Confidence intervals for β1 and OR

An 95% confidence interval for β1 (based on

the normal approximation) is given by

β̂1 ± 1.96× ŝe1

OR= exp(β1) is the odds ratio of one unit’s

increase in x

We obtain a 95% confidence interval for OR

by transforming the lower and upper limits of

the confidence interval for β1

Example, grouped CHD data

Here β̂1 = 0.1086 and ŝe1 = 0.0237.

A 95% confidence interval for β1 has limits

0.1086± 1.96× 0.0237, i.e. from 0.0621

to 0.1550.

An estimate of the odds ratio OR= eβ1 is

ÔR = e0.1086 = 1.115 with 95% confidence

limits from e0.0621 = 1.064 to e0.0621 = 1.168
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Deviance and sum of squares

For linear regression the sum of squares was a

key quantity in connection with testing and for

assessing the fit of a model.

We want to define a quantity for logistic

regression that corresponds to the sum of squares.

To this end we start out by considering the

relation between the sum of squares and the

log-likelihood for the linear regression model.
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Deviance and sum of squares, contd.

For the linear regression model the log-likelihood

l = logL takes the form:

l = −n

2
log(2πσ2)− 1

2σ2

n∑

i=1

(yi − µi)
2

It obtains its largest value for the saturated

model, i.e. the model where there are no re-

strictions on the µi. Then the µi are estimated

by µ̃i = yi, and the log-likelihood becomes:

l̃ = −n

2
log(2πσ2)

It follows that the deviance

D = 2
(
l̃− l

)
=

1

σ2

n∑

i=1

(yi − µi)
2

is the sum of squares divided by σ2.
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Deviance for binomial data

We then consider data of the form

(yi, mi, xi) i = 1, . . . n

where the frequencies fi = miyi are indepen-

dent and binomially distributed fi ∼ bin(mi, pi).

The log-likelihood l = l(p1, . . . , pn) is a function

of p1, . . . , pn

For the saturated model, i.e. the model where

there are no restrictions on the pi, the pi are

estimated by the observed proportions

p̃i = yi

and the log-likelihood takes the value

l̃ = l(p̃1, . . . , p̃n)
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Deviance for binomial data, contd.

For a fitted logistic regression model we obtain

the estimated probabilities

p̂i = p̂(xi) =
eβ̂0+β̂1xi

1 + eβ̂0+β̂1xi

and the corresponding value

l̂ = l(p̂1, . . . , p̂n)

of the log-likelihood.

The deviance for the model is defined as

D̂ = 2
(
l̃ − l̂

)

The deviance measures the fit of the model.

If all mi are large, D̂ is approximately χ2
n−2

distributed when the logistic model holds true.

This can be used as a goodness-of-fit test.
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Example, grouped CHD data

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.19938 1.11650 -4.657 3.21e-06 ***
avage 0.10857 0.02371 4.580 4.65e-06 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 28.7015 on 7 degrees of freedom
Residual deviance: 0.3903 on 6 degrees of freedom
AIC: 25.527

The deviance for the fitted logistic model

(”residual deviance”) is 0.39.

This indicates a good fit of the model.
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Example, grouped CHD data

Observed (•) and fitted proportions (◦)
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Deviance for binomial data, contd.

We have seen how the deviance can be used

to check if the logistic model

p(xi) =
eβ0+β1xi

1 + eβ0+β1xi

gives a good fit to the data (when compared

with the saturated model).

We can also use the deviance to test the null

hypothesis

H0 : β1 = 0

i.e. if the logistic model can be simplified.

(This gives an alternative to the Wald test.)

We then compare the deviance of the logistic

model with the deviance of the model under

H0.
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Deviance for binomial data, contd.

Under H0 all the pi are assumed to be equal.

The common value of the pi is estimated by

p?
i =

f1 + · · ·+ fn

m1 + · · ·+ mn

The corresponding value of the log-likelihood

is l∗ = l(p∗1, . . . , p∗n) and the deviance becomes

D∗ = 2(l̃− l∗)

If H0 is true, the difference in deviance between

the two models

G = D∗ − D̂ = 2(l̂ − l∗)

is approximately χ2
1 distributed.

We reject H0 if G is large compared to the

percentiles in the χ2
1-distribution.
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Example, grouped CHD data

mod0<-glm(cbind(nochd,totno-nochd)~1, family=binomial)

mod1<-glm(cbind(nochd,totno-nochd)~avage, family=binomial)

mod2<-glm(cbind(nochd,totno-nochd)~factor(avage),
family=binomial)

anova(mod0,mod1,mod3,test="Chisq")

Analysis of Deviance Table

Model 1: cbind(nochd, totno - nochd) ~ 1
Model 2: cbind(nochd, totno- nochd) ~ avage
Model 3: cbind(nochd, totno - nochd) ~factor(avage)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 7 28.7015
2 6 0.3903 1 28.3112 1.033e-07
3 0 1.776e-15 6 0.3903 0.9989

The approach based on comparing deviances

may be used in more complex situations than

the one considered here, very much in the same

way as when comparing sums of squares in

multippel linear regression and ANOVA models
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Multiple logistic regression

Several covariates x = (x1, x2, . . . , xp)

Model: p(x) =
exp(β0 + β1x1 + · · ·+ βpxp)

1 + exp(β0 + β1x1 + · · ·+ βpxp)

or

log

(
p(x)

1− p(x)

)
= β0 + β1x1 + · · ·+ βpxp

With x′ = (x1 + 1, x2, . . . , xp) one has

OR1 = exp(β1) =
p(x′)/(1− p(x′))
p(x)/(1− p(x))

=
Odds(x′)
Odds(x)

Thus the exp(β1) can be interpreted as odds

ratio when x1 is increased with 1 unit while the

other covariates remain the same. (Similarly

for the other regression coefficients.)
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Tests and confidence intervals

β̂j = MLE for βj

ŝej = estimated standard error for β̂j

Wald test statistic for H0j : βj = 0

Zj =
β̂j

ŝej
∼ N(0,1) under H0j

95% confidence interval for βj

β̂j ± 1.96× ŝej

We obtain a 95% confidence interval for

ORj = exp(βj) by transforming the lower and

upper limits of the confidence interval for βj
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Tests based on the deviance

Consider the logistic regression model

Model: p(x) =
exp(β0 + β1x1 + · · ·+ βpxp)

1 + exp(β0 + β1x1 + · · ·+ βpxp)

We will test the null hypothesis H0 that q of
the βjs are equal to zero. (Equivalently that
there are q linear restrictions among the βjs.)

We let:

• D̂ be the deviance and l̂ the log-likelihood
under the full logistic regression model

• D∗ be the deviance and l∗ be the log-likelihood
under the null hypothesis H0

Then

G = D∗ − D̂ = 2(l̂ − l∗)

is approximately χ2
q distributed if H0 is true.

We reject H0 if G is large compared to the
percentiles in the χ2

q -distribution.
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Example, insulin injections

Fam. hist Yes No
Dep. on injec. Yes No Yes No
Age at onset < 45 6 1 16 2

≥ 45 6 36 8 48

Read the data, and fit a sequence of models

dep<-c(6,6,16,8)
no<-c(7,42,18,56)
age<-c("lt45","ge45","lt45","ge45")
fam<-c("Yes","Yes","No","No")

mod0<-glm(cbind(dep,no-dep)~1,family=binomial)
mod1<-glm(cbind(dep,no-dep)~factor(age), ....)
mod2<-glm(cbind(dep,no-dep)~factor(age)+factor(fam), ...)
mods<-glm(cbind(dep,no-dep)~factor(age)*factor(fam), ...)
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Example, insulin injections, contd.

Compare the models:

anova(mod0,mod1,mod2,mod3,test="Chisq")

Analysis of Deviance Table

Model 1: cbind(dep,no-dep)~1
Model 2: cbind(dep,no-dep)~factor(age)
Model 3: cbind(dep,no-dep)~factor(age)+factor(fam)
Model 4: cbind(dep,no-dep)~factor(age)*factor(fam)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 3 50.034
2 2 0.047 1 49.987 1.548e-12
3 1 0.039 1 0.007 0.932
4 0 2.665e-15 1 0.039 0.843

Only age seems to have an effect.
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Example, insulin injections, contd.

Summarize the results for the model with age

summary(mod1)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.7918 0.2887 -6.207 5.41e-10 ***
factor(age)lt45 3.7842 0.6798 5.567 2.60e-08 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 50.033593 on 3 degrees of freedom
Residual deviance: 0.046666 on 2 degrees of freedom
AIC: 15.682

Number of Fisher Scoring iterations: 4
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Interpretation

Let pij be the probability of injection depen-

dency when factor ”age” has level i (2 : < 45

1 : ≥ 45) and factor ”fam” has level j (2: Yes;

1: No). The full (and saturated) model is

pij =
exp(β0 + β1x1 + β2x2 + β3x3)

1 + exp(β0 + β1x1 + β2x2 + β3x3)

where

x1 =

{
0 if i = 1
1 if i = 2

, x2 =

{
0 if j = 1
1 if j = 2

and

x3 =

{
0 if (i, j) 6= (2,2)
1 if (i, j) = (2,2)
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Interpretation, contd.

In the model without interaction and main

effect for ”fam”, the odds for being dependent

on insulin injections is therefore

pij

1− pij
= exp(β0 + β1x1) for j = 1,2.

which does not depend on j (i.e. on ”fam”).

Hence the odds-ratios for age ≥ 45 vs.

age < 45 are (irrespectively of ”fam”):

ORj =
p2j

1− p2j
/

p1j

1− p1j
= eβ1.
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Interpretation, contd.

Since β̂1 = 3.78 with ŝe1 = 0.68,

a 95% confidence interval for β1 is

3.78± 1.96× 0.68.

We have ÔRj = exp(3.78) = 43.8.

The 95% confidence interval for OR is (by ex-

ponentiating the limits above) from 11.4 to

160.0.

This quantifies how much bigger the risk of

being dependent on injections is for persons

who get the disease when they are less than

45 years. Remark that this is regardless of the

family history.
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