Lecture 8 — Program

1. Data and examples

2. The Poisson distribution

3. Over-dispersion

4. Poisson regression

5. Generalized linear models



Data structure and basic questions

As before the data have the form:

unit response covariates
1 Y1 T11 - Tlp
2 Y2 21+ T2p
n Yn Lnl - Tnp

But now the response is now longer measured
on a quantitative scale or as a proportion. The
typical situation is that the response is a vari-
able counting how many times an event has
occurred.

Objective as before: Explain variation in
response y by variation in z1,---,xp

We will first consider the situation without
covariates



Examples (no covariates)

Emission of alpha particles
Counts of number of alpha particles emitted
form a source in a given time interval.

Rutherford, E. & Geiger, H. (1910) The probability vari-
ations in the distribution of alpha particles. Philosophi-
cal Magazine, 6. series, 20, 698-704.

Observed and expected frequencies:

No. 0 1 2 3 4 5 6
Observed | 57 203 383 525 532 408 273
Expected | 54 210 407 525 509 395 255
No. 7 3 9 10 11 12 13+
Observed | 139 49 27 10 4 2 0
Expected | 141 68 30 11 4 1 1

We will explain below how the expected values
are computed



Examples (no covariates), contd.

Horsekick deaths, ammunition accidents
and bomb hits
Observed and expected frequencies for three
historical sets of data (se BS page 81):

NoO. Frequency
Horsekick dths | Ammun. acdnt. Bomb hits
Obs. Exp. Obs. Exp. Obs. Exp.
0 109 108.7 448 406.9 229 226.7
1 65 66.3 132 189.2 211 211.4
2 22 20.2 42 43.9 93 98.5
3 3 4.1 21 6.8 35 30.6
4 1 0.6 3 0.8 7 7.1
>5 2 0.3 1 1.6
Total | 200 199.9 648 647.9 576 575.9




Poisson distribution

A random variable Y is Poisson distributed with
parameter \ if

\Y
P(Y =v) =—|e_>‘, y=0,1,2,...
Y

Short: Y ~ Po(\)

We have that:

E(Y) = Var(Y) = A

The Poisson distribution arises as:

e an approximation to the distribution of
Y ~ bin(n,p) when p is small and n is large

(A = np)

e from a Poisson process



Illustration of Poisson approximation to the
binomial distribution

Poisson Binomial Binomial Binomial
n = 500 n = 50 n=>5

r A=05 p=0.001 p=0.01 p=0.1
0O 0.6065 0.6064 0.6050 0.5905
1 0.3033 0.3035 0.3056 0.3280
2 0.0758 0.0758 0.0756 0.0729
3 0.0126 0.0126 0.0122 0.0081
4 0.0016 0.0016 0.0015 0.0005

The Poisson distribution is often an
appropriate model for "rare events”



Poisson process

Y (t) = number of events in [0, ¢]

Assume that

e rate of events X\ is constant over time
(rate = expected number of events per unit
of time)

e number of events in disjunct intervals are
independent

e events do no occur together

Then Y (t) ~ Po(\t).



Spatial Poisson process

Points from a spatial Poisson process are
"randomly’ distributed over an area.
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Is the Poisson distribution appropriate?

For a Poisson distribution the expected value
and the variance are equal.

One way of checking whether the Poisson
distribution is appropriate is to compare
1 n

. 1 n _
Ny owith 2= Y (g —9)?
ni—=1 n—1,=1

]

For a Poisson distribution both y and s? are
estimates of A\, so they should not differ too
much.

We may compute the coefficient of dispersion

g2

Yy

If CD is (substantially) larger than 1, it is a
sign of over-dispersion.

CD =



Test of Poisson distribution
Data: y1,yo,...,yn
Null hypothesis: data are Poisson distributed

Procedure:
e Estimate (MLE): A=y

e Compute expected frequencies under the
null hypothesis: E; = n (M /j!) exp(—X)

e Compute O; = observed number of y; = j
1.2
e Pearson X2 =% (OJE?) ~ X% _o
under the hypothesis

e Number of groups K such that all E; > 5.
Aggregate smaller groups.
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Examples

Y 52 CD K X? p-value
Alpha part. 3.8 3.69 095 12 10.42 0.40
Horse Kkicks 0.610 0.611 1.002 4 0.29 0.86
Ammo-acdnts 0.465 0.691 1.49 4 62.90 0
Bomb hits 0.929 0.936 1.008 5 1.02 0.80

We have over-dispersion for the ammunition
accident data.

For the other data sets, the Poisson distribu-
tion fits nicely.
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Poisson regression

The observed responses y; are realizations of
independent Poisson distributed random vari-
ables

)/,L'NPO()\Z') 1=1,...,n

We will consider models of the form:

i = exp(Bo + B1zi1 + - - BpTip)

Interpretation: Suppose individuals 1 and 2:

e Have the same values zp; = x1; for
covariates no. y=1,...,p—1

e Differ with one unit on covariate p,
I.e. Top = T1p + 1.

Then the rate ratio (RR) of individual 2
vs. individual 1 is given by

A
RR = /\—2 = exp(Bp)

1
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Maximum likelihood estimation

We have

VY
P(Y;=y) = y—ﬁexp(—/\z—)

The likelihood is the simultaneous distribution
of the random variables considered as a func-
tion of the parameters (i.e. the 3;s) for the
observed y; values:

n Yq

L= [ =% exp(—X;)

MLE Bo, 31, - - -, Bp, maximizes L or equivalently
the log-likelihood function [ = log L.

Approximately: B; ~ N(ﬁj,sej?) where the esti-
mated standard error s”ej IS computed by the
statistical software.

95% c.i. for B;: B; £+ 1.965¢;

95% c.i. for RR;: exp(B; + 1.96s¢,)
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Wald test statistic for Hg; : 6; =0

by ~ N(0, 1) under Hg;

-~

Sej

Test based on deviance. We will test the
null hypothesis Hg that ¢ of the §;s are equal
to zero. (Equivalently that there are ¢ linear
restrictions among the g;s.)

Procedure:

e [ is log-likelihood under the full Poisson
regression model

e [* is log-likelihood under Hg

e [ is log-likelihood for saturated model
(With j‘z p— yz)

e Deviances D =2(l—1) and D* = 2(I — I*)

o Test statistic G = D* — D = 2(I — I*) ~ x2
under Hg
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Often the following specification is reasonable:
Y; ~ Po(T;)\;) where

o )\ = exp(Bo + B1zi1 + -+ Bpzip)

e T is known.

Examples:

o Y, ~ bln(Tz,AZ) and A; small
= Y; approximately Po(T;)\;)

e Y, = Nno. events in a Poisson process with
rate \; observed over [0, T;]

e Y, = no. of deaths among persons with rate
of death )\; observed in T; person-years.
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The situation is treated as follows:

We write the model as:

E(Y;) T; A

exp(1-1og(T;) + Bo + Bizi1 + - -+ + Bpxip)

Formally log(T;) is a " covariate” where the
regression coefficient is known to equal 1.

Such a " covariate” is called an " offset”
(cf. below)
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Example: Lung cancer in Denmark

Number of lung cancer cases in four Danish
Cities from 1968 to 1971

Number of lung cancer cases.

City

Age Fredericia Horsens Kolding Vejle Total
40-54 11 13 4 5 33
55—-59 11 6 8 7 32
60—64 11 15 7 10 43
65—69 10 10 11 14 45
70—74 11 12 9 8 40

> 75 10 2 12 7 31
Total 64 58 51 51 224

Population of the four cities for different age groups.

City
Age Fredericia Horsens Kolding Vejle Total
40—54 3059 2879 3142 2520 11600
55-59 800 1083 1050 878 3811
60—64 710 923 895 839 3367
65—69 581 834 702 631 2748
70—-74 509 634 535 539 2217
> 75 605 782 659 619 2665
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Lung cancer in Denmark, contd.

For age group no. z and city no. j let

e y;; = number of lung cancer cases

o T} number of persons

A reasonable model is to consider the observed
number of lung cancer cases y;; to be real-
izations of random variables Y;; ~ Po(T;;\;;),
where );; is given (e.g.) by

Aij = exp(a + 5agegr(z') T 'Ycity(j))
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Lung cancer in Denmark, contd.

mod2<-glm(cancer~offset (log(pop))
+factor(age)+factor(city) ,family=poisson)

summary (mod?2)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.6321 .2003 -28.125 < 2e-16 **x

factor(age)2 1.1010
factor(age)3 1.5186
factor(age)4 1.7677
factor(age)b 1.8569
factor(age)6 1.4197
factor(city)2 -0.3301
factor(city)3 -0.3715
factor(city)4 -0.2723

Signif. codes: O ’x**x’ 0.001 ’*x’ 0.01 ’x’ 0.05 ’.’ 0.1’

.2483  4.434 9.23e-06 *xx
.2316 6.556 5.53e-11 *x*x*
.2294  7.704 1.31e-14 *xx
.2363 7.891 3.00e-15 *xx
.2503 5.672 1.41e-08 **x
.1815 -1.818 0.0690 .
.1878 -1.978 0.0479 x*
.1879 -1.450 0.1472

O OO OOOOOoOOo

(Dispersion parameter for poisson family taken to be 1)
Null deviance: 129.908 on 23 degrees of freedom
Residual deviance: 23.447 on 15 degrees of freedom

AIC: 137.84

Number of Fisher Scoring iterations: b
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Lung cancer in Denmark, contd.

mod0<-glm(cancer~offset (log(pop)) ,family=poisson)
mod1<-glm(cancer~offset (log(pop))+factor(age),
family=poisson)
mod2<-glm(cancer~offset (log(pop))
+factor(age)+factor(city) ,family=poisson)
mod3<-glm(cancer~offset (log(pop))
+factor(age) *factor(city) ,family=poisson)
anova(modO,modl,mod2,mod3, test="Chisq")

Analysis of Deviance Table

Model 1: cancer~offset(log(pop))

Model 2: cancer~offset(log(pop))+factor(age)

Model 3: cancer”offset(log(pop))+factor(age)+factor(city)
Model 4: cancer”offset(log(pop))+factor(age)*factor(city)

Resid. Df Resid. Dev Df Deviance P(>|Chil|)

1 23 129.908

2 18 28.307 5 101.601 2.429e-20
3 15 23.447 3 4.859 0.182
4 0 -1.113e-25 15 23.447 0.075

There is not a clear effect of city. But there
IS an indication that the lung cancer risk in
Fredericia is larger than in the other cities.
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Generalized linear models (GLM)

The models for:

e Multiple linear regression

e LoOgistic regression

e Poisson regression

are the most commmon GLMSs.

A GLM consists of 3 parts

e A family of distributions

e A link function

e A linear predictor
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GLM, contd.

Families of distributions are e.qg.

e Normal

e Binomial

e Poisson

e Gamma (incl. exponential distributions)

The linear predictor is a linear expression in
regression coefficients and covariates

n; = Bo + Brzi1 + Boxio + -+ + Bpxip
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Link function
Let u; = E(Y;) be the mean of Y]

The link function g connects the mean u; and
the linear predictor n;:

g(p;) = n;

e Linear regression: n; = g(u;) = w;

Py
—Di

)

e Logistic regression: n; = g(p;) = log(3

e Poisson regression: n; = g(u;) = log(u;)
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Link function, contd.

Other link functions can be specified.

For binomial responses:

e Complementary log-log link:
n; = g(p;) = 1og(—10g(1 —p;))

e Probit link: n; = ®~1(p;)
where ®(z) = c.d.f. for N(0, 1).

For Poisson responses:

e Identity link: n; = g(u;) =

e Square root link: n; = g(u;) = /1,
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Statistical inference in GLM

Estimation:

e Maximum likelihood

Testing and confidence intervals

e \Wald test

e Deviance

e More generally: likelihood based
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