
Lectures 4&5 – Program

1. Residuals and diagnostics

2. Variable selection
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Assumptions for linear regression

yi = ηi + εi i = 1,2, . . . , n

1. Linearity:

ηi = β0 + β1xi1 + · · ·+ βpxip

2. Constant variance (homoscedasticity):

Var(εi) = σ2 all i

3. Uncorrelated errors:

Cov(εi, εj) = 0 i 6= j

4. Normally distributed errors:

εi ∼ N(0, σ2)
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• Serious violations of 1) can have

“catastrophic” consequences.

• Even if 2) or 3) are violated, estimators are

unbiased.

Confidence intervals and p-values will be

wrong, however.

• Violations of 4) need not be serious.

Confidence intervals and p-values are still

valid for large samples.

Outliers may be a problem, however.

3



Residuals

Population model:

yi = β0 + β1xi1 + · · ·+ βpxip + εi

Fitted model:

ŷi = β̂0 + β̂1xi1 + · · ·+ β̂pxip

Residuals êi = yi − ŷi

Standardised residuals

ê
′
i = êi/ki

These are similar to the unstandardised

residuals, but have equal variances.
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Diagnostics - Plot of residuals

Plots of residuals may be used to check:

• Normal errors (including outliers)

• Constant variance

• Linearity

• Uncorrelated errors
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Normal errors

• Histogram of êi’s. (Symmetric? )

• QQ-plot of êi’s. (Straight line?)

• Box-plot of êi’s. (Outliers?)

• Descriptive statistics of êi’s.

The plots and statistics are useful for detecting

deviation normality, including outliers.
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Example, nicotine content

Histogram of mod2$res
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Histogram not quite symmetric

Some deviation from straight line.

R commands:

mod2<-lm(nicot~co+tar, data=sigarett)
hist(mod2$res)
qqnorm(mod2$res)
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Constant variance

• Plot of êi versus ŷi

• Plot of |êi| (or
√
|êi| ) versus ŷi

Larger dispersion of êi for some ŷi indicates

heteroscedasticity.
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Example, nicotine content
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Some indication of heteroscedasticity
(or perhaps curvature)

R commands:

mod2<-lm(nicot~co+tar, data=sigarett)
plot(mod2$fit,mod2$res)
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Linearity

• Plot of êi versus each covariate xij

A systematic pattern of the residuals

(e.g. a curvature) indicate deviation from lin-

earity
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Example, nicotine content
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Some indication of curvature

R commands:

mod2<-lm(nicot~co+tar, data=sigarett)
plot(sigarett$co ,mod2$res)
plot(sigarett$tar ,mod2$res)
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Correlated errors (time series)

Example: yi = temperature day no i

Possible model: yi = β0 + β1xi + γyi−1 + εi

Temperature today depend on temperature

yesterday

Possible plots:

• Plot êi versus observation number i

• Plot êi versus previous residual êi−1
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Diagnostic plots in R
R has some “ready made” resudual plots:

mod2<-lm(nicot~co+tar, data=sigarett)
plot(mod2, 1:4)
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The importance of the model assumptions

• Without linearity of the covariates we have
a wrong specification of the systematic part
of the model:

– The effect of a covariate may be wrongly
estimated

– A covariates may be important, but we
do not know

– Serious nonlinearity jeopardizes the
analysis

• If the variances are not equal and/or
the errors are correlated:

– The estimates of the βj’s will be
unbiased

– The error variance is wrongly estimated

– Confidence intervals and p-values
are flawed
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• If the errors are not normal – but the other

model assumptions are true:

– Estimates of standard errors are valid

– Test statistics are not exactly t- and

F-distributed, but for large n they are

approximately so

– The distributional assumptions are

not critical

• A few outliers may have large influence on

the estimates. How these are treated may

be critical for the conclusions on the rela-

tions between covariates and response
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Model breakdown and possible
improvements

Non-linearity:

• Transform xi, e.g. log(xi)

• Transform yi, e.g. log(yi)

• Include second order term(s)
and/or interaction(s)

Heteroscedasticity:

• Transform yi, typically log-transform

• More advanced: Use weighted least squares
(with weights from the residuals in an
unweighted regression)
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Model breakdown and possible
improvements, cont.

Dependent responses

• Include covariate indicating observation
number i:

yi = β0 + βixi + β2 i + εi

• Include last observation yi−1 as covariate:

yi = β0 + βixi + β2yi−1 + εi

(maybe also yi−2, yi−3, etc.)

• Use time series models

• Other types of dependent data
(families, litters, classes in school, etc.):

Other types of corrections needed.
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Model breakdown and possible
improvements, cont.

Non-normality

• Transform yi, e.g. to log(yi)

• For large n the problem can be ignored

• Use bootstrap

Outliers

• Check the coding of the observations

• Run the regression without outliers.
How different are the estimates?

If the difference is large, you have
a problem. Do not ignore it!
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Pros and cons in model fitting

• When we know where the model assump-

tions are problematic, improvements may

be possible.

• If several assumptions are violated, it may

be difficult to improve all.

• After many improvements we may end up

with a well specified, but complex model.

• If the improvements are small, it might be

preferable to go for the simpler one.

• Principle of parsimony.

• Avoid over parameterizations.
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Selection of variables

Two objectives

• simple model

• good empirical fit

These objectives may be conflicting and

a trade-off is necessary.

We will take a look at criteria and algorithms

that take both considerations into account.
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Model with p covariates

E(yi) = β0 + β1xi1 + · · ·+ βpxip

2p possibilities to combine the covariates

• p = 10 : 210 = 1024 different sub-models

• p = 20 : 220 ≈ 106 different sub-models

For each numeric covariate one may also

include e.g. a quadratic term.

Further one may take interactions into account

by including products of covariates.

Except for small values of p it is not feasible

to investigate all possible models.
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Forward selection

1. Fit all p models with only one covariate.

2. Choose the covariate that ”contributes most”.

3. Run p − 1 regressions with this covariate

and another one.

4. Choose the model that ”fits” best.

5. Continue until ”no improvement”.

There is a variant called stepwise regression.

Since covariates that have been included on an

earlier stage need not continue to be

important later on, step 4 can be supplemented

with deletion of covariates that no longer

contribute.
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Backward selection

1. Fit the model with all p covariates.

2. Compare the model with all covariates with

the p different models where one covariate

has been deleted.

3. Leave out the ”least important” covariate.

4. Compare the model now obtained with the

p− 1 different models where one more

covariate has been deleted.

5. Leave out the ”least important” covariate.

6. Continue in this way until a model is

obtained that only contains ”important”

covariates.
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Criteria for inclusion / exclusion

The squared multiple correlation coefficient

R2
p = 1− SSunexp

SStotal

measures the proportion of the variation

explained by the model.

We could try to choose the model with

largest R2
p .

But then we would end up with a model

including all covariates.

The criterion must somehow penalize

inclusion of covariates.
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Possibilities:

• Adjusted R2

• Cross validated R2

• Akaike information criteria (AIC)

• Significance
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Significance

• Forward:

Include most significant covariate

(lowest p-value)

• Backward:

Exclude least significant covariate

(largest p-value)

The focus of such a method is not on

prediction, and that can be a drawback.

Using level 5% often leads to ”tighter”

models than other criteria.
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Adjusted R2

R2
adj = 1− SSunexp/(n− p− 1)

SStotal/(n− 1)

penalizes including more covariates.

Can be used for model selection.

Estimated residual variance:

σ̂2 =
1

n− p− 1
SSunexp

Using adjusted R2 is the same as choosing

the model having smallest σ̂2.
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Cross validation

A drawback with R2
p and R2

adj is that

the observations are used both to:

• estimate β̂j’s

• evaluate the predictions of the yi’s:

ŷi = β̂0 + β̂1xi1 + · · ·+ β̂pxip

Idea:

• Estimate the regression model without

using the observation yi

• Predict yi using the obtained estimates.

Denote this prediction ŷ−i
i .
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Cross validated R2

R2
cross = 1−

∑n
i=1(yi − ŷ−i

i )2
∑n

i=1(yi − ȳ)2

Since R2
cross has a maximum over the different

models considered, it can be used for model

selection.

There are several ways to perform the cross validation:

• Delete only observation i when computing ŷ−i
i

• Split the data in k parts and use the parts not
containing i when computing ŷ−i

i

There is a formula for calculating R2
cross when

exactly one observation is deleted. Thus, it is

not necessary to do all n auxiliary regressions

where one observation is deleted.
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Akaike’s information criterion

AIC = n log
(

SSunexp

n

)
+ 2(p + 1)

Select the model with the smallest AIC.
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Example of cross validation

From Bølviken & Skovlund (page 54):
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Automatic or manual selection?

Automatic stepwise algorithms are often implemented

in statistical software packages.

Can they be trusted?

• Depends on the criterion used

• Cross validation and R2 may include
too many covariates

• Some covariates have intrinsic meaning and
should be included for substantive reasons

• Easy to lose ”contact” with data

On the other hand

• easy to use

• may get new ideas
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