Lectures 4&5 — Program

1. Residuals and diagnostics

2. Variable selection



Assumptions for linear regression

yz-:m—l—ai i=1,2,...,n

1. Linearity:

ni = Bo + B1xi1 + - + Bpxip

2. Constant variance (homoscedasticity):

Var(eg;)) =02  all i

3. Uncorrelated errors:

COV(€Z',€]') =0 1+~ g

4. Normally distributed errors:

e; ~ N(0,0?)



e Serious violations of 1) can have
“‘catastrophic” conseqguences.

e Even if 2) or 3) are violated, estimators are
unbiased.
Confidence intervals and p-values will be
wrong, however.

e Violations of 4) need not be serious.
Confidence intervals and p-values are still
valid for large samples.

Outliers may be a problem, however.



Residuals

Population model:

y; = Bo + Bizi1 + -+ Bpip + &

Fitted model:

Ui = Bo + Pizi1 + -+ + Bpxzip

Residuals éz =vY; — @\Z

Standardised residuals
J —~
e, = €i/ki

These are similar to the unstandardised
residuals, but have equal variances.



Diagnostics - Plot of residuals

Plots of residuals may be used to check:

e Normal errors (including outliers)

e Constant variance

e Linearity

e Uncorrelated errors



Normal errors

e Histogram of g;’s. (Symmetric? )

e QQ-plot of g;'s. (Straight line?)

e Box-plot of g;’s. (Outliers?)

e Descriptive statistics of e;'s.

T he plots and statistics are useful for detecting
deviation normality, including outliers.



Example, nicotine content
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Histogram not quite symmetric

Some deviation from straight line.

R commands:

mod2<-1lm(nicot~co+tar, data=sigarett)
hist (mod2$res)
qgnorm(mod23$res)




Constant variance
e Plot of e; versus y;

e Plot of || (or \/|&;]) versus g;

Larger dispersion of e; for some y,; indicates
heteroscedasticity.



Example, nicotine content
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mod2$fit

Some indication of heteroscedasticity
(or perhaps curvature)

R commands:

mod2<-1m(nicot~co+tar, data=sigarett)
plot (mod2$fit,mod2%res)



Linearity

e Plot of e; versus each covariate z;;

A systematic pattern of the residuals
(e.g. a curvature) indicate deviation from lin-
earity
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Example, nicotine content
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Some indication of curvature

R commands:

mod2<-1lm(nicot~co+tar, data=sigarett)
plot(sigarett$co ,mod2$res)
plot(sigarett$tar ,mod2$res)
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Correlated errors (time series)

Example: y;, = temperature day no 1

Possible model: y, = 8o + B1x; + Yyi—1 + €;

Temperature today depend on temperature
yesterday

Possible plots:

e Plot ¢; versus observation number 1

e Plot ¢; versus previous residual e;_q
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Diagnostic plots in R

R has some “ready made” resudual plots:

mod2<-1lm(nicot~co+tar, data=sigarett)

plot (mod2, 1:4)

Residuals vs Fitted
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Cook’s distance is a measure of the influence

each observation

Standardized residuals
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T he importance of the model assumptions

e Without linearity of the covariates we have
a wrong specification of the systematic part
of the model:

— The effect of a covariate may be wrongly
estimated

— A covariates may be important, but we
do not know

— Serious nonlinearity jeopardizes the
analysis

e If the variances are not equal and/or
the errors are correlated:

— The estimates of the §;'s will be
unbiased
— The error variance is wrongly estimated

— Confidence intervals and p-values
are flawed
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e If the errors are not normal — but the other
model assumptions are true:

— Estimates of standard errors are valid

— Test statistics are not exactly t- and
F-distributed, but for large n they are
approximately so

— The distributional assumptions are
not critical

e A few outliers may have large influence on
the estimates. How these are treated may
be critical for the conclusions on the rela-
tions between covariates and response
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Model breakdown and possible
iImprovements

Non-linearity:

e Transform z;, e.g. log(x;)

e Transform y;, e.g9. 10og(y;)

e Include second order term(s)
and/or interaction(s)

Heteroscedasticity:

e Transform y;, typically log-transform

e More advanced: Use weighted least squares
(with weights from the residuals in an
unweighted regression)
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Model breakdown and possible
improvements, cont.

Dependent responses

e Include covariate indicating observation
number ¢:

yi = PBo + Biz; + P21 + ¢

e Include last observation y;_1 as covariate:

y; = Bo + Bizi + Boyi—1 + &
(maybe also y;_», y;_3, €tc.)

e Use time series models

e Other types of dependent data
(families, litters, classes in school, etc.):

Other types of corrections needed.
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Model breakdown and possible
improvements, cont.

Non-normality
e Transform y;, e.g. to log(y;)
e For large n the problem can be ignored

e Use bootstrap

Outliers
e Check the coding of the observations

e Run the regression without outliers.
How different are the estimates?

If the difference is large, you have
a problem. Do not ignore it!
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Pros and cons in model fitting

e When we know where the model assump-
tions are problematic, improvements may
be possible.

e If several assumptions are violated, it may
be difficult to improve all.

e After many improvements we may end up
with a well specified, but complex model.

e If the improvements are small, it might be
preferable to go for the simpler one.

e Principle of parsimony.

e Avoid over parameterizations.
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Selection of variables

Two objectives

e Simple model

e good empirical fit

These objectives may be conflicting and
a trade-off is necessary.

We will take a look at criteria and algorithms
that take both considerations into account.
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Model with p covariates

E(y;) = Bo + Bizi1 + - + Bpzip

2P possibilities to combine the covariates

e p=10: 210 =1024 different sub-models

e p=20: 220 10° different sub-models

For each numeric covariate one may also
include e.g. a quadratic term.

Further one may take interactions into account
by including products of covariates.

Except for small values of p it is not feasible
to investigate all possible models.
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Forward selection

1. Fit all p models with only one covariate.
2. Choose the covariate that " contributes most” .

3. Run p — 1 regressions with this covariate
and another one.

4. Choose the model that "fits" best.

5. Continue until " no improvement”.

There is a variant called stepwise regression.

Since covariates that have been included on an
earlier stage need not continue to be
important later on, step 4 can be supplemented
with deletion of covariates that no longer
contribute.
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Backward selection

1. Fit the model with all p covariates.

2. Compare the model with all covariates with
the p different models where one covariate
has been deleted.

3. Leave out the "least important’” covariate.

4. Compare the model now obtained with the
p — 1 different models where one more
covariate has been deleted.

5. Leave out the "least important’” covariate.

6. Continue in this way until a model is
obtained that only contains "important”
covariates.
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Criteria for inclusion / exclusion

The squared multiple correlation coefficient

SS

2 unexrp

" =1~ g5,
otal

measures the proportion of the variation
explained by the model.

We could try to choose the model with
largest R2.

But then we would end up with a model
including all covariates.

The criterion must somehow penalize
inclusion of covariates.
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Possibilities:

Adjusted RZ

Cross validated R2

Akaike information criteria (AIC)

Significance
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Significance

e Forward:
Include most significant covariate
(lowest p-value)

e Backward:
Exclude least significant covariate
(largest p-value)

The focus of such a method is not on
prediction, and that can be a drawback.

Using level 5% often leads to "tighter”
models than other criteria.
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Adjusted R2

adj SStotat/(n — 1)

penalizes including more covariates.
Can be used for model selection.

Estimated residual variance:

1
5% =
n—p-—

1 SSune:I:p

Using adjusted RZ? is the same as choosing
the model having smallest 2.
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Cross validation

A drawback with Rp and Radj IS that

the observations are used both to:
e estimate j3,'s

e evaluate the predictions of the y;’'s:
Yi = Bo + Bizi1 + - + Bpwiyp

Idea:

e Estimate the regression model without

using the observation y;

e Predict y; using the obtained estimates.

Denote this prediction g; .
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Cross validated R?

i 5’

2 -
Rcross =1-

Since R2.... has a maximum over the different
models considered, it can be used for model
selection.

There are several ways to perform the cross validation:
e Delete only observation : when computing g;i

e Split the data in k£ parts and use the parts not
containing ¢ when computing y;*

There is a formula for calculating RZ. .. when
exactly one observation is deleted. Thus, it is
not necessary to do all n auxiliary regressions
where one observation is deleted.
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Akaike’s information criterion

Ssunea;p

n

AIC=nIog( >—|—2(p+1)

Select the model with the smallest AIC.
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Example of cross validation

From Bglviken & Skovlund (page 54):
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Ordinary R3 (solid line) increases with p,

while RE,..ss (dotted line) attains a

maximum at p = 4.
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Automatic or manual selection?

Automatic stepwise algorithms are often implemented

in statistical software packages.

Can they be trusted?

e Depends on the criterion used

e Cross validation and R?2 may include
too many covariates

e Some covariates have intrinsic meaning and
should be included for substantive reasons

e Easy to lose "contact” with data

On the other hand
e casy to use

e May get new ideas
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