
Lecture 10 – Program

1. Time-dependent data in general

2. Repeated Measurements

3. Time series

4. Time series that depend on

”covariate” time-series
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Time-dependent data:

Outcomes that are measured at several times,
for instance:

• yt = temperature day t = 0,1,2, . . .

• yt = precipitation day t

• yt = price of a stock day t

• yit = weight rat no. i day t.

The outcomes can in general be

• on a continous scale (often assumed normally
distributed)

• counts (perhaps Poisson-distributed)

• binary (0/1)

In this lecture: Only continues measurements.
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Example: airline passengers
(original and log-scale:)
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• Time-trend

• Seasonal variation
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Example: excess deaths in London
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Example: salsinol-data

yit = salsinol-measurement

at day t = 1,2,3,4

for individual i = 1,2, . . . ,14

Real data
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Each line represents the measurements

on one individual.
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Time series vs. repeated measurments

Useful to distinguish between:

• Time series: One (or a few) very long series
of measurements

• Repeated measurements: Many short series
of measurements

In the examples:

• Airline passengers: Time serie

• Excess deaths: Time serie (with parallel series
of temperature and smoke)

• Salsinol data: Repeated measurements

Will typically use different methods to analyze

time-series and repeated measurments.

6



A simple model for repeated measurements:

yit = ai + bit + εit

where the εit are all independent and

the ai and bi are specific to individual i

Note that this is just assuming different linear

regression models for different individuals.

The data may then be tranformed to least

squares estimates (âi, b̂i) for i = 1,2, . . . , n
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Example: salsinol-data

These data consist of measurements on
two groups

• Moderately alcohol dependent individuals

• Severly alcohol dependent individuals

A possible question is then:
Are the lines for the two groups different?

A model for making it possible to test this
statement could be (with some awkward no-
tation)

âi ∼ N(αj, σ
2)

b̂i ∼ N(βj, τ
2)

where αj and βj are the expectations in the
groups j = 1,2.
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Example, contd. : salsinol-data

We could then test whether intercepts and slopes

are the same in the two groups

H0 : α1 = α2 and H0 : β1 = β2

by means of standard t-tests.

Let āj and b̄j be the averages in of âi and b̂i

in group j. Then the statistics for the t-tests

can be written as:

tα =
ā2 − ā1

se(ā2 − ā1)
and tβ =

b̄2 − b̄1
se(̄b2 − b̄1)

On the next pages follows R-code for doing

these t-tests.
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R-code for salsinol-data:

reading the data

> salsinol0<-matrix(scan("salsinol.dat"),byrow=T,ncol=6)
Read 84 items
> salsinol0

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 2 1 0.33 0.70 2.33 3.20
[2,] 8 1 5.30 0.90 1.80 0.70
[3,] 9 1 2.50 2.10 1.12 1.01
[4,] 11 1 0.98 0.32 3.91 0.66
[5,] 12 1 0.39 0.69 0.73 2.45
[6,] 13 1 0.31 6.34 0.63 3.86
[7,] 1 2 0.64 0.70 1.00 1.40
[8,] 3 2 0.73 1.85 3.60 2.60
[9,] 4 2 0.70 4.20 7.30 5.40
[10,] 5 2 0.40 1.60 1.40 7.10
[11,] 6 2 2.60 1.30 0.70 0.70
[12,] 7 2 7.80 1.20 2.60 1.80
[13,] 10 2 1.90 1.30 4.40 2.80
[14,] 14 2 0.50 0.40 1.10 8.10
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R-code for salsinol-data:
fitting individual regressions

> I<-seq(1,4)
> coefest<-numeric(0)
> for (i in 1:14) {
+ newlm<-lm(salsinol0[i,3:6]~I)
+ coefest<-rbind(coefest,newlm$coef)
+ }
> coefest

(Intercept) I
[1,] -0.920 1.024
[2,] 5.400 -1.290
[3,] 3.045 -0.545
[4,] 0.810 0.263
[5,] -0.490 0.622
[6,] 1.550 0.494
[7,] 0.290 0.258
[8,] 0.355 0.736
[9,] 0.100 1.720
[10,] -2.350 1.990
[11,] 2.900 -0.630
[12,] 7.500 -1.660
[13,] 1.150 0.580
[14,] -3.350 2.350
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R-code for salsinol-data: t-tests

> t.test(coefest[1:6,2],coefest[7:14,2],var.equal=T)

Two Sample t-test

data: coefest[1:6, 2] and coefest[7:14, 2]
t = -0.9019, df = 12, p-value = 0.3848
alternative hypothesis:
true difference in means is not equal to 0
95 percent confidence interval:
-1.9583198 0.8116531
sample estimates:
mean of x mean of y
0.09466667 0.66800000

> t.test(coefest[1:6,2],coefest[7:14,2])

Welch Two Sample t-test

data: coefest[1:6, 2] and coefest[7:14, 2]
t = -0.9644, df = 11.75, p-value = 0.3543
alternative hypothesis:
true difference in means is not equal to 0
95 percent confidence interval:
-1.871725 0.725058
sample estimates:
mean of x mean of y
0.09466667 0.66800000
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Example: Salsinol, cont.

Same results as in B&S (rounding error?).

Remark that the default is not to assume

equal variances in the two samples.
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Other models for repeated measurements

1) Ante-dependence which allows for

dependence on previous measurements:

yit = ai + γt yi,t−1 + εit

This model can be extended in various

ways, for instance:

yit = ai + bi t + γt yi,t−1 + εit

But the extensions would typically require more

than 4 measurements for the individual series.

2) Two-way ANOVA with time and individuals

as factors

3) Vector respons. To be treated later
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Time series analysis

Common models:

• Autoregressiv models: AR(p)

• Moving average models: MA(q)

• ARMA(p,q)

• ARIMA(p,q,d) where I is for ”integrated”

We shall only discuss Autoregressiv models

in any detail.
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Autoregressiv models: AR(p)

The present observation yt depends on the

previous p observations:

yt = a1 yt−1 + a2 yt−2 + · · ·+ ap yt−p + εt

Note that this is linear regression model

• with response variable yt

• and covariates yt−1, . . . , yt−p

The model may thus be fitted with standard

software for linear regression.

However, specially designed software for such

data is widely available and may be more con-

venient.
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Example: excess deaths in London

R contains a function ar for fitting

autoregressiv models:

>ar(london$exc)

Call:
ar(x = london$exc)

Coefficients:
1 2 3 4 5

0.2889 0.1893 0.0686 0.0072 -0.0923
6 7

-0.3302 0.2355
Order selected 7 sigma^2 estimated as 518.5

which gives (approx) the fitted relation:

yt = 0.29yt−1 + 0.19yt−2 + 0.07yt−3

+0.007yt−4 − 0.09yt−5

−0.33yt−6 + 0.24yt−7
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Alternatively by lm

We need to set up the data differently:

> excess<-cbind(london$exc[1:95],london$exc[2:96],
+ london$exc[3:97],london$exc[4:98],london$exc[5:99],
+ london$exc[6:100],london$exc[7:101],london$exc[8:102])
> excess<-as.data.frame(excess)
> names(excess)<-c("y1","y2","y3","y4","y5","y6","y7","y8")

and then the model is fitted as

> lm(y8~y7+y6+y5+y4+y3+y2+y1-1,data=excess)$coef
y7 y6 y5 y4

0.27435162 0.21850415 0.04409311 0.02323063
y3 y2 y1

-0.07236904 -0.33202094 0.23933006

which similar, but not identical, to the what

the ar function did.
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Example, cont: excess death

In order to check for significance:

> round(summary(lm(y8~y7+y6+y5+y4+y3+y2+y1,
data=excess))$coef,4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5547 2.2470 -0.2469 0.8056
y7 0.2745 0.1013 2.7094 0.0081
y6 0.2183 0.1003 2.1764 0.0322
y5 0.0439 0.1020 0.4306 0.6678
y4 0.0240 0.1010 0.2376 0.8128
y3 -0.0719 0.1000 -0.7188 0.4742
y2 -0.3317 0.0977 -3.3952 0.0010
y1 0.2391 0.0997 2.3993 0.0186

so that 1st, 2nd, 6th and 7th lag appears to

affect todays value.
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Two useful function

• Auto-covariance function:

γ(k) = Cov(yt, yt−k)

• Auto-correlation function:

ρ(k) = corr(yt, yt−k)

with estimates γ̂(k) and ρ̂(k).

If ρ(k) = 0 and we have observed the

time series for T days, ρ̂(k) has standard

error approximately equal to 1/
√

T .

In this case we would expect ρ̂(k) to

lie within

[−2/
√

T , +2/
√

T ]
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Plot of autocorrelation coefficient (ACF)

Excess death data:
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Special case: AR(1)

yt = ayt−1 + εt

This model have the Markov property:

P (yt | yt−1, yt−2, . . .) = P (yt | yt−1)

In words this may be expressed as:

• The distribution of yt given the history

yt−1, yt−2, . . . only depend on the

previous observation yt−1

or more loosely

• The previous respons yt−1 contains all

available information about yt.

22



Stationary time series

Stationary time series is by definition a time

series for which any subsequence of length k+1

starting at t

yt, yt+1, . . . , yt+k

has the same distribution as another subsequence

of length k + 1 starting at any other time s

ys, ys+1, . . . , ys+k

In particular all the yt have the same distribu-

tion and Var(yt) = Var(ys) = σ2. Thus the

autocorrelation function (ACF) becomes

ρ(k) =
γ(k)

σ2
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ACF for AR(1) processes

It is then not very hard to show that

• ρ(0) = 1

• ρ(1) = a

• ρ(2) = a2

• ρ(k) = ak

thus the ACF decreases exponentially
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Time series may depend on other time se-

ries!

Example: Gas furnace data

• xt = input gas rate at time t

• yt = output of %CO2 at time t
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Gas furnace, contd.

The point here is that we have that

yt ≈ a + bxt−5

with a negative b, that is it depends inversely

on the lag-5 value of the xt series. This can

be illustrated by plotting both yt and −xt:
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Now the series have maxima and minima close

to each other!
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A model for dependent series

Suppose we have one response series yt and
two covariate series xtj, j = 1,2.

The previous example indicates that a useful
model may be

yt = a0 + a1 yt−1 + a2 yt−2 + · · ·
+ b0 x1t + b1 x1t−1 + b2 x1t−2 + · · ·
+ c0 x2t + c1 x2t−1 + c2 x2t−2 + · · ·+ εt

This model combines

• an AR-process

• dependence on lags of the covariate
processes.

This is a regression model, so after reorganiz-
ing the data standard software may be used,
but special software is likely available.
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Cross-correlation function (CCF)

For such data it may be useful to look at the

CCF

ρxy(u) = corr(yt+u, xt)

Example I: Excess death data with covariate

processes

• Temperature

• Smoke

Example II: gasfurnace data
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CCF-Examples
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Parameter estimates excess death

Temperature
Intercept log(smoke) lag 2 lag 0 Unexpl.

Model a0 b0 c2 c0 SS R2

1 0.29 63.89
2 −157.30 25.69 44.78 0.30
3 13.47 −2.62 57.42 0.10
4 −135.53 23.55 −1.72 42.13 0.34
5 −152.48 25.28 −2.60 2.15 38.72 0.39
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