Lecture 10 – Program

- 1. Time-dependent data in general
- 2. Repeated Measurements
- 3. Time series
- 4. Time series that depend on "covariate" time-series

Time-dependent data:

Outcomes that are measured at several times, for instance:

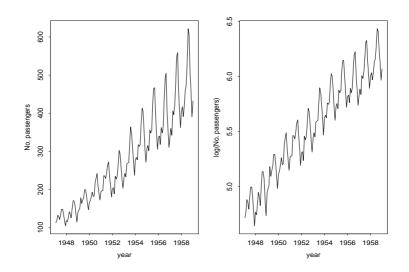
- $y_t = \text{temperature day } t = 0, 1, 2, \dots$
- $y_t = \text{precipitation day } t$
- $y_t = price of a stock day t$
- y_{it} = weight rat no. i day t.

The outcomes can in general be

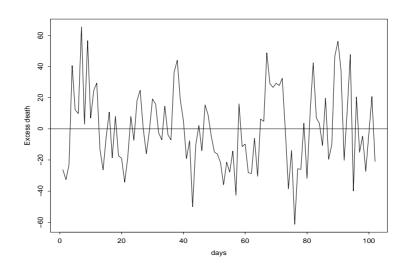
- on a continous scale (often assumed normally distributed)
- counts (perhaps Poisson-distributed)
- binary (0/1)

In this lecture: Only continues measurements.

Example: airline passengers (original and log-scale:)



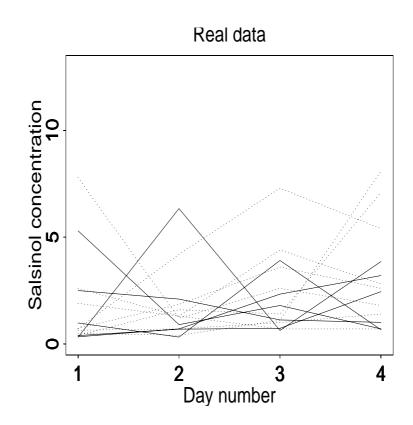
- Time-trend
- Seasonal variation



(centered and removed effect of flu epidemics)

Example: salsinol-data

 $y_{it} =$ salsinol-measurement at day t = 1, 2, 3, 4for individual i = 1, 2, ..., 14



Each line represents the measurements on one individual.

Time series vs. repeated measurments

Useful to distinguish between:

- Time series: One (or a few) very long series of measurements
- Repeated measurements: Many short series of measurements

In the examples:

- Airline passengers: Time serie
- Excess deaths: Time serie (with parallel series of temperature and smoke)
- Salsinol data: Repeated measurements

Will typically use different methods to analyze time-series and repeated measurments.

A simple model for repeated measurements:

$$y_{it} = a_i + b_i t + \varepsilon_{it}$$

where the ε_{it} are all independent and the a_i and b_i are specific to individual i

Note that this is just assuming different linear regression models for different individuals.

The data may then be tranformed to least squares estimates (\hat{a}_i, \hat{b}_i) for i = 1, 2, ..., n

Example: salsinol-data

These data consist of measurements on two groups

- Moderately alcohol dependent individuals
- Severly alcohol dependent individuals

A possible question is then: Are the lines for the two groups different?

A model for making it possible to test this statement could be (with some awkward no-tation)

$$\widehat{a}_i \sim \mathsf{N}(lpha_j, \sigma^2)$$

 $\widehat{b}_i \sim \mathsf{N}(eta_j, au^2)$

where α_j and β_j are the expectations in the groups j = 1, 2.

8

Example, contd. : salsinol-data

We could then test whether intercepts and slopes are the same in the two groups

 H_0 : $\alpha_1 = \alpha_2$ and H_0 : $\beta_1 = \beta_2$ by means of standard t-tests.

Let \bar{a}_j and \bar{b}_j be the averages in of \hat{a}_i and \hat{b}_i in group j. Then the statistics for the t-tests can be written as:

$$t_{\alpha} = \frac{\overline{a}_2 - \overline{a}_1}{\operatorname{se}(\overline{a}_2 - \overline{a}_1)} \quad \text{and} \quad t_{\beta} = \frac{\overline{b}_2 - \overline{b}_1}{\operatorname{se}(\overline{b}_2 - \overline{b}_1)}$$

On the next pages follows R-code for doing these t-tests.

R-code for salsinol-data: reading the data

> salsinol0<-matrix(scan("salsinol.dat"),byrow=T,ncol=6)
Read 84 items</pre>

> salsinol0

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
[1,]	2	1	0.33	0.70	2.33	3.20
[2,]	8	1	5.30	0.90	1.80	0.70
[3,]	9	1	2.50	2.10	1.12	1.01
[4,]	11	1	0.98	0.32	3.91	0.66
[5,]	12	1	0.39	0.69	0.73	2.45
[6,]	13	1	0.31	6.34	0.63	3.86
[7,]	1	2	0.64	0.70	1.00	1.40
[8,]	3	2	0.73	1.85	3.60	2.60
[9,]	4	2	0.70	4.20	7.30	5.40
[10,]	5	2	0.40	1.60	1.40	7.10
[11,]	6	2	2.60	1.30	0.70	0.70
[12,]	7	2	7.80	1.20	2.60	1.80
[13,]	10	2	1.90	1.30	4.40	2.80
[14,]	14	2	0.50	0.40	1.10	8.10

R-code for salsinol-data: fitting individual regressions

```
> I < -seq(1, 4)
> coefest<-numeric(0)</pre>
> for (i in 1:14) {
    newlm<-lm(salsinol0[i,3:6]~I)</pre>
+
    coefest<-rbind(coefest,newlm$coef)</pre>
+
    }
+
> coefest
      (Intercept)
                        Ι
 [1,]
           -0.920 1.024
 [2,]
            5.400 -1.290
 [3,]
            3.045 -0.545
            0.810 0.263
 [4,]
 [5,]
           -0.490 0.622
 [6,]
            1.550 0.494
 [7,]
            0.290 0.258
 [8,]
            0.355 0.736
 [9,]
            0.100 1.720
[10,]
          -2.350 1.990
[11,]
           2.900 -0.630
[12,]
           7.500 - 1.660
           1.150 0.580
[13,]
[14,]
         -3.350 2.350
```

R-code for salsinol-data: t-tests

> t.test(coefest[1:6,2],coefest[7:14,2],var.equal=T)

Two Sample t-test

```
data: coefest[1:6, 2] and coefest[7:14, 2]
t = -0.9019, df = 12, p-value = 0.3848
alternative hypothesis:
true difference in means is not equal to 0
95 percent confidence interval:
 -1.9583198 0.8116531
sample estimates:
 mean of x mean of y
0.09466667 0.66800000
> t.test(coefest[1:6,2],coefest[7:14,2])
        Welch Two Sample t-test
data: coefest[1:6, 2] and coefest[7:14, 2]
t = -0.9644, df = 11.75, p-value = 0.3543
alternative hypothesis:
true difference in means is not equal to 0
95 percent confidence interval:
 -1.871725 0.725058
sample estimates:
mean of x mean of y
0.09466667 0.66800000
```

Example: Salsinol, cont.

Same results as in B&S (rounding error?).

Remark that the default is **not** to assume equal variances in the two samples.

Other models for repeated measurements

1) Ante-dependence which allows for dependence on previous measurements:

$$y_{it} = a_i + \gamma_t \, y_{i,t-1} + \varepsilon_{it}$$

This model can be extended in various ways, for instance:

$$y_{it} = a_i + b_i t + \gamma_t y_{i,t-1} + \varepsilon_{it}$$

But the extensions would typically require more than 4 measurements for the individual series.

2) Two-way ANOVA with time and individuals as factors

3) Vector respons. To be treated later

Time series analysis

Common models:

- Autoregressiv models: AR(p)
- Moving average models: MA(q)
- ARMA(p,q)
- ARIMA(p,q,d) where I is for "integrated"

We shall only discuss Autoregressiv models in any detail.

Autoregressiv models: AR(p)

The present observation y_t depends on the previous p observations:

 $y_t = a_1 y_{t-1} + a_2 y_{t-2} + \dots + a_p y_{t-p} + \varepsilon_t$

Note that this is linear regression model

- with response variable y_t
- and covariates y_{t-1}, \ldots, y_{t-p}

The model may thus be fitted with standard software for linear regression.

However, specially designed software for such data is widely available and may be more convenient.

Example: excess deaths in London

R contains a function ar for fitting autoregressiv models:

>ar(london\$exc) Call: ar(x = london (x = london) Coefficients: 1 2 3 4 5 0.2889 0.1893 0.0686 0.0072 -0.0923 6 7 -0.33020.2355 Order selected 7 sigma² estimated as 518.5

which gives (approx) the fitted relation:

$$y_{t} = 0.29y_{t-1} + 0.19y_{t-2} + 0.07y_{t-3}$$
$$+ 0.007y_{t-4} - 0.09y_{t-5}$$
$$- 0.33y_{t-6} + 0.24y_{t-7}$$

Alternatively by lm

We need to set up the data differently:

```
> excess<-cbind(london$exc[1:95],london$exc[2:96],</pre>
```

- + london\$exc[3:97],london\$exc[4:98],london\$exc[5:99],
- + london\$exc[6:100],london\$exc[7:101],london\$exc[8:102])
- > excess<-as.data.frame(excess)</pre>
- > names(excess)<-c("y1","y2","y3","y4","y5","y6","y7","y8")</pre>

and then the model is fitted as

which similar, but not identical, to the what the ar function did.

Example, cont: excess death

In order to check for significance:

```
> round(summary(lm(y8~y7+y6+y5+y4+y3+y2+y1,
 data=excess))$coef,4)
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5547
                       2.2470 - 0.2469
                                       0.8056
             0.2745
                       0.1013 2.7094
                                       0.0081
y7
                       0.1003 2.1764
             0.2183
y6
                                       0.0322
y5
            0.0439
                       0.1020 0.4306
                                       0.6678
                      0.1010 0.2376 0.8128
y4
             0.0240
                     0.1000 -0.7188 0.4742
yЗ
           -0.0719
            -0.3317
                       0.0977 -3.3952
                                       0.0010
y2
                       0.0997 2.3993
             0.2391
                                       0.0186
y1
```

so that 1st, 2nd, 6th and 7th lag appears to affect todays value.

Two useful function

- Auto-covariance function: $\gamma(k) = \text{Cov}(y_t, y_{t-k})$
- Auto-correlation function: $\rho(k) = \operatorname{corr}(y_t, y_{t-k})$

with estimates $\hat{\gamma}(k)$ and $\hat{\rho}(k)$.

If $\rho(k) = 0$ and we have observed the time series for T days, $\hat{\rho}(k)$ has standard error approximately equal to $1/\sqrt{T}$.

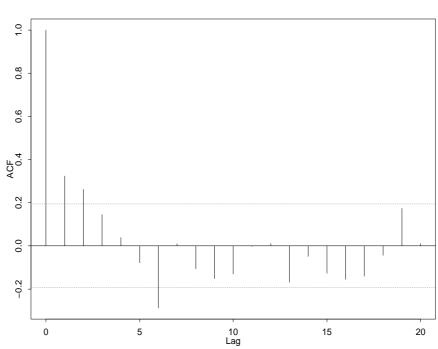
In this case we would expect $\hat{\rho}(k)$ to lie within

$$[-2/\sqrt{T}, +2/\sqrt{T}]$$

20

Plot of autocorrelation coefficient (ACF)

Excess death data:



Series : london\$exc

21

Special case: AR(1)

$$y_t = ay_{t-1} + \varepsilon_t$$

This model have the **Markov** property:

$$P(y_t | y_{t-1}, y_{t-2}, \ldots) = P(y_t | y_{t-1})$$

In words this may be expressed as:

• The distribution of y_t given the history y_{t-1}, y_{t-2}, \ldots only depend on the previous observation y_{t-1}

or more loosely

• The previous respons y_{t-1} contains all available information about y_t .

Stationary time series

Stationary time series is by definition a time series for which any subsequence of length k+1 starting at t

$$y_t, y_{t+1}, \ldots, y_{t+k}$$

has the same distribution as another subsequence of length k+1 starting at any other time \boldsymbol{s}

$$y_s, y_{s+1}, \ldots, y_{s+k}$$

In particular all the y_t have the same distribution and $Var(y_t) = Var(y_s) = \sigma^2$. Thus the autocorrelation function (ACF) becomes

$$\rho(k) = \frac{\gamma(k)}{\sigma^2}$$

23

ACF for AR(1) processes

It is then not very hard to show that

•
$$\rho(0) = 1$$

•
$$\rho(1) = a$$

•
$$\rho(2) = a^2$$

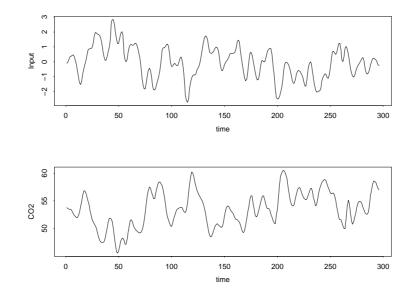
•
$$\rho(k) = a^k$$

thus the ACF decreases exponentially

Time series may depend on other time series!

Example: Gas furnace data

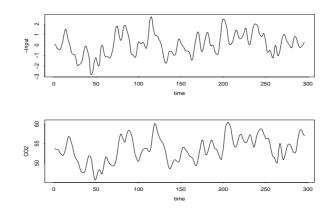
- $x_t = \text{input gas rate at time } t$
- $y_t =$ output of %CO2 at time t



Gas furnace, contd.

The point here is that we have that $y_t \approx a + b x_{t-5}$

with a negative b, that is it depends inversely on the lag-5 value of the x_t series. This can be illustrated by plotting both y_t and $-x_t$:



Now the series have maxima and minima close to each other!

A model for dependent series

Suppose we have one response series y_t and two covariate series x_{tj} , j = 1, 2.

The previous example indicates that a useful model may be

$$y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + \cdots + b_0 x_{1t} + b_1 x_{1t-1} + b_2 x_{1t-2} + \cdots + c_0 x_{2t} + c_1 x_{2t-1} + c_2 x_{2t-2} + \cdots + \varepsilon_t$$

This model combines

• dependence on lags of the covariate processes.

This is a regression model, so after reorganizing the data standard software may be used, but special software is likely available.

Cross-correlation function (CCF)

For such data it may be useful to look at the CCF

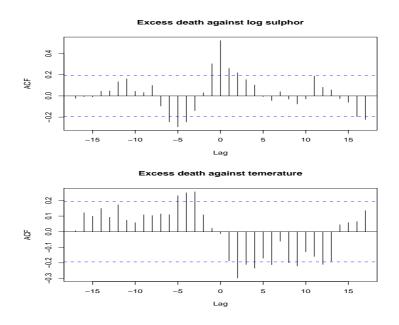
$$\rho_{xy}(u) = \operatorname{corr}(y_{t+u}, x_t)$$

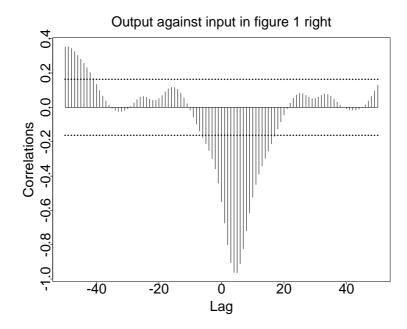
Example I: Excess death data with covariate processes

- Temperature
- Smoke

Example II: gasfurnace data

CCF-Examples





29

Parameter estimates excess death

		Temperature							
	Intercept	log(smoke)	lag 2	lag 0	Unexpl.				
Model	a_0	b_0	c_2	c_0	SS	R^2			
1	0.29				63.89				
2	-157.30	25.69			44.78	0.30			
3	13.47		-2.62		57.42	0.10			
4	-135.53	23.55	-1.72		42.13	0.34			
5	-152.48	25.28	-2.60	2.15	38.72	0.39			