
Lecture 11 – Program

1. Data structure and model

2. Multivariate ANOVA

3. Multivariate analysis of covariance
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Data structure

The new feature is that there is more than one

response. On each unit there are p responses

and q covariates. The data matrix can there-

fore be expressed as

unit responses covariates
1 y11 · · · y1p x11 · · ·x1q
2 y21 · · · y2p x21 · · ·x2q
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
n y1n · · · y1p xn1 · · ·xnq
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Example: growth of tumors

18 mice in experiment

3 responses measured on each mice

y1 initial weight

y2 final weight minus tumor weight

y3 final weight of tumor

Two factors

• Sex, two levels: male or female

• Temperature, three levels: 4, 20 and 34 centigrades

unit init. wht. finmintu. wht. tum. wht temp. sex
1 18.15 16.51 0.21 4 1
2 18.68 19.50 0.32 4 1
3 19.54 19.84 0.20 4 1
4 19.15 19.49 0.16 4 2
... ... ...

18 20.85 19.90 0.17 34 2
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• Objective: Explain variation in responses

y1, . . . , yp by variation in covariates x1, · · · , xq

• Covariates as earlier:

– quantitative

– qualitative

– mixture of quantitative and qualitative

• p regression equations:

yk = β0k + β1kx1 + · · ·+ βqkxq + εk

k = 1, . . . , p

New feature: Have to take into account pos-

sible correlation in the error terms ε1, . . . , εp.
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Parameters:

Var. Regr. Errors
no. coeff. SDs Correlations
1 β01 · · · βq1 σ1 • τ12 τ13 · · · τ1p
2 β02 · · · βq2 σ2 τ21 • τ23 · · · τ2p
... ... ... ... ... ...
p β0p · · · βqp σp τp1 τp2 τp3 · · · •

Example:

p = 3 and q = 2

Number of parameters:

3× (1 + 2) + 3 + 3× (3− 1)/2 = 15
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Estimation method

First estimate β0k, β1k, · · · , βqk from p separate

linear regressions.

Residuals:

ε̂k = yk − (β̂0k + β̂1kx1 + · · ·+ β̂qkxq)

Estimate for variances:

σ̂2
k = (ε̂21k + · · ·+ ε̂2nk)/(n− q − 1)

Estimate for covariances:

γ̂kk′ = (ε̂1kε̂1k′ + · · ·+ ε̂nkε̂nk′)/(n− q − 1)

Estimate for correlations:

τ̂kk′ =
γ̂kk′

σ̂kσ̂k′
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Estimation contd.

As in multiple regression

Var(β̂jk) = tjj σ2
k

For covariances of estimators in the same

regression

Cov(β̂jk, β̂j′k) = tjj′ σ
2
k .

and for covariances of estimators in different

regressions

Cov(β̂jk, β̂j′k′) = tjj′ γkk′.

In the case that (ε1, . . . , εp) is multivariate

normally distributed

β̂jk − βjk

σ̂k

√
tjj

is tn−k−1-distributed. This can be used as ear-

lier to construct tests and confidence intervals
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Multivariate analysis of variance (MANOVA)

Will decompose the total variation of each
response.

Consider for ease of presentation the situation
with only one factor, with levels indexed by i,
and let u denote the replication number

The total sum of squares for response k is
∑

i

∑
u

(yiuk − ȳ··k)2.

These can be decomposed as in the univariate
case.

A new aspect for MANOVA is that one also
can consider sums of cross products:

∑

i

∑
u

(yiuk − ȳ··k)(yiuk′ − ȳ··k′)

Decomposing the sum of squares is important
for interpretation. When the focus is on test-
ing the cross products must also be taken into
account.
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MANOVA in R

Illustrate by growth of tumors in mice.

First we organize the data:

resp1<-c(18.15,18.68,19.54,21.27,19.57,20.15,20.74,20.02,
17.20,19.15,18.35,20.68,18.87,20.66,21.56,20.22,18.38,20.85)

resp2<-c(16.51,19.50,19.84,23.30,22.30,18.95,16.69,19.26,15.90,
19.49,19.81,19.44,22.00,21.08,20.34,19.00,17.92,19.90)

resp3<-c(0.24,0.32,0.20,0.33,0.45,0.35,0.31,0.41,0.28,0.16,0.17,
0.22,0.25,0.20,0.20,0.18,0.30,0.17)

resp<-cbind(resp1,resp2,resp3)

temp<-c(4,4,4,20,20,20,34,34,34,4,4,4,20,20,20,34,34,34)

sex<-c(rep(1,9),rep(2,9))

fsex<-factor(sex)

ftemp<-factor(temp)
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The ”aov” command does separate ANOVA

analyses for each of the variables:

fit.aov<-aov(resp~ftemp+fsex+ftemp:fsex)

Brief summary with breakdowns of the total

sums of squares for the three variables:

fit.aov
ftemp fsex ftemp:fsex Residuals

resp1 4.81608 0.64222 0.27548 19.32640
resp2 32.58671 2.51627 3.20538 26.69880
resp3 0.01963 0.06009 0.00608 0.03920
Deg. of Freedom 2 1 2 12

Residual standard error: 1.269068 1.49161 0.05715476

Note that the residual sum of squares domi-

nates for the first response, while this is not

the case for the other two.

This should come as no surprise. (Why?)
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More detailed results of the analysis:

summary(fit.aov)

Response resp1 :
Df Sum Sq Mean Sq F value Pr(>F)

ftemp 2 4.8161 2.4080 1.4952 0.2632
fsex 1 0.6422 0.6422 0.3988 0.5396
ftemp:fsex 2 0.2755 0.1377 0.0855 0.9186
Residuals 12 19.3264 1.6105

Response resp2 :
Df Sum Sq Mean Sq F value Pr(>F)

ftemp 2 32.587 16.293 7.3232 0.008342
fsex 1 2.516 2.516 1.1310 0.308503
ftemp:fsex 2 3.205 1.603 0.7203 0.506476
Residuals 12 26.699 2.225

Response resp3 :
Df Sum Sq Mean Sq F value Pr(>F)

ftemp 2 0.019633 0.009817 3.0051 0.087493
fsex 1 0.060089 0.060089 18.3946 0.001052
ftemp:fsex 2 0.006078 0.003039 0.9303 0.421120
Residuals 12 0.039200 0.003267
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Analysis using the ”manova” command:

mod1<-manova(resp~ftemp+fsex+ftemp:fsex)

Brief summary (as for ”aov”):

mod1
ftemp fsex ftemp:fsex Residuals

resp1 4.81608 0.64222 0.27548 19.32640
resp2 32.58671 2.51627 3.20538 26.69880
resp3 0.01963 0.06009 0.00608 0.03920
Deg. of Freedom 2 1 2 12

Residual standard error: 1.269068 1.49161 0.05715476

Tests for overall effects of the factors:

summary(mod1, test="Wilks")

Df Wilks approx F num Df den Df Pr(>F)
ftemp 2 0.2617 3.1827 6 20 0.02332
fsex 1 0.3373 6.5503 3 10 0.01001
ftemp:fsex 2 0.7720 0.4605 6 20 0.82909
Residuals 12

(Wilks test is described on the next slides)
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Wilks test

We may want to pool evidence in favour of

factor effects from the different variables. One

such test is Wilks test, which is equivalent to

an ordinary F-test when there is only one re-

sponse.

We first describe Wilks test statistic for the

case of only one response, say the kth.

Then (e.g.) the hypothesis of no main effect

of temperature is rejected by a F-test if

SS temp,k /2

SS res,k /12
> c

or equivalently (after some algebra) if

SS res,k

SS res + SS temp,k
<

1

1 + 2c/12
= k
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The statistic

Λ =
SS res,k

SS res + SS temp,k

is Wilks test statistic (”Wilks lambda”) for the

case of one response

Note that we reject for small values of Wilks

lambda

For the case of more responses the sums of

squares are replaced by determinants of ma-

trices of sums of squares (also involving the

cross products mentioned above). The details

are beyond the scope of this course.
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Multivariate analysis of covariance

The variables of primary interest in the

example is

y2 = final weight minus tumor weight

y3 = final weight of tumor

The first response:

y1 = initial weight

may also be considered as a covariate.
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Example: growth of tumors in mice

resp23<-cbind(resp2,resp3)
mod2<-manova(resp23~resp1+ftemp+fsex+ftemp:fsex)
mod2

resp1 ftemp fsex ftemp:fsex Residuals
resp2 14.044531 22.629698 1.552768 2.623570 24.156594
resp3 0.000166 0.025480 0.055261 0.006772 0.037320
Df 1 2 1 2 11

Residual standard error: 1.481909 0.05824682

summary(mod2,test="Wilks")

Df Wilks approx F num Df den Df Pr(>F)
resp1 1 0.5977 3.3657 2 10 0.076266
ftemp 2 0.3123 3.9472 4 20 0.016075
fsex 1 0.3464 9.4337 2 10 0.004988
ftemp:fsex 2 0.7830 0.6506 4 20 0.633068
Residuals 11

There some (but not significant) effect of

introducing ”resp1” as a covariate.
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