
STK4900/9900  - Lecture 10

Program

1. Repeated measures and longitudinal data 
2. Simple analysis approaches
3. Random effects models
4. Generalized estimating equations

• Sections 8.1, 8.2, 8.3, 8.4 (except 8.4.5), 8.5 (except 8.5.2-4)
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Example: Fecal fat 
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Lack of digestive enzymes in the intestine can cause bowel absorption 
problems, which will be indicated by excess fat in the feces.  Pancreatic 
enzyme supplements can reduce the problem. The data are from a 
study to determine if the form of the supplement makes a difference

This is an example with repeated measurements 
(more than one observation per subject) 
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The plot shows that some patients tend to have high values for all pill 
types, while other patients tend to have low values

The values for a patients are  not independent, and this has to be 
taken into account when we analyze the data
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Example: Birth weight and birth order

We have recorded the weights of the babies of 200 mothers who all 
have five children. We are interested in studying the effect of birth order 
and the age of the mother  on the  birth weight
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Boxplots of birthweights for all 
200 mothers

Birthweights for a sample of 30 
mothers with fitted line (based on all) 

The birth weights for a mother are  not independent, and this has to 
be taken into account when we analyze the data
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This is an example of longitudinal data (repeated measures taken over time) 



Simple approaches to analyzing repeated measures 
and longitudinal data  
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When analyzing repeated measures data or longitudinal 
data we must be careful  not to disregard the dependence 
of the data for an individual

By only looking at parts of the data for an individual one may 
avoid the dependence problem

For the fecal fat example one option is to compare two pill types  
at a time using the paired t-test 

For the birth weight example one option is to look at the difference 
in weight between the fifth and the first child
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R commands (comparing pill types 1 and 2): 
fecfat=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/fecfat.txt",

header=T)
x=fecfat$fecfat[fecfat$pilltype==1]
y=fecfat$fecfat[fecfat$pilltype==2]
t.test(x,y,paired=T)

R output :
Paired t-test 
t = 3.109,     df = 5,     p-value = 0.027
95 percent confidence interval:

3.731         39.369 
mean of the differences:  21.55 

None Tablet Capsule

Tablet 21.6 / 2.7 % * *

Capsule 20.7 / 3.7 % -0.9 / 58.9 % *

Coated 7.0 / 23.9 % -14.5 / 7.8 % -13.7 / 8.0 %

Estimated difference / P-value for the six comparisons of two 
pill types at a time (column minus row)  

Fecal fat example:
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R commands: 
babies=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/gababies.txt",              

header=T)
first=babies$bweight[babies$birthord==1]
fifth= babies$bweight[babies$birthord==5]
diff=fifth-first
t.test(diff)

R output :
One Sample t-test
data:  diff 
t = 4.211, df = 199, p-value = 3.849e-05
95 percent confidence interval:
101.90      281.38 

mean of x 
191.64  

Birth weight example:

On average the fifth child weighs 191.6 grams more than the first

A 95 % confidence interval is from 101.9 grams to 281.4 grams

If we divide by four we get the average increase per child 8

Random effects model

A useful approach for analysing repeated measures is to consider a 
random effects model

We will describe the random effects model using the fecal fat example

Here we consider the model:  

ij j i ijY Bµ β ε= + + +

where

is the fecal fat for patient    when using pill type  ijY i j

is the effect of pill type    (relative to type 1)j jβ
2the are the effects of patients, assumed independent (0, )i subjB N σ

2the are random errors, assumed independent (0, )ij N εε σ

To fit a random effects model, we use the  "nlme"  library
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R commands: 
library(nlme)      
fit.fecfat=lme(fecfat~factor(pilltype), random=~1|subject, data=fecfat)
summary(fit.fecfat)
anova(fit.fecfat)

R output  (edited):
Linear mixed-effects model fit by fit by REML

Random effects:
Formula: ~1 | subject

(Intercept)       Residual
StdDev:      15.900             10.344

Fixed effects: fecfat ~ factor(pilltype)
Value Std.Error DF         t-value p-value

(Intercept)        38.083 7.742 15         4.919            0.0002
factor(pilltype)2 -21.550 5.972 15        -3.608            0.0026
factor(pilltype)3 -20.667 5.972 15        -3.461            0.0035
factor(pilltype)4  -7.017 5.972 15        -1.175            0.2583

numDF denDF F-value         p-value
(Intercept)                1                15                 14.266          0.0018
factor(pilltype)          3                15                   6.257          0.0057 10

Correlation within subjects

Covariance for two measurements from the same patient (         ):

Cov( , )ij ikY Y

Correlation for two measurements from the same patient:

j k≠

Cov( , )j i ij k i ikB Bµ β ε µ β ε= + + + + + +

Cov( , )i ij i ikB Bε ε= + + Cov( , )i iB B= Var( )iB= 2
subjσ=

Variance for a measurement:

Var( )ijY Var( )j i ijBµ β ε= + + +

Var( )i ijB ε= + 2 2
subj εσ σ= +=Var( ) Var( )i ijB ε+

corr( , )ij ikY Y
Cov( , )

Var( ) Var( )
ij ik

ij ik

Y Y

Y Y
=

2

2 2

subj

subj ε

σ
σ σ

=
+

Estimate of correlation:
2

2 2

15.900
0.71

15.900 10.344
=

+
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We will then analyze the birth weight example using a random 
effects model 

We here consider the model:  

1 1 2 2ij ij ij i ijY x x Bµ β β ε= + + + +

where

is the birth weight for the -th baby of the -th motherijY j i

2 is the effect of one year's incerase in the age of the motherβ
2the are the effects of mothers, assumed independent (0, )i subjB N σ

2the are random errors, assumed independent (0, )ij N εε σ

2 is the age of the -th mother when she had her first babyijx i

1 is the effect of increasing the birth order by oneβ
1 is the birth order (parity)  of the -th baby of the -th motherijx j j i=
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R commands: 
fit.babies=lme(bweight~birthord+initage, random=~1|momid, data=babies)
summary(fit.babies)

R output  (edited):
Linear mixed-effects model fit by fit by REML

Random effects:
Formula: ~1 | momid

(Intercept)         Residual
StdDev:       358.18             445.02

Fixed effects: bweight ~ birthord + initage
Value        Std.Error*       DF        t-value*      p-value

(Intercept)         2526.62     163.34           799       15.469        0.0000
birthord 46.61        9.951           799         4.684        0.0000
initage 26.73       9.003           198         2.969        0.0034

Estimate of correlation for two babies by the same mother:
2

2 2

358.18
0.39

358.18 445.02
=

+

*) Standard errors and t-values differ slightly form those on page 277 in the 
text book, since we here use REML estimation.
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Longitudinal data and correlation structures

A random effects model for longitudinal data assumes that the 
correlation between any two observations for the same individual 
are the same 

In general for longitudinal data, where observations are taken 
consecutively over time, it may be the case that observations that 
are close to each other in time are more correlated than those 
further apart 

E.g.  for the birth weight example a random effects model assumes 
the same correlation between the birth weights of the first and 
second child as for the first and fifth child

In order to fit a model for longitudinal data , we need to take into 
account the correlation of the observations 
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Common assumptions on the correlation structure of the       are  (         ):

1 2, ,...,i i imY Y YAssume that the observations for the i-th subject are

ijY

Exchangeable: corr( , )ij ikY Y ρ=

Autoregressive of order 1  (AR1): corr( , ) k j
ij ikY Y ρ −=

Independence: corr( , ) 0ij ikY Y =

j k≠

We may use the "gee" library to fit models with these correlation 
structures  (using a method called generalized estimating equations)

Note that a random effects model implies an exchangeable correlation 
structure

15

R commands: 
library(gee)
summary(gee(bweight~birthord+initage,id=momid,data=babies,corstr="exchangeable"))
summary(gee(bweight~birthord+initage,id=momid,data=babies,corstr="AR-M"))
summary(gee(bweight~birthord+initage,id=momid,data=babies,corstr="independence"))

R output  (edited):
Estimate       Naive S.E.    Naive z      Robust S.E.       Robust z

birthord 46.61            9.96            4.68            10.00                4.66
initage 26.73            8.97            2.98            10.09                2.65

birthord 47.31          13.83             3.42            10.49               4.51
initage 27.41            7.83             3.50              9.67               2.83

birthord 46.61           12.76            3.65            10.00               4.66
initage 26.73             5.61            4.77            10.09               2.65

The naive SE and z are valid if the assumed correlation structure is true 

Inference should be based on the robust SE and z, since these are 
valid also if the assumed "working correlation" does not hold 

For the example with birth 
weight and birth order we have 
the following relation between 
the birth weights 
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first      second     third      fourth      fifth

first         1.000     0.228       0.295     0.258      0.381

second    0.228    1.000       0.483     0.468      0.426

third        0.295    0.483      1.000      0.619      0.423

fourth     0.258    0.468       0.619     1.000      0.464

fifth         0.381    0.426      0.423      0.464      1.000

Correlations:

The weight of the first baby is 
less correlated with the others. 
Otherwise the weights have 
about the same correlation.
An exchangeable correlation 
structure is a reasonable 
"working assumption"
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In conclusion the birth weight data may be analyzed using 
generalized estimating equations with an exchangeable correlation 
structure (slide ) or by using a random effects model (slide) 

However, if we extend the generalized estimating approach and the 
random effects model to generalized linear models (like logistic 
regression), the results no longer agree

This is, however, a topic beyond the scope of these lectures.

The two models give comparable results in this example


