STK4900/9900 - Lecture 4

Program

1. Counterfactuals and causal effects
2. Confounding
3. Interaction
4. More on ANOVA

- Sections 4.1, 4.4, 4.6
- Supplementary material on ANOVA

Example (cf. practical exercise 10)

How does exercise affect blood glucose level?
Use the HERS data,
disregarding women with diabetes

Simple linear regression:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	97.36	0.282	345.8	$<2 \mathrm{e}-16$
exercise	-1.693	0.438	-3.87	0.00011

97.36
-1.693

Residual standard error: 9.715 on 2030 degrees of freedom
Multiple R-squared: 0.0073, Adjusted R-squared: 0.0068
F-statistic: 14.97 on 1 and 2030 DF, p-value: 0.00011
Can we conclude that exercise on average decrease the blood glucose level with $1.7 \mathrm{mg} / \mathrm{dL}$?

Problem:

The women who exercise are not a random sample of all women in the cohort (as they would have been in a clinical trial), but differ from the women who don't exercise, e.g. with respect to age, alcohol use, and body mass index (BMI)
Further age, alcohol use, and BMI may influence the glucose level
Illustration for BMI:

Considering this problem, can anything be said about the "causal effect" of exercise on blood glucose level?

Counterfactuals and causal effects

For the general discussion we consider some outcome (e.g. glucose level) and we want to see how this is affected by a binary predictor, or "exposure", X_{1} (e.g. exercise) with $X_{1}=1$ corresponding to "exposed" and $X_{1}=0$ corresponding to "unexposed"

Suppose (counter to the fact) that we could run an experiment in which

- first every individual is exposed (i.e. $X_{1}=1$) and the outcome Y_{1} is observed
- then, turning back the clock, every individual is unexposed (i.e. $X_{1}=0$) and the outcome Y_{0} is observed

All other characteristics of the individuals are assumed to be the same in the two parts of the hypothetical experiment

In real life, we can not turn back the clock, so one of the two experimental outcomes for every individual is an unobserved counterfactual

The causal effect (in a statistical sense) of the exposure is defined as the difference in population means under the two parts of the counterfactual experiment:

$$
\text { Causal effect }=E\left(Y_{1}\right)-E\left(Y_{0}\right)
$$

If the means differ, we say that the exposure is a causal determinant of the outcome

A simple model for the counterfactual experiment

To make the argument simple, we assume that all other characteristics of the individuals are captured by a binary covariate X_{2} which also has a causal effect on the outcome

Further we assume that the (counterfactual) outcome for individual i when exposed take the form

$$
y_{1 i}=\beta_{0}+\beta_{1}^{c}+\beta_{2}^{c} x_{2 i}+\varepsilon_{1 i}
$$

while when unexposed it becomes

$$
y_{0 i}=\beta_{0}+\beta_{2}^{c} x_{2 i}+\varepsilon_{0 i}
$$

Then the population means for the two parts of the counterfactual experiment become

$$
\text { exposed: } \quad \begin{aligned}
E\left(Y_{1}\right) & =E\left(\beta_{0}+\beta_{1}^{c}+\beta_{2}^{c} X_{2}+\varepsilon_{1}\right) \\
& =\beta_{0}+\beta_{1}^{c}+\beta_{2}^{c} E\left(X_{2}\right)
\end{aligned}
$$

unexposed: $\quad E\left(Y_{0}\right)=E\left(\beta_{0}+\beta_{2}^{c} X_{2}+\varepsilon_{0}\right)$

$$
=\beta_{0}+\beta_{2}^{c} E\left(X_{2}\right)
$$

In the counterfactual experiment the distribution of X_{2} is the same in both parts of the experiment, and hence its mean is the same

Hence the causal effect of the exposure becomes

$$
\begin{aligned}
\text { Causal effect } & =E\left(Y_{1}\right)-E\left(Y_{0}\right) \\
& =\beta_{0}+\beta_{1}^{c}+\beta_{2}^{c} E\left(X_{2}\right)-\left\{\beta_{0}+\beta_{2}^{c} E\left(X_{2}\right)\right\} \\
& =\beta_{1}^{c}
\end{aligned}
$$

For the exposed population:

$$
E\left(Y_{1}\right)=\beta_{0}+\beta_{1}^{c}+\beta_{2}^{c} E_{1}\left(X_{2}\right)
$$

For the unexposed population:

$$
E\left(Y_{0}\right)=\beta_{0}+\beta_{2}^{c} E_{0}\left(X_{2}\right)
$$

Thus

$$
\begin{aligned}
E\left(Y_{1}\right)-E\left(Y_{0}\right) & =\beta_{0}+\beta_{1}^{c}+\beta_{2}^{c} E_{1}\left(X_{2}\right)-\left\{\beta_{0}+\beta_{2}^{c} E_{0}\left(X_{2}\right)\right\} \\
& =\beta_{1}^{c}+\beta_{2}^{c}\left\{E_{1}\left(X_{2}\right)-E_{0}\left(X_{2}\right)\right\}
\end{aligned}
$$

If we perform a study where we sample from the exposed and unexposed populations, and estimate the difference based on the exposed and unexposed samples, we will estimate

$$
\beta_{1}^{c}+\beta_{2}^{c}\left\{E_{1}\left(X_{2}\right)-E_{0}\left(X_{2}\right)\right\}
$$

If the mean value of X_{2} differs between the exposed and unexposed populations, we will get a biased estimate of the causal effect β_{1}^{c}

We say that the (causal) effect of X_{1} is confounded by X_{2}

No confounding

If the distribution of X_{2} is independent of the level of exposure (i.e. $X_{1}=0,1$), then $E_{1}\left(X_{2}\right)=E_{0}\left(X_{2}\right)$ and there will be no confounding

In particular this will be the case in an experiment where individuals are randomly allocated to exposure/no exposure

Conditions for confounding

A covariate X_{2} is a confounder for the causal effect of X_{1} provided that

- X_{2} is a causal determinant of the outcome Y (or a proxy for such determinants)
- X_{2} is a causal determinant of X_{1}
(or they share a common causal determinant)

Control of confounding

Consider the situation where all causal determinants other than X_{1} are captured by the binary covariate X_{2}

Then, given the level of $X_{2}(=0,1)$, there is no more confounding and the causal effect of X_{1} may estimated by comparing the means of exposed and unexposed within levels of X_{2}

In practice this is obtained by fitting the linear model

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\varepsilon_{i}
$$

since here β_{1} is the effect of one unit's increase in X_{1} keeping the value of X_{2} constant

In general we may use multiple linear regression to correct for a number of confounders by including them as covariates in the model (assuming that all relevant confounders are recorded in the data)

Example (contd)

We fit a multiple regression model with blood glucose level as response and exercise, age, alcohol use, and body mass index (BMI) as covariates

Multiple linear regression:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	78.96	2.592	30.45	$<2 \mathrm{e}-16$
exercise	-0.950	0.429	-2.22	0.0267
age	0.064	0.03	2.02	0.0431
drinkany	0.680	0.422	1.61	0.1071
BMI	0.489	0.042	11.77	$<2 e-16$

Residual standard error: 9.389 on 2023 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.072, Adjusted R-squared: 0.070
F-statistic: 39.22 on 4 and 2023 DF, p-value: < 2.2e-16
We now find that exercise on average decreases the blood glucose level with $1.0 \mathrm{mg} / \mathrm{dL}$

This should be closer to the causal effect of exercise

Interaction for binary covariates

We have considered the situation where two binary predictors X_{1} and X_{2} have a causal effect on the outcome

We could then estimate the (causal) effects by fitting the linear model

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\varepsilon_{i}
$$

Note that we assume that the effect of X_{1} is the same for both levels of X_{2} (and vice versa):

X_{1}	X_{2}	$E(y \mid \mathbf{x})$
0	0	β_{0}
1	0	$\beta_{0}+\beta_{1}$
0	1	$\beta_{0}+\beta_{2}$
1	1	$\beta_{0}+\beta_{1}+\beta_{2}$

If the effect of X_{1} depends on the level of X_{2} we have an interaction We may then fit a model of the form

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{1 i} x_{2 i}+\varepsilon_{i}
$$

The effect for different values of the covariates are then given by:

X_{1}	X_{2}	$X_{1} X_{2}$	$E(y \mid \mathbf{x})$
0	0	0	β_{0}
1	0	0	$\beta_{0}+\beta_{1}$
0	1	0	$\beta_{0}+\beta_{2}$
1	1	1	$\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}$

Example

Use the HERS data to study how low-density lipoprotein cholesterol after one year (LDL1) depends on hormone therapy (HT) and statin use (both binary)

R commands:

ht.fit=Im(LDL1~HT+statins+HT:statins, data=hers) summary(ht.fit)

R output (edited):

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	145.157	1.326	109.507	$<2 \mathrm{e}-16$
HT	-17.73	1.87	-9.477	$<2 \mathrm{e}-16$
statins	-13.81	2.15	-6.416	$1.65 \mathrm{e}-10$
HT:statins	6.24	3.08	2.030	0.0425

(In the model formula HT :statin specifies the interaction term " HT^{*} statin")
The effect of HT seems to be lower among statin users

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	145.157	1.326	109.507	$<2 \mathrm{e}-16$
HT	-17.73	1.87	-9.477	$<2 \mathrm{e}-16$
statins	-13.81	2.15	-6.416	$1.65 \mathrm{e}-10$
HT:statins	6.24	3.08	2.030	0.0425

HT reduces LDL cholesterol for non-users of statins by $17.7 \mathrm{mg} / \mathrm{dl}$
For users of statins the estimated reduction is $17.7-6.2=11.5 \mathrm{mg} / \mathrm{dl}$
To obtain the uncertainty, we use the "contrast" library

R commands:

library(contrast)
par1= list(HT=1,statins=1) \# specify one set of values of the covariates par2= list($\mathrm{HT}=0$,statins=1) \# specify another set of values of the covariates contrast(ht.fit, par1,par2) \# compute the difference between the two sets

R output (edited):

Contrast	S.E.	Lower	Upper	t	$d f$	$\operatorname{Pr}(>\|t\|)$
-11.48	2.44	-16.27	-6.69	-4.7	2604	0

Interaction for one binary and one numerical covariate
We now consider the situation where X_{1} is a binary predictor and X_{2} is numerical

As an illustration we consider the HERS data, and we will see how baseline LDL cholesterol depends on statin use (X_{1}) and BMI (X_{2})

The model

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\varepsilon_{i}
$$

assumes that the effect of BMI is the same for statin users and those who don't use statins

It may be of interest to consider a model where the effect of BMI may differ between statin users and those who don't use statins, i.e. where there is an interaction

We then consider the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{1 i} x_{2 i}+\varepsilon_{i}
$$

Note that the model may be written

$$
y_{i}= \begin{cases}\beta_{0}+\beta_{2} x_{2 i}+\varepsilon_{i} & \text { when } x_{1 i}=0 \\ \beta_{0}+\beta_{1}+\left(\beta_{2}+\beta_{3}\right) x_{2 i}+\varepsilon_{i} & \text { when } x_{1 i}=1\end{cases}
$$

This is a model with different intercepts and different slopes for the numerical covariate depending on the value of the binary covariate

When considering such a model, it is useful to center the numeric covariate (by subtracting its mean) to ease interpretation

In the example, we let X_{2} correspond to the centered BMI-values, denoted cBM

R commands:

hers\$cBMI=hers\$BMI - mean(hers\$BMI[lis.na(hers\$BMI)])
stat.fit=Im(LDL~statins+cBMI+statins:cBMI,data=hers)
summary(stat.fit)
par1=list(statins $=1, \mathrm{cBMI}=1$)
par2=list(statins $=1, \mathrm{cBMI}=0$)
contrast(stat.fit,par1,par2)

R output (edited):

Interaction for two numerical covariates

We finally consider the situation X_{1} and X_{2} are both numerical

A model with interaction is then given by

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{1 i} x_{2 i}+\varepsilon_{i}
$$

For such a model, it is useful to center the covariates
But even then the interpretation of the estimates is a bit complicated

If (e.g.) factor B has three levels b_{1}, b_{2}, b_{3}, we need to introduce two x^{\prime} s for this factor (cf slide 26 of Lecture 3):

$$
\begin{aligned}
& x_{2 i}= \begin{cases}1 & \text { if individ } i \text { has level } \mathrm{b}_{2} \text { for factor } \mathrm{B} \\
0 & \text { otherwise }\end{cases} \\
& x_{3 i}= \begin{cases}1 & \text { if individ } i \text { has level } \mathrm{b}_{3} \text { for factor } \mathrm{B} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

A model with interaction then takes the form

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{3 i}+\beta_{4} x_{1 i} x_{2 i}+\beta_{5} x_{1 i} x_{3 i}+\varepsilon_{i} \tag{*}
\end{equation*}
$$

It becomes quite complicated to write the model like this, so it is common to use an alternative formulation

Two-way ANOVA

Consider the situation where the outcome y_{i} for an individual depends on two factors, A and B, each with two levels, denoted a_{1}, a_{2} and b_{1}, b_{2}
One such example is how LDL cholesterol depends on HT (with levels "placebo" and "hormone therapy") and statin use (with levels "no" and "yes"); cf. slide 16

We may here introduce the covariates:

$$
\begin{aligned}
& x_{1 i}= \begin{cases}0 & \text { if individ } i \text { has level } \mathrm{a}_{1} \text { for factor } \mathrm{A} \text { (reference) } \\
1 & \text { if individ } i \text { has level } \mathrm{a}_{2} \text { for factor } \mathrm{A}\end{cases} \\
& x_{2 i}= \begin{cases}0 & \text { if individ } i \text { has level } \mathrm{b}_{1} \text { for factor } \mathrm{B} \text { (reference) } \\
1 & \text { if individ } i \text { has level } \mathrm{b}_{2} \text { for factor } \mathrm{B}\end{cases}
\end{aligned}
$$

Then a regression model with interaction takes the form (cf slide 15)

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{1 i} x_{2 i}+\varepsilon_{i}
$$

We recapitulate:

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{3 i}+\beta_{4} x_{1 i} x_{2 i}+\beta_{5} x_{1 i} x_{3 i}+\varepsilon_{i} \tag{*}
\end{equation*}
$$

In order to rewrite model (*), we denote the outcomes for level a_{j} of factor A and level b_{k} of factor B by

$$
y_{i j k} \text { for } i=1, \ldots, n_{j k}
$$

We may then rewrite model (${ }^{*}$) as

$$
\begin{equation*}
y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\varepsilon_{i j k} \tag{**}
\end{equation*}
$$

We have the following relations between the parameters in model (*) and model (**)

$\left.{ }^{*}\right)$	β_{0}	β_{1}	β_{2}	β_{3}	β_{4}	β_{5}
$\left({ }^{* *}\right)$	μ	α_{2}	β_{2}	β_{3}	$(\alpha \beta)_{22}$	$(\alpha \beta)_{23}$

In model (**) the parameters for the reference levels are 0 :

$$
\alpha_{1}=\beta_{1}=(\alpha \beta)_{11}=(\alpha \beta)_{12}=(\alpha \beta)_{13}=(\alpha \beta)_{21}=0
$$

Note that the model formulation

$$
\begin{equation*}
y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\varepsilon_{i j k} \tag{**}
\end{equation*}
$$

works equally well when factor A has J levels and factor B has K levels, while the formulation (*) would become much more complicated

In Lecture 3 (cf. slide 30), we considered a study of how the extraction rate of a certain polymer depends on temperature and the amount of catalyst used.

We there assumed a linear effect of temperature and the amount of catalyst

We will here consider temperature and
catalyst as factors, each with three levels

	$\mathbf{0 . 5 \%}$	$\mathbf{0 . 6 \%}$	$\mathbf{0 . 7 \%}$
$50^{\circ} \mathrm{C}$	38	45	57
	41	47	59
$60^{\circ} \mathrm{C}$	44	56	70
	43	57	69
$70^{\circ} \mathrm{C}$	44	56	70
	47	60	67

In a planned experiment we can make sure that we have the same number of observations for all the $J \times K$ combinations of levels of factor A and factor B

We then have a balanced design, and the total sum of squares (TSS) may be uniquely decomposed as a sum of squares for each of the two factors (SSA, SSB), a sum of squares for interaction (SSAB), and a residual sum of squares (RSS):

$$
T S S=S S A+S S B+S S A B+R S S
$$

To each of these sum of squares there correspond a degree of freedom as given in the ANOVA table on the next slide

NB! If the design is not balanced, the decomposition of the total sum of squares is not unique

R commands:

polymer=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/polymer.txt",header=T) polymer\$ftemp=factor(polymer\$temp)
polymer\$fcat=factor(polymer\$cat)
fit=Im(rate~ftemp+fcat+ftemp:fcat,data=polymer)
summary(fit)

R output:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	39.5	1.23	32.25	$1.30 \mathrm{e}-10$
ftemp60	4.0	1.73	2.31	0.046
ftemp70	6.0	1.73	3.46	0.007
fcat0.6	6.5	1.73	3.75	0.005
fcat0.7	18.5	1.73	10.68	$2.06 \mathrm{e}-06$
ftemp60:fcat0.6	6.5	2.45	2.65	0.026
ftemp70:fcat0.6	6.0	2.45	2.45	0.037
ftemp60:fcat0.7	7.5	2.45	3.06	0.014
ftemp70:fcat0.7	4.5	2.45	1.84	0.099

Residual standard error: 1.73 on 9 degrees of freedom Multiple R-squared: 0.986, Adjusted R-squared: 0.973 F-statistic: 78.78 on 8 and 9 DF, p-value: 2.012e-07

The result of a two-way ANOVA may be summarized in the table

Source	df	Sum of squares	Mean sum of squares	F statistics
Factor A	$J-1$	$S S A$	$S S A /(J-1)$	$F=\frac{S S A /(J-1)}{R S S /(n-J K)}$
Factor B	$K-1$	$S S B$	$S S B /(K-1)$	$F=\frac{S S B /(K-1)}{R S S /(n-J K)}$
Interaction	$(J-1)(K-1)$	$S S A B$	$S S A B /(J-1)(K-1)$	$F=\frac{S S A B /(J-1)(K-1)}{R S S /(n-J K)}$
Residual	$n-J K$	$R S S$	$R S S /(n-J K)$	
Total	$n-1$	$T S S$		

The F-statistics (with their appropriate degrees of freedom) may be used to test the following null hypotheses:

$$
\begin{aligned}
& H_{0}: \text { all }(\alpha \beta)_{j k}=0 \quad \text { (no interaction) } \\
& \left.H_{0}: \text { all } \alpha_{j}=0 \quad \text { (no main effect of } \mathrm{A}\right) \\
& \left.H_{0}: \text { all } \beta_{k}=0 \quad \text { (no main effect of } \mathrm{B}\right)
\end{aligned}
$$

For the example:

R commands:

anova(fit)

Higher level ANOVA

Consider for illustration the situation with three factors, A, B, and C.

Data:
$y_{i j k l}=$ observation number i for level a_{j} of factor A , level b_{k} of factor B, and level c_{l} of factor C

Model with interaction:
$y_{i j k l}=\mu+\alpha_{j}+\beta_{k}+\gamma_{l}+(\alpha \beta)_{j k}+(\alpha \gamma)_{j l}+(\beta \gamma)_{k l}+(\alpha \beta \gamma)_{j k l}+\varepsilon_{i j k l}$

The result of a three-way ANOVA may be summarized in the table

Source	df $*$	Sum of squares	Mean sum of squares
Factor A	$S S A$	$S S A / d f$	F statistics
Factor B	$S S B$	$S S B / d f$	F_{A}
Factor C	$S S C$	$S S C / d f$	F_{B}
Interaction AB	$S S A B$	$S S A B / d f$	F_{C}
Interaction AC	$S S A C$	$S S A C / d f$	$F_{A B}$
Interaction BC	$S S B C$	$S S B C / d f$	$F_{B C}$
Interaction ABC	$S S A B C$	$S S A B C / d f$	$F_{A B C}$
Residual	$R S S$	$R S S / d f$	
Total $\quad n-1$	$T S S$		
*) can be found on computer output			
The decomposition of the total sum of squares is unique if the			
design is balanced			
Hypothesis testing is similar to two-way ANOVA			

