
STK4900/9900  - Lecture 7

Program

1. Logistic regression with one predictor
2. Maximum likelihood estimation
3. Logistic regression with several predictors
4. Deviance and likelihood ratio tests
5. A comment on model fit

• Sections 6.1, 6.2 (except 6.2.5), and 6.6
• Supplementary material on likelihood and deviance
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We have data  (x1 ,y1) , … , (xn ,yn)
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Here        is a binary outcome (0 or 1) for subject  i and       is 
a predictor  for the subject    

We let
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The logistic regression models takes the form:

Logistic regression with one predictor
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This gives a "S-shaped" relation 
between  p(x) and  x and ensures 
that   p(x) stays between 0 and 1

3

The logistic model may alternatively be given in terms of the odds:
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If we consider two subjects with covariate values  and  x , 
respectively,  their odds ratio becomes
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In particular          is the odds ratio corresponding to one unit's 
increase in the value of the covariate
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Thus the logistic regression model is linear in the log-odds

By (*) the logistic regression model may also be given as:
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R commands: 
wcgs=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/wcgs.txt",   

sep="\t",header=T,na.strings=".")

fit=glm(chd69~age, data=wcgs,family=binomial)

summary(fit)

Consider the WCGS study with CHD as outcome and age as predictor 
(individual age, not grouped age as we considered in Lecture 6)

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -5.9395    0.5493 -10.813  < 2e-16 
age          0.0744    0.0113 6.585 4.56e-11 

The odds ratio for one year increase in age is                           while the 

odds ratio for a ten-year increase is 

(The numbers deviate slightly from those on slide 25 from Lecture 6, since there 
we used mean age for each age group while here we use the individual ages) 

0.0744 1.077e =
0.0744 10 2.10e ⋅ =

How is the estimation performed for the logistic regression model?
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Maximum likelihood estimation

Estimation in the logistic model is performed using maximum 
likelihood estimation

We first describe maximum likelihood estimation for the linear 
regression model:

For ease of presentation, we assume that  σ2 is known

The density of  yi takes the form (cf slide 12 from Lecture 1):
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The likelihood is the simultaneous density

considered as a function of the parameters       and        for the 
observed values of the  yi

0β 1β

We estimate the parameters by maximizing the likelihood. 

This corresponds to finding the parameters that make the observed 
yi as likely as possible

Maximizing the likelihood  L  is the same as maximizing

which is the same as minimizing

For the linear regression model, maximum likelihood estimation 
coincides with least squares estimation
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We then consider the situation for logistic regression

We have data  (x1 ,y1) , … , (xn ,yn),  where       is a binary 
outcome  (0 or 1)  for subject  i and       is a predictor  
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Here we have

( 1 | )i i iP y x p= =

Thus the distribution of yi may be written as 

where
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The likelihood becomes
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Since

the likelihood is, for given observations, a function of the 
unknown parameters          and           0β 1β

We estimate          and           by the values of these parameters 
that maximize the likelihood            

0β
1β

These estimates are called the maximum likelihood estimates (MLE)
and are denoted        and        0β̂ 1̂β
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Confidence interval for      and odds ratio 1β
95%  confidence interval for        (based on the normal approximation):

1 1
ˆ ˆ1.96 ( )seβ β± ⋅

1β

is the odds ratio for one unit's increase in x1exp( )OR β=

We obtain a 95% confidence interval for OR by transforming the 
lower and upper limits of the confidence interval for 1β

In the CHD example we have                       and 1̂ 0.0744β = 1̂( ) 0.0113se β =

95%  confidence interval for        :1β
0.0744 1.96 0.0113 i.e.   from 0.052  to  0.096 ± ⋅

Estimate of odds ratio  exp(0.0744) 1.077OR= =
95%  confidence interval for  OR :

from exp(0.052) 1.053  to  exp(0.096) 1.101 = =
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R function for computing odds ratio with 95% confidence limits 

expcoef=function(glmobj)
{
regtab=summary(glmobj)$coef
expcoef=exp(regtab[,1])
lower=expcoef*exp(-1.96*regtab[,2])
upper=expcoef*exp(1.96*regtab[,2])
cbind(expcoef,lower,upper)
}

expcoef(fit)

R output  (edited):

expcoef lower       upper
(Intercept) 0.0026 0.0009 0.0077
age         1.077 1.054 1.101
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Wald test for 0 1: 0H β =

To test the null hypothesis                      versus the two-sided 

alternative                      we use the Wald test statistic:
0 1: 0H β =

1: 0AH β ≠

1
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We reject H0 for large values of  | |z

Under  H0 the test statistic is approximately standard normal

P-value (two-sided):  P = 2 P(Z >|z|) where  Z is standard normal

In the CHD example we have                       and 1̂ 0.0744β = 1̂( ) 0.0113se β =

Wald test statistic 

0.0744 / 0.0113 6.58z = =

which is highly significant (cf. slide 4) 

Multiple logistic regression

Assume now that we for each subject have 

Logistic regression model: 

   a binary outcome y•

1 2   predictors , ,....,px x x•
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The logistic model may also be given in terms of the odds:
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If we consider two subjects with values  and  x1 , for the first 
covariate and the same values for all the others,  their odds ratio becomes
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In particular          is the odds ratio corresponding to one unit's increase 
in the value of the first covariate holding all other covariates constant

1eβ

1x + ∆

A similar interpretation holds for the other regression coefficients
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Wald tests and confidence intervals

95%  confidence interval for       : ˆ ˆ1.96 ( )j jseβ β± ⋅jβ

is the odds ratio for one unit's increase in the 
value of the j-th covariate holding all other covariates constant

exp( )j jOR β=

We obtain a 95% confidence interval for  ORj by transforming the 
lower and upper limits of the confidence interval for jβ

ˆ MLE for j jβ β• =

ˆ ˆ( ) standard error for  j jse β β• =

To test the null hypothesis                     we use the Wald test statistic:0 : 0j jH β =
ˆ

ˆ( )
j

j
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0 jHwhich is approximately N(0,1)-distributed under 
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R commands: 
wcgs.mult=glm(chd69~age+chol+sbp+bmi+smoke, data=wcgs, family=binomial, 

subset=(chol<600))
summary(wcgs.mult)

Consider the WCGS study with CHD as outcome and age, 
cholesterol (mg/dL), systolic blood pressure (mmHg), body mass 
index (kg/m2), and smoking (yes, no)  as predictors (as on page 168 in 

the text book we omit an individual with an unusually high cholesterol value)

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -12.3110   0.9773 -12.598  < 2e-16 
age           0.0644   0.0119   5.412 6.22e-08
chol          0.0107   0.0015   7.079 1.45e-12
sbp           0.0193   0.0041   4.716 2.40e-06
bmi           0.0574   0.0264   2.179   0.0293 
smoke         0.6345   0.1401   4.526 6.01e-06
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R command (using the function from slide 10): 
expcoef(wcgs.mult)

Odds ratios with confidence intervals 

R output  (edited):
expcoef       lower        upper

(Intercept) 4.50e-06 6.63e-07 3.06e-05
age         1.067 1.042 1.092
chol        1.011 1.008 1.014
sbp         1.019 1.011 1.028
bmi         1.059 1.006 1.115
smoke       1.886 1.433 2.482
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For a numerical covariate it may be more meaningful to present an  odds 
ratio corresponding to a larger increase than one unit (cf. slide 13)

This is easily achieved by refitting the model with a rescaled covariate

If you (e.g) want to study the effect of a ten-years increase in age, you fit 
the model with the covariate  age_10=age/10

R commands: 
wcgs.resc=glm(chd69~age_10+chol_50+sbp_50+bmi_10+smoke, data=wcgs, 

family=binomial, subset=(chol<600))
summary(wcgs.resc)

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -3.006 0.116 -12.598  < 2e-16 
age_10           0.644   0.119   5.412 6.22e-08
chol_50          0.537   0.076   7.079 1.45e-12
sbp_50           0.965   0.205   4.716 2.40e-06
bmi_10           0.574   0.264   2.179   0.0293 
smoke         0.634   0.140   4.526 6.01e-06

Note that values of the Wald test statistic are not changed (cf. slide 15)
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R command (using the function from slide 10): 
expcoef(wcgs.resc)

Odds ratios with confidence intervals: 

R output  (edited):
expcoef       lower        upper

(Intercept) 0.0494 0.0394 0.0621
age_10      1.9050 1.5085 2.4057
chol_50     1.7110 1.4746 1.9853
sbp_50      2.6240 1.7573 3.9180
bmi_10      1.7760 1.0595 2.9770
smoke       1.8860 1.4329 2.4824
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An aim of the WCGS study was to study the effect on CHD of 
certain behavioral patterns, denoted A1, A2, B3 and B4

Behavioral pattern is a categorical covariate with four levels, and 
must be fitted as a factor in R

R commands: 
wcgs$behcat=factor(wcgs$behpat)
wcgs.beh=glm(chd69~age_10+chol_50+sbp_50+bmi_10+smoke+behcat, 

data=wcgs, family=binomial, subset=(chol<600))
summary(wcgs.beh)

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -2.7527    0.2259 -12.19  < 2e-16 
age_10       0.6064    0.1199 5.057 4.25e-07
chol_50      0.5330    0.0764 6.980 2.96e-12
sbp_50       0.9016    0.2065 4.367 1.26e-05
bmi_10       0.5536    0.2656 2.084  0.0372  
smoke        0.6047    0.1411 4.285 1.82e-05
behcat2      0.0660    0.2212 0.298  0.7654   
behcat3     -0.6652    0.2423 -2.746  0.0060 
behcat4     -0.5585    0.3192 -1.750  0.0802 
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Here we may be interested in :  

• Testing if behavioral pattern has an effect on CHD risk 

• Testing if it is sufficient to use two categories for behavioral 
pattern  (A and B)

In general we consider a logistic regression model:
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Here we want to test the null hypothesis that  q of the           are equal to 

zero, or equivalently that there are q linear restrictions among the 

'sjβ
'sjβ

Examples:

0 1 2 3 4: 0 ( 4)H qβ β β β= = = = =

0 1 2 3 4: and ( 2)H qβ β β β= = =
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Deviance and sum of squares

For the linear regression model the sum of squares was a key 
quantity in connection with testing and for assessing the fit of a model

We want to define a quantity for logistic regression that 
corresponds to the sum of squares 

To this end we start out by considering the relation between 
the log-likelihood and the sum of squares for the linear 
regression model

For the linear regression model  l= log L  takes the form (cf. slide 6):

The log-likelihood obtains its  largest  value for the  saturated model,                
i.e. the model where there are no restrictions on the  µi
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For the saturated model  the  µi are estimated by              ,  and the 
log-likelihood becomes

The deviance for the model is defined as                         and it becomes 

i iyµ =%

For the linear regression model the deviance is just the sum of 
squares for the fitted model divided by  σ2 
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For a given specification of the linear regression model the  µi are 
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Deviance for binary data

We then consider logistic regression with data

where       is binary response  and the         are predictors iy

We introduce                                                    and note that the 

log-likelihood                               is   a function of                             

(cf. slide 8)  

1 2( 1 | , ,...., )i i i i pip P y x x x= =

1( ,...., )nl l p p= 1,...., np p

For the saturated model, i.e. the model where there are no 

restrictions on the  pi , the  pi are estimated by                 and 

the  log-likelihood takes the value
i ip y=%

1( ,...., )nl l p p=% % %

1 2( , , ,...., ) 1,2,....,i i i piy x x x i n=

jix
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For a fitted logistic regression model we obtain the estimated 
probabilities

0 1 1
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and the corresponding value                              of the log-likelihood1
ˆ ˆ ˆ( ,...., )nl l p p=

The deviance for the model is defined as

ˆ2( )D l l= −%

The deviance itself is not of much use for binary data

But by comparing the deviances of two models, we may check if one 
gives a better fit than the other.
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Consider the WCGS study with age, cholesterol, systolic blood pressure, 
body mass index, smoking and behavioral  pattern as predictors (cf slide 19)

The deviance of the fitted model is denoted "residual deviance" in 
the  output 

The "null deviance" is the deviance for the model with no covariates, 
i.e. for the model where all the  pi are assumed to be equal

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -2.7527    0.2259 -12.19  < 2e-16 
age_10       0.6064    0.1199 5.057 4.25e-07
chol_50      0.5330    0.0764 6.980 2.96e-12
sbp_50       0.9016    0.2065 4.367 1.26e-05
bmi_10       0.5536    0.2656 2.084  0.0372  
smoke        0.6047    0.1411 4.285 1.82e-05
behcat2      0.0660    0.2212 0.298  0.7654   
behcat3     -0.6652    0.2423 -2.746  0.0060 
behcat4     -0.5585    0.3192 -1.750  0.0802

Null deviance: 1774.2  on 3140  degrees of freedom
Residual deviance: 1589.6  on 3132  degrees of freedom

Deviance and likelihood ratio tests

To test the null hypothesis, we use the test statistic

0G D D= −
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where D0 is the deviance under the null hypothesis and D is the 
deviance for the fitted model (not assuming H0 ) 

We reject  H0 for large values of  G

To compute P-values, we use that the test statistic G is chi-squared  

distributed with  q degrees of freedom  under H0

We want to test the null hypothesis H0 that  q of the           are equal to 

zero, or equivalently that there are q linear restrictions among the 

'sjβ
'sjβ

We will show how we  may rewrite G  in terms of the likelihood ratio
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Thus

We have  

0 0
ˆ ˆ2( ) and 2( )D l l D l l= − = −% %

0G D D= −

Here 

0 0
ˆ ˆˆ ˆlog and logl L l L= =

where 

0
0

ˆ ˆmax and max
model H

L L L L= =

0̂
ˆ2( ) 2( )l l l l= − − −% %

0̂
ˆ2( )l l= − − ( )0

ˆ ˆ2 log L L= −

Thus large values of G corresponds to small values of the 
likelihood ratio and the test based on G is equivalent to 
the likelihood ratio test               

0
ˆ ˆL L
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R commands: 
anova(wcgs.resc,wcgs.beh,test="Chisq")

R output  (edited):

Analysis of Deviance Table

Model 1: chd69 ~ age_10 + chol_50 + sbp_50 + bmi_10 + smoke
Model 2: chd69 ~ age_10 + chol_50 + sbp_50 + bmi_10 + smoke + behcat

Resid.Df  Resid.Dev Df Deviance       P(>|Chi|)    
1      3135     1614.4                          
2      3132     1589.6  3   24.765 1.729e-05

For the model with age, cholesterol, systolic blood pressure, body mass 
index, smoking, and behavioral pattern  as predictors (cf slide 25) the 
deviance becomes

0 1614.4D =

0 1614.4 1589.6 24.8G D D= − = − =

1589.6D =
For the model without behavioral pattern (cf slide 17) the deviance 
takes the value 

The test statistic takes the value:
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In general it is more difficult to check the fit of a logistic regression model 
than a linear regression model

Model fit for logistic regression is discussed in Section 6.4 in the text 
book, but time does not allow us to dwell on this

One key assumption for the logistic regression model is that a numerical 
covariate has a linear effect on the log-odds, cf. slides 3 and 12  

We will here be content with describing a simple, yet useful, way of 
checking this assumption 

A comment on model fit

A simple way to check the assumption is to fit a model where we 
group according to the values of the numerical covariate and compare 
the fits when the grouped covariate is used as a numerical covariate 
and when it is used as a categorical covariate
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For a simple illustration we consider the situation where age is the 
only covariate in the model for CHD, and we want to check if the 
effect of age is linear (on the log-odds scale)

The procedure will be similar if there are other covariates in 
addition to age

We may here fit a model considering the age group as a factor 
(age groups: 35-40, 41-45, 46-50, 51-55, 56-60)

Or we may fit a model where the mean age in each age group is 
used as numerical covariate (means: 39.5, 42.9, 47.9, 52.8, 57.3)
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R commands: 
fit.catage=glm(chd69~factor(agec), data=wcgs,family=binomial)

wcgs$agem=39.5*(wcgs$agec==0)+42.9*(wcgs$agec==1)+47.9*(wcgs$agec==2)+

52.8*(wcgs$agec==3)+57.3*(wcgs$agec==4)

fit.linage=glm(chd69~agem, data=wcgs,family=binomial)

summary(fit.catage)

summary(fit.linage)

anova(fit.linage, fit.catage,test="Chisq")

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept)   -2.8043        0.1850        -15.162  < 2e-16
factor(agec)1  -0.1315         0.2310  -0.569 0.569    
factor(agec)2   0.5307         0.2235   2.374 0.018  
factor(agec)3   0.8410         0.2275   3.697    0.0002
factor(agec)4   1.0600         0.2585   4.100 4.13e-05

Estimate Std. Error z value Pr(>|z|)    
(Intercept) -5.9466         0.5616             -10.588                    < 2e-16 
agem 0.0747         0.0116                 6.445                     1.15e-10

Model 1: chd69 ~ agem
Model 2: chd69 ~ factor(agec)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1      3152     1740.2                      
2      3149     1736.3  3   3.928    0.269
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Deviance and grouped data
On slides 26-28 in Lecture 6 we saw that we got the same estimates and 
standard errors when we fitted the model with mean age in each age 
group as numerical covariate using binary data and grouped data

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -5.9466         0.5616             -10.588                    < 2e-16 
agem 0.0747         0.0116                 6.445                     1.15e-10

Null deviance: 1781.2  on 3153  degrees of freedom
Residual deviance: 1740.2  on 3152  degrees of freedom

Estimate Std. Error z value Pr(>|z|)    
(Intercept) -5.9466         0.5616             -10.588                    < 2e-16 
agem 0.0747         0.0116                 6.445                     1.15e-10

Null deviance:  44.95  on 4  degrees of freedom
Residual deviance:  3.928  on 3  degrees of freedom

R commands: 
summary(fit.linage)
chd.grouped=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/chd_grouped.txt ",   

header=T)
fit.grouped=glm(cbind(chd,no-chd)~agem, data=chd.grouped, family=binomial)

summary(fit.grouped)
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We see that the "residual deviance" and the "null deviance" are not 
the same when we use binary data and when we use grouped data

However, the difference between the two is the same in both cases

As long as we look at differences between deviances, it does not 
matter whether we used binary or grouped data

Further note that the residual deviance for the model with grouped 
data is the same as we got on slide 31 when comparing the models 
with age as a numerical and categorical covariate (based on binary 
data)

When we use grouped data, the residual deviance can be used as a 
goodness-of-fit test


