
STK4900/9900  -   Lecture 6 
 
Program 
 

1. Binary data and proportions 
2. Comparing two proportions 
3. Contingency tables 
4. Excess risk, relative risk, and odds ratio 
5. Logistic regression with one predictor 

 
• Section 3.4 
• Section 6.1 
• Supplementary material on proportions and contingency 
       tables (cf. your introductory statistics textbook) 
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Binary data and proportions 
In the first part of the course, we considered the situation 
where the outcome was numerical 

We will now consider the situation where the outcome is a 
binary variable (coded as 0 or 1) 

Example: Opinion polls 

In April 2013  Norstat asked n = 968 
individuals  which party they would 
support if there had been election to 
the parliament tomorrow  
 

303 would have voted Høyre 
 

Høyre's support on the opinion poll is 
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ˆ ˆ(1 )ˆ( ) p pse p
n
−

=

In general we have a sample of  binary data                      
from a population   

1 2, ,..., ny y y

Here               if subject  i  has a certain property (e.g. vote Høyre), 
while               otherwise   

1iy =
0iy =

We let  ( 1)ip P y= =

Then  p  is the proportion in the population who has the property  

We may estimate   p  by the sample proportion:   

1 #( 1)ˆ
n

i ii
y yp

n n
= =

= =∑

Standard error: 

In the example, the standard error becomes 
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ˆ ˆ1.96 ( )p se p± ⋅

One may show that       is approximately normally distributed 
(cf. the central limit theorem)   

In the example a 95% confidence interval becomes: 

p̂

95% confidence interval for the population proportion p : 

i.e. 

Thus our estimate of Høyre's support is 31.3% with 
a "margin of error" of   2.9%±
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Comparing two proportions 
Assume that we have a random sample of binary data from each of 
two populations, and that the two samples are independent 

Example: "Divorce" among seagulls 

Kittiwake (krykkje) is a seagull whose 
mating behavior is basically monogamous, 
but some couples do not reunite the next 
breeding season ("divorce") 

Does the "divorce rate" depend on 
whether breeding was successful or not?   

769 kittiwake pair-bonds were studied over two breeding seasons 
 

Of the 160 couples that had not successful breeding the first season,  
100 divorced 
 

Of the 609 couples that were successful, 175 divorced 
 

http://upload.wikimedia.org/wikipedia/commons/b/b1/Kittiwake_with_young_chick.jpg
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Population 1: 

Population proportion:  1p

where 

Sample size:  1n
Sample proportion:  1p̂

Population 2: 

Population proportion:  2p
Sample size:  2n
Sample proportion:  2p̂

1 2 1 2ˆ ˆ ˆ ˆ1.96 ( )p p se p p− ± ⋅ −

95% confidence interval for               : 1 2p p−

We are interested in estimating                 and testing    1 2p p− 0 1 2:H p p=
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In the example: 

Unsuccessful (population 1): 

Sample size:  1 160n =

Sample proportion:  1
100ˆ 0.625
160

p = =

Successful (population 2): 

Sample size:  2 609n =

Sample proportion:  2
175ˆ 0.287
609

p = =

1 2ˆ ˆ 0.625 0.287 0.338p p− = − =
We obtain: 

1 2ˆ ˆ( ) 0.0424se p p− =

95% confidence interval: 

0.338 1.96 0.0424± ⋅ i.e. 0.338 0.083±
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We then consider testing the null hypothesis                                      
versus the (two-sided) alternative 

0 1 2:H p p=

1 2:AH p p≠

Test statistic: 

1 2

0 1 2

ˆ ˆ
ˆ ˆ( )

p pz
se p p

−
=

−

Here                         is the estimated standard error under the 
null hypothesis, obtained by using the sample proportion       in 
the two samples combined: 

0 1 2ˆ ˆ( )se p p−
p̂

0 1 2
1 2

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ( ) p p p pse p p
n n
− −

− = +

 

We reject H0 for large values of   
 

| |z

Under  H0  the test statistic is approximately standard normal 
 

P-value (two-sided):  P = 2 P(Z >|z|) where  Z  is standard normal 
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In the example: 

Unsuccessful (population 1): 

1 160n =

Successful (population 2): 

2 609n = 2
175ˆ 0.287
609

p = =

100 175ˆ 0.358
160 609

p +
= =

+

We obtain: 

0 1 2ˆ ˆ( ) 0.0426se p p− =

The test statistic takes the value 

0.625 0.287 7.9
0.0426

z −
= =

which is highly significant 

1
100ˆ 0.625
160

p = =



2x2 tables 
It is common to summarize the situation with two binary samples 
in a 2x2 table. For the example we have the 2x2 table:   

Unsuccessful 
Successful 

divorced 

100 60 
175 434 

160 

609 

not divorced Total 

An alternative way of formulating the test for the null hypothesis of 
no difference between the populations (cf. slide 8), is to compare the 
observed numbers in the table (denoted O's) with the corresponding 
expected numbers if the null hypothesis is true (denoted E's)  

769 494 275 Total 
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If there is no difference between the two groups we would  (e.g.) expect                                          
 
 
 
divorces among the unsuccessful couples  

275160 57.2
769
⋅ =



Expected numbers:   

Unsuccessful 
Successful 

divorced 

57.2 102.8 
217.8 391.2 

160 

609 

not divorced Total 

769 494 275 Total 

Test statistic:                                   
 
 

2
2

all cells

( )O E
E

χ −
= ∑
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We reject H0 for large values of   
 

2χ

Under H0 the test statistic is approximately chi-squared distributed 
with 1 degree of freedom (df) provided that all E's are at least 5 

 

P-value:                          where        is chi-squared distributed with 1 df 2 2
obs( )P χ χ≥

2χ

One may show that                 so this is a reformulation of the test 
on slide 8     

2 2zχ =
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R commands:  
 

kittiwake=matrix(c(100,175,60,434),nrow=2) 
dimnames(kittiwake)=list(c("unsuccessfull","successful"),c("divorced","not_divorced")) 
kittiwake 
chisq.test(kittiwake,correct=F)$expected 
prop.test(kittiwake,correct=F) 
 
R output (edited): 
 

  divorced       not_divorced 
unsuccessfull              100                        60 
successful                   175                      434 
 
  divorced       not_divorced 
unsuccessfull          57.217             102.783 
successful             217.783             391.217 
 
X-squared = 62.8813, df = 1, p-value = 2.196e-15 
alternative hypothesis: two.sided  
95 percent confidence interval: 
 0.25446 0.42082  
sample estimates: 
   prop 1       prop 2  
0.62500     0.28736  
 
 



Contingency tables 
The chi-squared test may be extended to contingency tables of 
higher order 

Lower third 
Middle third 

Lower 
third 

14 11 
11 11 

33 

31 

Total 

92 32 31 Total 
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Example: Blood pressure 

Upper third 

Middle 
third 

Upper 
third 

8 
9 

29 

6  10 12 28 

Blood pressure of 92 teenagers according to the blood pressure of 
their fathers: 

Does the blood pressure of the children depend on the blood 
pressure of their fathers? 

Fa
th

er
's

 b
lo

od
 

pr
es

su
re

 

Child's blood pressure 



We will test the null hypothesis that there is no difference between 
the groups (in the example, that the blood pressure of the children 
does not depend on the blood pressure of their fathers) 

Test statistic:                                   
 
 

2
2

all cells

( )O E
E

χ −
= ∑

14 

 

We reject H0 for large values of   
 

2χ

Under H0 the test statistic is approximately chi-squared distributed with 
                                                       provided that all E's are at least 5    

Expected numbers (E's) are computed as for 2x2 tables   

(#rows 1) (#columns 1)df = − ⋅ −

In the example we have (3 1) (3 1) 4df = − ⋅ − =
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R commands:  
bloodpr=matrix(c(14,11,6,11,11,10,8,9,12),nrow=3) 
dimnames(bloodpr)=list(c("F.low","F.middle","F.upper"), c("C.low","C.middle","C.upper")) 
bloodpr 
chisq.test(bloodpr,correct=F)$expected 
chisq.test(bloodpr,correct=F) 
 
R output (edited): 
 

                 C.low     C.middle    C.upper 
F.low            14             11             8 
F.middle       11             11             9 
F.upper          6             10           12 
 
                    C.low        C.middle      C.upper 
F.low            11.120      11.478        10.402 
F.middle       10.446     10.783          9.772 
F.upper          9.435        9.739         8.826 
 
  
Pearson's Chi-squared test 
X-squared = 3.814, df = 4, p-value = 0.432  
 
 



Risk measures 
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We assume that population 1 corresponds to an "exposed" 
population (specified by x = 1) and that population 2 
corresponds to an "unexposed" population (specified by x =0)    

Unsuccessful (x=1) 
Successful  (x=0) 

divorced (y=1) 

100 60 
175 434 

160 

609 

not divorced (y=0) Total 

769 494 275 Total 

Assume  that we have a random sample of binary data from each of 
two populations, and that the two samples are independent 

Example: "Divorce" among seagulls 

1Population 1:     (1) ( 1 | 1)p p P y x= = = =

2Population 2:     (0) ( 1 | 0)p p P y x= = = =
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On slide 6 we used the excess risk 

(1) (0)ER p p= −

An alternative would be to use the relative risk  given by: 

(1)
(0)

pRR
p

=

In the example, estimates of these two measures of risk are 
given by (cf. slide 7)  

ˆ (1) 0.625 2.18
ˆ (0) 0.287
pRR
p

= = =

to measure the effect of the "exposure" 

ˆ ˆ(1) (0) 0.625 0.287 0.338ER p p= − = − =
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A third risk measure is based on the concept of odds, so we 
will first discuss this concept 

Assume that an event has a probability  p  of occurring   

Then the odds for the event is   

odds
1

p
p

=
−

The odds is one if the probability that an event will 
happen is equal to the probability that it will not happen, 
cf. the expression "a fifty-fifty chance" 

When you throw a die, the odds that it will face six is 1 : 5                   
(i.e. it is five times more likely that it will not face six than it will face six)   
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We then return to the situation with two populations: 

Then a third risk measure is the odds ratio 

[ ]
[ ]

(1) 1 (1)
(0) 1 (0)

p p
OR

p p
−

=
−

Population 1:    (1) ( 1 | 1)p P y x= = =

Population 2:     (0) ( 1 | 0)p P y x= = =

The odds for the two populations are: 

(1)Population 1:     
1 (1)

p
p−

(0)Population 2:     
1 (0)

p
p−

In the example, an estimate for the odds ratio becomes (cf. slide 7)  

0.625 (1 0.625) 1.667 4.14
0.287 (1 0.287) 0.403

OR −
= = =

−



Logistic regression with one predictor 
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When discussing logistic regression, we will to a large extent use the 
WCGS study for illustration 

WCGS is a large epidemiological study designed to study risk factors 
for coronary heart disease (CHD) among middle-aged men  
 

The men were followed for 10 years, and for each man it was recorded 
if he developed CHD (y=1) or not (y=0) over the course of the study 

How does the age (at entry to the study) affect the risk (probability) 
of developing CHD? 

# Total 
# CHD 

35-40 
(39.5) 

543 
 31 

5.7 % % CHD 

41-45 
(42.9) 

1091 
 55 

5.0 % 

46-50 
(47.9) 

750 
 70 

9.3 % 

51-55 
(52.8) 

528 
 65 

12.3 % 

56-60 
(57.3) 

242 
  36 

14.9 % 

Age group 
(mean) 
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The figure shows a the 
observed proportion with 
CHD plotted versus the 
mean age in each age group   

A least square fit to the 
observed proportions give 
the fitted line 

This least squares line may give an all right description of the 
observed proportions, but there are in general problem with using 
linear regression for binary data and proportions 
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In general we have data  (x1,y1) , … , (xn,yn) 
 

( ) ( | ) ( 1 | )p x E y x P y x= = =

 

Here        is a binary outcome  (0 or 1)  for subject  i  and       is 
a predictor  for the subject  (which may be binary or numerical)    

In general we let 

iy ix

 

In the WCGS study,              if man number  i  developed CHD 
during the course of the study,             if not, and       may be 
his age (at entry to the study)   

1iy =
ix0iy =

We want a model that specifies a relation between             and   ( )p x x



23 

0 1( )p x xβ β= +

One option would be a linear model: 

This is an additive risk model, which may be useful in some situations 

However, it is a main problem with the additive risk model that it may 
give impossible values for the probabilities (negative or above 1)  

To avoid this problem it is common to consider 
the logistic regression model given by  

0 1

0 1

exp( )( )
1 exp( )

xp x
x

β β
β β
+

=
+ +

This gives a "S-shaped" 
relation between  p(x)  and  x 
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If we fit a logistic regression model for the WCGS data using the 
mean age in each age group as a numeric covariate, we get                         
                     and  

30 35 40 45 50 55 60 65

0.
00

0.
05

0.
10

0.
15

0.
20

Age

C
H

D
 ri

sk

exp( 5.947 0.0747 age)ˆ (age)
1 exp( 5.947 0.0747 age)

p − + ⋅
=

+ − + ⋅

0
ˆ 5.947β = − 1̂ 0.0747β =

This gives the fitted model 

The method for estimating the parameters of a logistic 
regression model will be described in Lecture 7 
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The logistic model may alternatively be given in terms of the odds: 

0 1
( ) exp( )

1 ( )
p x x

p x
β β= +

−

If we consider two subjects with covariate values              and  x , 
respectively,  their odds ratio becomes 

[ ]
[ ]

( ) 1 ( )
( ) 1 ( )

p x p x
p x p x
+ ∆ − + ∆

−
( )0 1

0 1

exp ( )
exp( )

x
x

β β
β β
+ + ∆

=
+ 1exp( )β= ∆

In particular          is the odds ratio corresponding to one unit's 
increase in the value of the covariate 

1eβ

x + ∆

In the WCGS study the odds ratio for one year increase in age is 
                       while the odds ratio for a ten-year increase is  
(The numbers deviate slightly from those on pp 162-163 in the text book, 
since we have used mean age for each age group in this illustration; cf. the 
exercises for the results when actual age is used.)  

0.0747 1.078e = 0.0747 10 2.11e ⋅ =
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R commands:  
wcgs=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v13/wcgs.txt",    
                              sep="\t",header=T,na.strings=".") 
wcgs$agem=39.5*(wcgs$agec==0)+42.9*(wcgs$agec==1)+47.9*(wcgs$agec==2)+ 
                             52.8*(wcgs$agec==3)+57.3*(wcgs$agec==4) 
attach(wcgs) 
cbind(chd69, agem)   

R commands for logistic regression 
Binary CHD data with mean age in each age group as covariate  

R output of binary CHD data (edited): 
     chd69   agem 
   [1,]     0   47.9 
   [2,]     0   52.8 
   [3,]     0   57.3 
   [4,]     0   52.8 
   [5,]     0   42.9 
   [6,]     0   47.9 
   [7,]     0   39.5 
   [8,]     0   42.9 
   [9,]     0   47.9 
 
   

         chd69    agem 
  [10,]     0      42.9 
  [11,]     0      57.3 
  [12,]     0      52.8 
  [13,]     0      47.9 
  [14,]     1      39.5 
  [15,]     0      47.9 
  [16,]     0      52.8 
  [17,]     0      42.9 
  [18,]     0      57.3 
  [19,]     0      42.9 
   

             chd69    agem 
[3145,]     0         42.9 
[3146,]     0         42.9 
[3147,]     0         52.8 
[3148,]     0         42.9 
[3149,]     0         42.9 
[3150,]     0         47.9 
[3151,]     0         42.9 
[3152,]     0         52.8 
[3153,]     0         52.8 
[3154,]     0         47.9 
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When we use the mean age in each age group as covariate, all 
information is summarized in the table 

# Total 
# CHD 

35-40 
(39.5) 

543 
 31 

41-45 
(42.9) 

1091 
 55 

46-50 
(47.9) 

750 
 70 

51-55 
(52.8) 

528 
 65 

56-60 
(57.3) 

242 
  36 

Age group 
(mean) 

R commands:  
chd.grouped=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v13/chd_grouped.txt ",    
                                         header=T) 
chd.grouped 

As an alternative to using the individual binary data, we may therefore 
use the grouped data given in the table 

R output of grouped CHD data: 
 

  no     chd    agem 
  543     31    39.5 
1091     55    42.9 
 750      70    47.9 
 528      65    52.8 
 242      36    57.3   
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R commands for binary data:  
fit.binary=glm(chd69~agem, data=wcgs,family=binomial) 
summary(fit.binary) 

We may fit the logistic regression model using the individual binary 
data or by using the grouped data  

R output  (edited): 
   Estimate        Std. Error  z value   Pr(>|z|)     
(Intercept)  -5.9466         0.5616             -10.588                    < 2e-16  
agem           0.0747         0.0116                 6.445                     1.15e-10 
 
   

R commands for grouped data:  
fit.grouped=glm(cbind(chd,no-chd)~agem, data=chd.grouped, family=binomial) 
summary(fit.grouped) 

The two ways of fitting the logistic regression model give the same 
estimates and standard errors: 

(Other parts of the R output will differ, as we will discuss in Lecture 7) 
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