
STK4900/9900  - Lecture 1

Program

1. Introduction
2. Descriptive methods
3. Data and probability models
4. Normal distributions
5. Estimation and confidence intervals
6. Hypothesis testing and P-values
7. Robustness

• Sections 2.1 – 2.3
• Sections 3.1.1 – 3.1.3 and 3.1.7
• Supplementary material 

(cf. your introductory statistics textbook)
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Basic idea
The basic idea for the development and evaluation of most 
methods in statistics is to consider the data as generated by a 
probability model, and judge the variability of the data actually 
observed in relation to data generated from the probability 
model.

Thus one has:

• Actual empirical data, the sample, which is often 
described using  numerical measures such as the mean 
and the standard deviation

• A probability model describing the distribution of the data, 
from which one can infer the distribution of the numerical 
measures used to summarize the empirical observations
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Descriptive methods
Measure the age of 19 mineral samples from the Black Forest in 
Germany using potassium-argon dating

To summarize the data we may compute (e.g.) the 
(empirical) mean, median and standard deviation:

(Formulas for       and  s are given below)x
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The distribution of the data may be illustrated (e.g) by a 
histogram and by the empirical cumulative distribution (ecdf)
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Other summary measures are the first 
quartile (Q1) and the third quartile (Q3)

When we use statistical software (like R) to 
compute the quartiles, the software may 
adopt some interpolations which make the 
values of the quartiles differ somewhat 
from those read directly from the ecdf

A boxplot gives another 
useful graphical display 
for a data set:
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Data

In general we consider observations  x1, … , xn that are either:

• replications of the same measurement (as in the example)

or

• observations on a random sample from some population

Observations may be numerical (as in the example) or categorical
(e.g. gender)

We focus on numerical data in the first part of the course
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Empirical mean and standard deviation for numerical data: 

1

1 n

i
i

x x
n =

= ∑

( )2

1

1

1

n

i
i

s x x
n =

= −
− ∑

The summation sign            means that we should put i = 1,2, …., n
in the expression following the summation sign and add together the                    
n terms thus obtained

1

n

i=∑

200 250 300 350

0.
00

0
0.

00
5

0.
01

0
0.

01
5

density

200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cdf

8

Random variables and distributions
Observations (measurements) can be more or  less variable (precise)

To describe the variability, we consider the data as independent 
replications of a random variable  X,  having a distribution described by a 
probability density f(x) or a cumulative distribution function (cdf)  F(x)

f(x) and F(x) are the theoretical counterparts to the histogram and the 
ecdf, respectively  

Example: Density and cdf for normally distributed random variable with 
(theoretical) mean 275 and standard deviation 25
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It is not possible to predict exactly one realization of  X, but it is 
possible compute the probability that it falls in a certain interval:
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Illustration:

a b a b

In practice statistical tables or statistical software (like R) 
are used to find the probabilities
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Distributions are described by (theoretical) summaries such as

• Mean or expectation: 

• Variance:

• Standard deviation:

(The formulas above apply for a continuously distributed random variable. 
Similar formulas with sums apply for discrete random variables, e.g., counts.)

Properties of expectation and variance:

( ) ( )E a bX a bE X+ = +
( ) ( ) ( )E X Y E X E Y+ = +

2Var( ) Var( )a bX b X+ =
Var( ) Var( ) Var( )X Y X Y+ = + when  X and  Y are independent

Suppose that  x1, … , xn are independent replications of a 
random variable  X  with mean µµµµ and standard deviation σσσσ, then

•

as  n increases
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x µ→

Law of large numbers

It is a common experience that empirical means (i.e. averages) become 
more precise as the number of observations increases

This empirical phenomenon has a mathematical counterpart in the law of 
large numbers:

s σ→One also has that                   as  n increases
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Normal distributions
The normal distributions will play a key role in the first part of the course

A random variable  X is normally distributed with mean  µ and standard 

deviation  σ [short: X ~ ]  if its density takes the form:

2
1 1

( ) exp
22

x
f x

µ
σσ π

 −  = − ⋅  
   

For all normal distributions we have: 

2( , )N µ σ
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If a random variable  Z is normally distributed with mean  µ = 0
and standard deviation  σ = 1 , we say that  Z is standard 
normally distributed, i.e.  Z ~ (0,1)N

1)   If  X ~ ,  then                    ~2( , )N µ σ X
Z

µ
σ
−=

Two important results:

(0,1)N

2)   Suppose that  x1, … , xn are independent replications 
of a random variable  X ~                 , 
[we say that  x1, … , xn is a random sample from the normal 

distribution with mean  µµµµ and standard deviation σσσσ], 
then       ~

2( , )N µ σ

2( , / )x N nµ σ

If the sample size is reasonably large, result 2 holds approximately 
also when  x1, … , xn is a random sample from another 
distribution than the normal  (central limit theorem)
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Estimation

The purpose of an investigation is often to use the data to  
estimate  an unknown quantity      

may be a parameter describing the probability model             
(e.g. the mean µ or the standard deviation σ ), or a function of 
the model parameters (e.g. the coefficient of variation σ/µ )

To be specific, consider the situation where the empirical 
mean       is used to estimate the mean  µ of a distribution

It is then common to write 

In the example with mineral samples, we estimate the age to 
be                             million years 

θ

x

ˆ xµ =

θ

ˆ 276.9xµ = =
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We will only consider estimators that are unbiased, i.e.                   ,
(or that are approximately unbiased) i.e. estimators that give 
(approximately) the correct value "in the long run"

Then the uncertainty of an estimator may be measured by its 

standard error 

ˆ( )E θ θ=

ˆ ˆ( ) Var( )se θ θ=

In general we have an estimator for the unknown   

Note that       is a random variable (since it depends on the data), and 
hence we may consider the expected value and the variance of  

θ̂ θ

θ̂
θ̂

Consider the estimator 

Its standard error is given by 

In practice the standard error has to be estimated by replacing  σ
by the empirical standard deviation  s

In the example with mineral samples, the (estimated) standard 

error becomes                                                million years

ˆ xµ =
( ) /se x nσ=

/ 27.1/ 19 6.2s n = =

Confidence intervals
The typical form of a confidence interval is

where              is the  (estimated) standard error of the estimate                 

In general a confidence interval for an unknown quantity       has the form  
( L , U  ) , where  L and  U are computed from the data.

The confidence coefficient of a confidence interval is the 
probability that the interval contains the unknown quantity:

The confidence interval (*) may more briefly be given as
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θ

1 α−

( ) 1P L Uθ α< < = −

( )ˆ ˆ ˆ ˆ( ) , ( ) (*)c se c seθ θ θ θ− ⋅ + ⋅

ˆ ˆ( )c seθ θ± ⋅

ˆ( )θse



Confidence interval for the mean µµµµ
Suppose that x1, … , xn is a random sample from
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2( , )N µ σ

σσσσ known
and a confidence interval takes the form

c is defined (implicitly) by

One may find  c from a table of the standard normal distribution 
In particular for a 95% CI we have  c = 1.96
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σσσσ unknown

When  σ is unknown (as is usually the case), we may estimate  σ by 
the empirical standard deviation  s

A confidence interval then takes the form:

We now have to use the t-distribution with  n -1 degrees of freedom 
to determine  c

For the example with mineral samples a 95% CI has limits: 

and
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Hypothesis testing
General set-up:

• We want to test the null hypothesis                                                      
versus the (one-sided) alternative hypothesis

• From the observed data we compute a test statistic

• Based on the observed value of the test statistic, can we reject        
(and hence conclude that         is true)?

0 0:H θ θ≤

0H

AH

0:AH θ θ>

This is usually done through the P-value

The P-value is the probability, when  H0 is true, that the test statistic has 
a value equal to or more "extreme" than the one observed

In other words we compute the evidence against H0 (i.e. in favor of HA).
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Test for the mean µµµµ
Suppose that x1, … , xn is a random sample from

We want to test the null hypothesis                         versus the 
alternative 

Again there are two situations:

2( , )N µ σ

0 0:H µ µ≤
0:AH µ µ>

σσσσ known

We reject  H0 for large values of the test statistic

Under  H0 the test statistic is standard normally distributed

That can be used to compute the (one-sided)  P-value:  P = P(Z > z)         
where ~Z (0,1)N
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σσσσ unknown

We reject H0 for large values of the test statistic

Under H0 the test statistic is t-distributed with n -1 degrees of freedom (df) 

That can be used to compute the (one-sided) P-value:  P = P(T > t) 

where  T is t-distributed with  n -1 df.

22

Consider for illustration the example with mineral samples

We want to test the null hypothesis                           versus the 
alternative 

0 : 265H µ ≤
: 265AH µ >

This gives

corresponding to a P-value of 3.6%
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Comparing two groups

Measure bone mineral density (in g/cm2) for rats given isoflavone and 
for rats in a control group:

Question: Does isoflavone have an effect on bone mineral density?

Suppose that the data for the two groups are random samples 
from                     and                      , respectively   

We  estimate                  by the difference in the (empirical) 
means, i.e. by 

Standard error (estimated):

Here

95% confidence interval  for                :
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2
1( , )N µ σ 2

2( , )N µ σ

2 1µ µ−
2 1x x−

2 1µ µ−

where c is the upper 97.5% percentile in the t-distribution
with n1 + n2 - 2 df



In the example the estimated effect of the treatment becomes:

Standard error:

95% confidence interval:

i.e.
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2 1

1 1
( ) 0.0156 0.0057

15 15
se x x− = + =

0.0162 2.05 0.0057± ⋅

0.0162 0.0117±
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We then consider testing the null hypothesis                                      
versus the (two-sided) alternative

Test statistic:

We reject H0 for large values of  

0 1 2:H µ µ=

1 2:AH µ µ≠

| |t

Under H0 the test statistic is t-distributed with n1+ n2 - 2 df

That can be used to compute the (two-sided) P-value:  P = 2 P(T >|t|)

where  T is t-distributed with n1+ n2 - 2 df.

In the example we have

corresponding to a P-value of 0.8%
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Robustness

All statistical methods are based on some assumptions on the 
probability model used

A method is robust if it is valid also when the modeling 
assumptions do not hold

The confidence intervals and tests we have considered 
assume that the observations come from normal distribution(s)

It turns out, however, that the methods are quite robust to the 
normality assumption when the number of observations is 
reasonably large

This is due to the central limit theorem


