
STK4900/9900  - Lecture 3

Program

1. Data structure and basic questions
2. The multiple linear regression model
3. Categorical predictors
4. Planned experiments and observational studies

• Section 2.5
• Sections 4.1, 4.2 (except 4.2.4), 4.3 (except 4.3.4-5)
• Supplementary material on planned experiments and 

uncorrelated predictors 
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Data structure and basic questions

Data have the form:
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Objectives: 

• Study the effect of one predictor while adjusting for 
the effects of the other predictors

• Identify important predictors for an outcome

• Predict the outcome for a new unit where only the values 
of the predictors are available
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Example: We have data on the diameter (in inches 4.5 feet above ground level), 
height (in feet) and volume (in cubic feet) of a sample of 31 trees from a forest in the 
US.  We want to study how the volume of a tree is related to its diameter and height

R-commands:

trees=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/trees.txt",header=T)

plot(trees)
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A scatterplot
matrix gives 
an overview 
of the data
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For the tree data we may fit a simple linear regression model  with 
volume as the outcome using either diameter or height as the covariate 

Height as predictor:

R-commands:
fit.height=lm(volume~height, data=trees)
summary(fit.height)

R-output (edited)

Estimate Std. Error

(Intercept)   -87.12       29.27

height 1.54        0.38

Multiple R-squared: 0.358

Diameter as predictor:

R-commands:
fit.diameter=lm(volume~diameter, data=trees)
summary(fit.diameter)

R-output (edited)

Estimate Std. Error

(Intercept)   -36.94       3.37

diameter         5.07       0.25

Multiple R-squared: 0.935

Diameter accounts for more of the variability in the volumes than height

But we would like to use both covariates  
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Multiple linear regression

Data: 

( | )i i i iy E y ε= +x

Model: 

Here             

The  xji's are considered to be fixed quantities, and the  

εεεεi's are independent error terms  that are assumed to be 
2(0, ) -distributedN εσ

outcome for unit no.iy i=
predictor  (covariate) no.  for unit no.jix j i=

0 1 1 2 2 ....i i p pi ix x xβ β β β ε= + + + + +

1 2( , , ,..., ) 1,...,i i i piy x x x i n=

systematic part
(linear predictor)

random part
(noise)

1 2( , ,..., )i i i pix x x=x
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is the change  in                  for an increase of one unit in the 

covariate         holding all other covariates constant

Also for multiple linear regression do we use the method of least 

squares, i.e.  the estimates                           are obtained as the 

values of                       that  minimize the sum of squares
0 1

ˆ ˆ ˆ, ,...., pβ β β

( ) ( )22
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( | ) ....
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Least squares

Interpretation of regression coefficients

jβ ( | )E y x

jx

The effect of each covariate in a multiple linear regression model is 

adjusted for the effects of  all the other covariates in the model
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For the tree data we may fit a multiple linear regression model with 
volume as the outcome and both diameter and height as predictors 

R-commands:
fit.both=lm(volume~diameter+height, data=trees)
summary(fit.both)

R-output (edited):
Estimate Std. Error t value Pr(>|t|)    

(Intercept)     -57.99           8.64               -6.71          2.75e-07 
diameter          4.71            0.264             17.82         < 2e-16 
height 0.339          0.130               2.61            0.015  

Residual standard error: 3.88 on 28 degrees of freedom
Multiple R-squared: 0.948      

Note that the effects of diameter and height are modified when 
adjusted for the effect of the other
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2
0 1 2 3volume diameter (diameter) heightβ β β β ε= + + + +

The regression model is linear in the parameters jβ

But the model allows for non-linear effects of the covariates

For example we may for the tree data include a quadratic term for 
diameter, i.e. we may consider the model:

R-commands:
fit.both=lm(volume~diameter+I(diameter^2)+height, data=trees)
summary(fit.both)

R-output (edited):

Estimate Std. Error t value Pr(>|t|)    
(Intercept)        -9.92            10.08             -0.98        0.334    
diameter          -2.89              1.310           -2.20        0.036   
I(diameter^2)    0.269             0.046           5.85        3.13e-06 
height 0.376             0.088           4.27        0.00022 

Residual standard error: 2.63 on 27 degrees of freedom
Multiple R-squared: 0.977
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Transformations

Sometimes it may be useful to perform the regression analysis 
based of transformations of the outcome and/or the covariates

The formula for the volume of a cone indicates that the volume of 
a tree is (approximately) proportional to                                      2height (diameter)×

This suggest the linear regression model:

0 1 2log(volume) log(height)+ log(diameter)β β β ε= + +

R-commands:
fit.log=lm(log(volume)~log(height)+log(diameter), data=trees)
summary(fit.log)

R-output (edited):
Estimate Std. Error t value Pr(>|t|)    

(Intercept)    -6.63 0.800   -8.29 5.06e-09 
log(height)     1.12              0.204    5.46 7.81e-06 
log(diameter)  1.98              0.075  26.4  < 2e-16

Residual standard error: 0.117 on 28 degrees of freedom
Multiple R-squared: 0.978
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Fitted values and residuals

Fitted values: 0 1 1 2 2
ˆ ˆ ˆ ˆˆ ....i i i p piy x x xβ β β β= + + + +

Residuals: ˆi i ir y y= −

In a similar manner as for simple linear regression, we have:

Sums of squares

TSS MSS RSS= +Decomposition:

( )2

1

ˆ
n

i
i

MSS y y
=

= −∑

( )2

1

ˆ
n

i i
i

RSS y y
=

= −∑

( )2

1

n

i
i

TSS y y
=

= −∑ (total sum of squares)

(model sum of squares)

(residual sum of squares)
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Coefficient of determination

The coefficient of determination  is given as for simple linear 
regression:

This may be interpreted as the proportion of the total variability in the 
outcomes that is accounted for by the predictors 

The multiple correlation coefficient is given by

One may show that this is the Pearson correlation coefficient between 
the outcomes (    ) and the fitted values (    )

2 1
MSS RSS

R
TSS TSS

= = −

2r R=

iy ˆiy
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Residual standard error

Unbiased estimator of         : 

2
|ˆVar( )

1y

RSS
s

n p
ε = =

− −x

2
εσ

is the residual standard error|ys x

The denominator is

1 ( 1)

number of observation number of 'sj

n p n p

β
− − = − +

= −

This is the residual degrees of freedom (df)
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The variance of        is estimated by  : 
2
|

2 2
ˆˆVar( ) (*)
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x j
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ˆ
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Here                                                  is the sample variance of the  xji's

and         is the multiple correlation coefficient for a multiple linear 

regression where         is regressed on the other predictors in the model    

2 2

1
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=
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Standard error: ˆ ˆˆ( ) Var( )j jse β β=

2
jr

jx

Formula (*) is similar to the one for simple linear regression

The formula shows that               becomes larger if         is 
correlated with the other predictors in the model

ˆ( )jse β jx

Standard error of the estimates
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Hypothesis tests 

Test statistic

/

/( 1)

MSS p
F

RSS n p
=

− −

Consider the null hypothesis that none of the predictors have 
an effect , i.e. the null hypothesis 0 1 2: ... 0pH β β β= = = =

Overall test

We reject  H0 for large values of  F

The test statistic is F-distributed with  p and  n – p –1 df under H0

This is a generalization of the F-test for one-way ANOVA
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It may be of more interest to test  the null hypothesis                       
versus the alternative                         

To this end we may use the test statistic

0 : 0jH β =
: 0A jH β ≠

ˆ

ˆ( )
j

j

t
se

β
β

=

Under H0 the test statistic is t-distributed with  n – p – 1  df

| |tWe reject H0 for large values of  

Test for the effect of a single predictor

Quite often it is not very interesting to test the null hypothesis 
that none of the covariates have an effect

Note that the t-test is the same as for simple linear regression 
(i.e. with only on covariate), except for the degrees of freedom
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Confidence intervals

95% confidence interval for        :jβ

where c is the upper 97.5% percentile in the t-distribution
with n – p – 1 df

ˆ ˆ( )j jc seβ β± ⋅

Note that the confidence interval is the same as for simple linear 
regression, except for the degrees of freedom
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Binary categorical predictors

For the tree example both predictors are numerical 

In general the predictors in a linear regression model may be 
numerical and/or categorical 

However, special care needs to be exercised when using 
categorical predictors 

For ease of presentation, we start out by considering a 
single binary predictor, i.e. a categorical predictor with only 
two levels (female/male, treatment/control, etc)

This corresponds to the situation where we compare two groups

We assume that the data for the two groups are random samples 
from                     and                     , respectively   2

1( , )N εµ σ 2
2( , )N εµ σ

We will reformulate the situation as a regression problem
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Example:

In Lectures 1 and 2 we considered a study of bone mineral density 
(in g/cm2) for rats given isoflavone and for rats in a control group

We then used a t-test and the corresponding confidence interval to 
study the effect of isoflavone

R-output:

Two Sample t-test

data:  treat and cont 

t = 2.844,  df = 28,  p-value = 0.0082

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval:

0.0045    0.0279 

sample estimates:

mean of x mean of y 

0.2351 0.2189 
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1 2 1( ) 1,2,....,i i iy x i nµ µ µ ε= + − ⋅ + =

The observations may be denoted (with n = n1 + n2 ): 

11 2Group 1: , ,...., ny y y

1 11 2Group 2: , ,....,n n ny y y+ +

We introduce the binary covariate

1

1

0 for 1,2,..., (group 1, reference)

1 for 1,..., (group 2)i

i n
x

i n n

=
=  = +

Then we may write

where the εεεεi's are independent error terms that are
2(0, ) -distributedN εσ

This has the form of a simple linear regression model with 

0 1 expected outcome in the reference groupβ µ= =

1 2 1 difference in expected outcomeβ µ µ= − =

First reformulation as a regression problem
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R-commands for bone density example:
bonedensity=
read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/bonedensity.txt",header=T)
bonedensity$group=factor(bonedensity$group)
lm.density=lm(density~group,data=bonedensity)
summary(lm.density)

R-output:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)    0.2189 0.00402  54.34  < 2e-16
group2 0.0162 0.00569   2.844  0.0082 

Residual standard error: 0.0156 on 28 degrees of freedom

Note that we define "group" to be a categorical covariate (or "factor")

The intercept is the mean in group 1 (the reference group)

The estimate for group2 is the difference between the means in the two groups 
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We may write the model as

We introduce the "grand mean" 1 2

2

µ µµ +=

An alternative reformulation as a regression problem

1

2

for in group 1

for in group 2
i

i
i

i
y

i

µ ε
µ ε

+
=  +

Then the model may be reformulated as

1

2

( ) for in group 1

( ) for in group 2
i

i
i

i
y

i

µ µ µ ε
µ µ µ ε

+ − +
=  + − +
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We now introduce the covariate

1

1

1 for 1,2,..., (group 1)

1 for 1,..., (group 2)i

i n
x

i n n

=
= − = +

Then the model may be written

0 grand meanβ µ= =

1 1 deviation from grand mean in group 1β µ µ= − =

1( ) 1,2,....,i i iy x i nµ µ µ ε= + − ⋅ + =

This has the form of a simple linear regression model with 
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R-commands for bone density example:

options(contrasts=c("contr.sum","contr.poly"))
lm.density.sum=lm(density~group,data=bonedensity)

summary(lm.density.sum)

R-output:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.2270 0.00285  79.70  < 2e-16 
group1      -0.0081   0.00285  -2.844  0.0082 

Residual standard error: 0.0156 on 28 degrees of freedom

We get the formulation on the previous slide by using "sum-contrast"

The formulation on slide 19 is denoted "treatment-contrast" and is specified 
by the command:  options(contrasts=c("contr.treatment","contr.poly"))

The intercept estimate is the "grand mean"

The group1 estimate is the difference between the mean in group1 
and the "grand mean"

Treatment-contrast is default in R and we will stick to it in the following. 
But note that other software may use sum-contrast as default 23

Multilevel categorical predictors

We then consider a categorical predictor with  K  levels

This corresponds to the situation where we compare K groups

We will reformulate the situation as a regression problem

1 2, ,...., ny y y

We denote the observations for all groups combined by 

Here the first  n1 observations are from group 1, the next  n2 
observations are from group 2, etc.

We assume that all observations are independent and that the 

observations from group k  are  2( , )-distributedkN εµ σ
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Example:

In Lecture 2 we considered an experiment were 24 rats were 
randomly allocated to four different diets, and the blood coagulation 
time (in seconds) were measured for each animal

We will study the effect of diet on the blood coagulation time

A B C D
60

65
70
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With  K groups we need to introduce  K – 1 predictor variables

1

1 for in group 2

0 otherwisei

i
x


= 


Reformulation as a regression problem

2

1 for in group 3

0 otherwisei

i
x


= 


M

1,

1 for in group 

0 otherwiseK i

i K
x −


= 


Note that all                 for  i in group for 1, which is the reference group  0jix =
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1 2 1 1 3 1 2 1 1,( ) ( ) ... ( )i i i K K i iy x x xµ µ µ µ µ µ µ ε−= + − ⋅ + − ⋅ + + − ⋅ +

Then we may write

where the εεεεi's are independent error terms that are
2(0, ) -distributedN εσ

This has the form of a multiple linear regression model with 

0 1 (expected outcome in the reference group)β µ=

1 1 (difference in expected outcome 

  between group 1 and the reference)
j j

j

β µ µ+

+

= −
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R-commands for blood coagulation example:
rats=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/rats.txt",header=T)

rats$diet=factor(rats$diet)

fit.rats=lm(time~diet,data=rats)

summary(fit.rats)

anova(fit.rats)

R-output (edited):
Estimate Std. Error t value Pr(>|t|)    

(Intercept)      61.00  1.18    51.55  < 2e-16 

diet2                 5.00  1.53     3.27 0.0038 

diet3                 7.00  1.53     4.58 0.0002

diet4                 0.00  1.45 0.00 1.0000    

Residual standard error: 2.366 on 20 degrees of freedom

Multiple R-squared: 0.671,     Adjusted R-squared: 0.621 

F-statistic: 13.57 on 3 and 20 DF,  p-value: 4.66e-05

Analysis of Variance Table

Df Sum Sq Mean Sq F value       Pr(>F)    

diet       3    228    76.0             13.57         4.66e-05

Residuals     20    112     5.6 

We get a more detailed picture than in Lecture 2 28



The methods for multiple linear regression are valid both for planned 
experiments (where the values of the predictors are under the control 
of the experimenter) and observational studies  (where we condition 
on the observed values of the predictors)

But the interpretation of the results is more complicated for 
observational studies, as we will now discuss

We start out by considering the situation with two covariates

Planned experiments and observational studies
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Planned experiment

An experiment has been conducted 
to study how the extraction rate of a 
certain polymer depend on temp-
erature and the amount of catalyst 
used. The extraction rate was 
recorded twice for each of three 
levels of temperatures and three 
levels of the catalyst

Observational study

For 25 brands of cigarettes the content 
of tar, nicotine, and carbon monoxide 
have been measured (details)

We want to study how the amount 
of CO emitted from the cigarette 
smoke depends on the content of 
tar and nicotine
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Estimate Std. Error
(Intercept)       25.39    17.74   
temp  0.475     0.293   

Residual standard error: 10.15
Multiple R-squared: 0.141 

Polymer example

Estimate Std. Error
(Intercept)       -13.61      8.73
cat 112.50 14.42

Residual standard error: 4.99
Multiple R-squared: 0.792 

Estimate Std. Error
(Intercept)       -42.11    7.20
temp 0.475 0.084
cat 112.50 8.44  

Residual standard error: 2.92
Multiple R-squared: 0.933 

Note that:

• The estimates are the same in 
the model with two predictors 
as they are in the simple linear 
regression models with only 
one predictor at a time

• R2 for the model with two 
predictors is the sum of  
R2 -values for the two 
one-predictor models 

• The reason is that the two 
predictors are uncorrelated

31

polymer=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/polymer.txt",header=T)

Estimate Std. Error
(Intercept)        1.66    0.99   
nicotine 12.40     1.05   

Residual standard error: 1.83
Multiple R-squared: 0.857 

Cigarette example

Estimate Std. Error
(Intercept)       2.74      0.68
tar  0.80 0.05

Residual standard error: 1.40
Multiple R-squared: 0.917 

Estimate Std. Error
(Intercept)         3.09    0.84
nicotine -2.65        3.79
tar  0.96 0.24  

Residual standard error: 1.41
Multiple R-squared: 0.919 

Note that:

• When only nicotine is used as 
predictor, it has large effect on CO

• The effect of nicotine disappears 
when adjusted for the effect of tar

• The reason is that the two 
predictors are strongly correlated
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cigarettes=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/cigarettes.txt", 

header=T)



For planned experiments one may choose the values of the predictors 
so that they are uncorrelated. This is also called orthogonality

Orthogonality is a useful property:

• R2 is given as                                      where        is the 
Pearson correlation between predictor j and the outcome

• The estimates        are the same as obtained by fitting a simple 
linear regression for each covariate.

• The standard errors                are typically smaller (cf. slide 13 )

• Therefore, shorter confidence intervals and more precise 
predictions may be obtained

Planned experiments and uncorrelated predictors

ˆ
jβ

2 2 2 2
1 2 ... pR r r r= + + + jr

ˆ( )jse β
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Observational studies and correlated predictors

For observational studies the predictors will be correlated

Then, as illustrated above for two covariates, the effect of one 
covariate may change when other covariates are included in the 
model

Therefore special care has to be exercised when analysing data 
from observational studies

We will have a closer look at this in Lecture 4
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