
STK4900/9900  - Lecture 4

Program

1. Counterfactuals and causal effects

2. Confounding

3. Interaction

4. More on ANOVA

• Sections 4.1, 4.4, 4.6
• Supplementary material on ANOVA
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Example (cf. practical exercise 10)
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Can we conclude that exercise on average decreases the blood 
glucose level with 1.7 mg/dL ? 

Simple linear regression:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  97.36     0.282 345.8         < 2e-16 
exercise -1.693     0.438  -3.87 0.00011

Residual standard error: 9.715 on 2030 degrees of freedom
Multiple R-squared: 0.0073,   Adjusted R-squared: 0.0068 
F-statistic: 14.97 on 1 and 2030 DF,  p-value: 0.00011 
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How does exercise affect 
blood glucose level?

Use the HERS data, 
disregarding women                
with diabetes

3

Problem:
The women who exercise are not a random sample of all women in 
the cohort (as they would have been in a clinical trial), but differ 
from the women who don't exercise, e.g. with respect to age, 
alcohol use, and body mass index (BMI)

Further age, alcohol use, and BMI may influence the glucose level

Illustration for BMI:
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Considering this problem, can anything be said about the 
"causal effect"  of exercise on blood glucose level?  

Counterfactuals and causal effects
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For the general discussion we consider some outcome  
(e.g. glucose level) and we want to see how this is affected 
by a binary predictor, or "exposure",  X1 (e.g. exercise)  
with X1 =1 corresponding to "exposed" and X1 =0 
corresponding to "unexposed"

Suppose (counter to the fact) that we could run an experiment 
in which

• first every individual is exposed (i.e. X1 =1)  and the 
outcome Y1 is observed

• then, turning back the clock,  every individual is unexposed 
(i.e. X1 =0)  and the outcome Y0 is observed

All other characteristics of the individuals are assumed to be 
the same in the two parts of the hypothetical experiment
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In real life, we can not turn back the clock, so one of the two 
experimental outcomes for every individual is an unobserved
counterfactual 

The causal effect  (in a statistical sense ) of the exposure is 
defined as the difference in population means under the two 
parts of the counterfactual experiment:

1 0Causal effect ( ) ( )E Y E Y= −

If the means differ, we say that the exposure is a causal determinant 
of the outcome

A simple model for the counterfactual experiment
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To make the argument simple, we assume that all other 
characteristics of the individuals are captured by a binary 
covariate  X2 which also has a causal effect on the outcome 

Further we assume that the (counterfactual) outcome for 
individual  i when exposed take the form

1 0 1 2 2 1
c c

i i iy xβ β β ε= + + +

while when unexposed it becomes

0 0 2 2 0
c

i i iy xβ β ε= + +
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Then the population means for the two parts of the counterfactual 
experiment become  

1 0 1 2 2 1exposed: ( ) ( )c cE Y E Xβ β β ε= + + +

0 1 2 2( )c cE Xβ β β= + +

0 0 2 2 0unexposed: ( ) ( )cE Y E Xβ β ε= + +

0 2 2( )cE Xβ β= +

In the counterfactual experiment the distribution of  X2  is the same in 
both parts of the experiment, and hence its mean is the same 

Hence the causal effect of the exposure becomes 

1 0Causal effect ( ) ( )E Y E Y= −

{ }0 1 2 2 0 2 2( ) ( )c c cE X E Xβ β β β β= + + − +

1
cβ=

Let                 denote the mean of  X2 among the exposed,      

and let                 denote the mean of X2 among the unexposed

Confounding

8

In reality we cannot observe the counterfactuals

In practice we therefore have to compare the mean values of the 
outcome in two distinct populations, one exposed and one unexposed 

But then there is no guarantee that the mean value of  X2 will be 
the same in the exposed and unexposed populations 

1 2( )E X

We can only observe the outcome for an individual under one of the 
two conditions (exposed/unexposed) 

0 2( )E X
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For the exposed population:

1 0 1 2 1 2( ) ( )c cE Y E Xβ β β= + +

0 0 2 0 2( ) ( )cE Y E Xβ β= +

Thus

{ }1 0 0 1 2 1 2 0 2 0 2( ) ( ) ( ) ( )c c cE Y E Y E X E Xβ β β β β− = + + − +

For the unexposed population:

{ }1 2 1 2 0 2( ) ( )c c E X E Xβ β= + −

If we perform a study where we sample from the exposed and 
unexposed populations, and estimate the difference based on the 
exposed and unexposed samples, we will estimate 

{ }1 2 1 2 0 2( ) ( )c c E X E Xβ β+ −

If the mean value of  X2 differs between the exposed and unexposed 
populations, we will get a biased estimate of the causal effect         1

cβ

We say that the (causal) effect of  X1 is confounded by  X2

In particular this will be the case in an experiment where 
individuals are randomly allocated to exposure/no exposure

No confounding
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If the distribution of  X2 is independent of the level of exposure 
(i.e. X1 = 0,1), then                                 and there will be no 
confounding 

1 2 0 2( ) ( )E X E X=

Conditions for confounding

A covariate  X2 is a confounder for the causal effect of X1
provided that 

• X2 is a causal determinant of the outcome Y 
(or a proxy for such determinants)

• X2 is a causal determinant of X1
(or they share a common causal determinant)
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Confounding patterns

Examples of confounding patterns when X2 is a numerical covariate  

Complete 
confounding

Negative 
confounding

Fig. 4.1 in the book

Consider the situation where all causal determinants other than 
X1 are captured by the binary covariate  X2

Control of confounding
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In general we may use multiple linear regression to correct for a 
number of confounders by including them as covariates in the model 
(assuming that  all relevant confounders are recorded in the data)

In practice this is obtained by fitting the linear model

Then, given the level of X2 (= 0,1), there is no more confounding 
and the causal effect of  X1 may estimated by comparing the 
means of exposed and unexposed within levels of X2

0 1 1 2 2i i i iy x xβ β β ε= + + +

since here        is the effect of one unit's increase in  X1 keeping 
the value of  X2 constant  

1β



Example (contd)
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We now find that exercise on average decreases the blood glucose 
level with 1.0 mg/dL

This should be closer to the causal effect of exercise 

Multiple linear regression:

Estimate Std. Error t value Pr(>|t|)    
(Intercept) 78.96 2.592 30.45       <2e-16 
exercise -0.950 0.429 -2.22        0.0267  
age          0.064 0.03 2.02        0.0431   
drinkany 0.680 0.422 1.61        0.1071    
BMI          0.489 0.042 11.77       <2e-16 

Residual standard error: 9.389 on 2023 degrees of freedom
(4 observations deleted due to missingness)

Multiple R-squared: 0.072,    Adjusted R-squared: 0.070 
F-statistic: 39.22 on 4 and 2023 DF,  p-value: < 2.2e-16

We fit a multiple regression model with blood glucose level as response 
and exercise, age, alcohol use, and body mass index (BMI) as covariates

We have considered the situation where two binary predictors 
X1 and X2  have a causal effect on the outcome 

Interaction for binary covariates
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We could then estimate the (causal) effects by fitting the linear model

0 1 1 2 2i i i iy x xβ β β ε= + + +

Note that we assume that the effect of  X1 is the same for both 
levels of  X2 (and vice versa):  

1 2

0

0 1

0 2

0 1 2

( | )

0 0

1 0

0 1

1 1

X X E y

β
β β
β β
β β β

+
+
+ +

x

If the effect of  X1 depends on the level of  X2 we have an interaction 
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We may then fit a model of the form

0 1 1 2 2 3 1 2i i i i i iy x x x xβ β β β ε= + + + +

The effect for different values of the covariates are then given by:

1 2 1 2

0

0 1

0 2

0 1 2 3

( | )

0 0 0

1 0 0

0 1 0

1 1 1

X X X X E y

β
β β
β β
β β β β

+
+
+ + +

x

Example
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(In the model formula  HT:statin specifies the interaction term "HT*statin")

R commands:

ht.fit=lm(LDL1~HT+statins+HT:statins, data=hers)
summary(ht.fit)

R output (edited):

Estimate Std. Error t value Pr(>|t|)    
(Intercept)      145.157      1.326 109.507      < 2e-16 
HT               -17.73      1.87  -9.477         < 2e-16 
statins -13.81      2.15  -6.416          1.65e-10 
HT:statins 6.24      3.08   2.030           0.0425 

Use the HERS data to study how low-density lipoprotein cholesterol 
after one year (LDL1) depends on hormone therapy (HT) and statin
use (both binary)

The effect of HT seems to be lower among statin users
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Estimate Std. Error t value Pr(>|t|)    
(Intercept)      145.157      1.326 109.507      < 2e-16 
HT               -17.73      1.87  -9.477         < 2e-16 
statins -13.81      2.15  -6.416          1.65e-10 
HT:statins 6.24      3.08   2.030            0.0425 

HT reduces LDL cholesterol for non-users of statins by 17.7 mg/dl

For users of statins the estimated reduction is  17.7 - 6.2 = 11.5 mg/dl

R commands:

library(contrast)
par1= list(HT=1,statins=1)    # specify one set of values of the covariates
par2= list(HT=0,statins=1)    # specify another set of values of the covariates
contrast(ht.fit, par1,par2)      # compute the difference between the two sets

R output (edited):

Contrast S.E.     Lower Upper t   df Pr(>|t|)
-11.48 2.44 -16.27 -6.69 -4.7 2604        0

To obtain the uncertainty, we use the "contrast" library

We now consider the situation where  X1 is a binary predictor 
and X2  is numerical 

Interaction for one binary and one numerical covariate
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As an illustration we consider the HERS data, and we will see how 
baseline LDL cholesterol depends on statin use ( X1 )  and BMI ( X2 ) 

0 1 1 2 2i i i iy x xβ β β ε= + + +

assumes that the effect of BMI is the same for statin users and 
those who don't use statins

The model

It may be of interest to consider a model where the effect of BMI 
may differ between statin users and those who don't use statins, 
i.e. where there is an interaction
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0 1 1 2 2 3 1 2i i i i i iy x x x xβ β β β ε= + + + +

We then consider the model 

This is a model with different intercepts and different slopes for the 
numerical covariate depending on the value of the binary covariate

Note that the model may be written

0 2 2 1

0 1 2 3 2 1

when   0

( ) when   1
i i i

i
i i i

x x
y

x x

β β ε
β β β β ε

+ + =
=  + + + + =

When considering such a model, it is useful to center the numeric 
covariate (by subtracting its mean) to ease interpretation
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In the example, we let X2 correspond to the centered BMI-values, 
denoted cBMI

R commands:

hers$cBMI=hers$BMI - mean(hers$BMI[!is.na(hers$BMI)])
stat.fit=lm(LDL~statins+cBMI+statins:cBMI,data=hers)
summary(stat.fit)
par1=list(statins=1,cBMI=1)
par2=list(statins=1,cBMI=0)
contrast(stat.fit,par1,par2)  

R output (edited): 

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  151.09     0.881 171.58  < 2e-16 
statins -16.72     1.463             -11.43  < 2e-16 
cBMI 0.640     0.156   4.09 4.41e-05 
statins:cBMI -0.721     0.269  -2.68  0.0075 

Contrast S.E.       Lower Upper t         df Pr(>|t|)
-0.081 0.219      -0.511       0.349    -0.37   2743    0.712 



We finally consider the situation  where X1 and X2  are both 
numerical  

Interaction for two numerical covariates
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0 1 1 2 2 3 1 2i i i i i iy x x x xβ β β β ε= + + + +

A model with interaction is then given by

For such a model, it is useful to center the covariates

But even then the interpretation of the estimates is a bit complicated

We may here introduce the covariates:

Two-way ANOVA

220 1 1 2 2 3 1 2i i i i i iy x x x xβ β β β ε= + + + +

Then a regression model with interaction takes the form (cf slide 15)

Consider the situation where the outcome  yi for an individual 
depends on two factors,  A  and  B, each with two levels, denoted 
a1, a2 and  b1, b2

One such example is how LDL cholesterol depends on HT (with levels 
"placebo" and "hormone therapy") and statin use (with levels "no" and 
"yes");  cf. slide 16 

1
1

2

0 if individ  has level a  for factor A (reference)

1 if individ  has level a  for factor A i

i
x

i


= 


1
2

2

0 if individ  has level b  for factor B (reference)

1 if individ  has level b  for factor B i

i
x

i


= 

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0 1 1 2 2 3 3 4 1 2 5 1 3 (*)i i i i i i i i iy x x x x x x xβ β β β β β ε= + + + + + +

A model with interaction then takes the form

If (e.g.) factor  B has three levels b1, b2 , b3, we need to introduce 
two x's for this factor (cf slide 26 of Lecture 3):

2
2

1 if individ  has level b  for factor B

0 otherwise i

i
x


= 


3
3

1 if individ  has level b  for factor B

0 otherwise i

i
x


= 


It becomes quite complicated to write the model like this, so it is 
common to use an alternative formulation
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We have the following relations between the parameters in 
model (*) and model (**)

In order to rewrite model (*), we denote the outcomes 
for level aj of factor  A  and level  bk of factor  B  by

for 1,...,ijk jky i n=

We may then rewrite model (*) as

( ) (**)ijk j k jk ijky µ α β αβ ε= + + + +

0 1 2 3 4 5

2 2 3 22 23

(*)

(**) ( ) ( )

β β β β β β
µ α β β αβ αβ

We recapitulate:

0 1 1 2 2 3 3 4 1 2 5 1 3 (*)i i i i i i i i iy x x x x x x xβ β β β β β ε= + + + + + +

In model (**) the parameters for the reference levels are 0 :

1 1 11 12 13 21( ) ( ) ( ) ( ) 0α β αβ αβ αβ αβ= = = = = =
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Note that the model formulation 

( ) (**)ijk j k jk ijky µ α β αβ ε= + + + +

works equally well when factor  A  has J  levels and 
factor  B has K  levels, while the formulation (*) would 
become much more complicated

In Lecture 3 (cf. slide 30), we considered a study of how the 
extraction rate of a certain polymer depends on temperature 
and the amount of catalyst used. 

We there assumed a linear effect of 
temperature and the amount of catalyst  

We will here consider temperature and 
catalyst as factors, each with three levels
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R commands:
polymer=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/polymer.txt",header=T)

polymer$ftemp=factor(polymer$temp)
polymer$fcat=factor(polymer$cat)
fit=lm(rate~ftemp+fcat+ftemp:fcat,data=polymer)
summary(fit)

R output:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)      39.5      1.23  32.25 1.30e-10 
ftemp60            4.0      1.73   2.31  0.046 
ftemp70            6.0      1.73   3.46  0.007  
fcat0.6            6.5      1.73   3.75  0.005  
fcat0.7           18.5      1.73  10.68 2.06e-06 
ftemp60:fcat0.6   6.5      2.45   2.65  0.026  
ftemp70:fcat0.6       6.0      2.45   2.45  0.037  
ftemp60:fcat0.7       7.5     2.45   3.06  0.014
ftemp70:fcat0.7       4.5      2.45   1.84           0.099  

Residual standard error: 1.73 on 9 degrees of freedom
Multiple R-squared: 0.986,     Adjusted R-squared: 0.973 
F-statistic: 78.78 on 8 and 9 DF,  p-value: 2.012e-07 
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In a planned experiment we can make sure that we have the same 
number of observations for all the J x K combinations of levels of factor 
A and factor B

We then have a balanced design, and the total sum of squares (TSS) 
may be uniquely decomposed as a sum of squares for each of the two 
factors (SSA, SSB), a sum of squares for interaction (SSAB), and a 
residual sum of squares (RSS):

TSS SSA SSB SSAB RSS= + + +

To each of these sum of squares there correspond a degree of freedom 
as given in the ANOVA table on the next slide

NB! If the design is not balanced, the decomposition of the 
total sum of squares is not unique
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The result of a two-way ANOVA may be summarized in the table

Source           df        Sum of           Mean sum               F statistics           

                                 squares          of squares                                                       

/( 1)
Factor A    1 /( 1)

/( )

/( 1)
Factor B     1 /( 1)

/( )

/( 1)( 1)
Interaction      ( 1)( 1) /( 1)( 1)

/( )

Residual     /(

SSA J
J SSA SSA J F

RSS n JK

SSB K
K SSB SSB K F

RSS n JK

SSAB J K
J K SSAB SSAB J K F

RSS n JK

n JK RSS RSS n

−− − =
−

−− − =
−
− −− − − − =

−
− − )

Total           1          

JK

n TSS−

0 : all ( ) 0 (no interaction)jkH αβ =

The F-statistics (with their appropriate degrees of freedom) may 
be used to test the following null hypotheses:

0 : all 0 (no main effect of A)jH α =

0 : all 0 (no main effect of B)kH β =
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R commands:

anova(fit)

R output:

Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)    

ftemp 2  332.11  166.06  55.35 8.76e-06

fcat 2 1520.11  760.06 253.35 1.23e-08 

ftemp:fcat 4   38.56    9.64   3.213   0.067   

Residuals 9   27.00    3.00  

For the example:

Higher level ANOVA
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Consider for illustration the situation with three factors,  A, B, and  C.

Data:

Model with interaction:

( ) ( ) ( ) ( )ijkl j k l jk jl kl jkl ijkly µ α β γ αβ αγ βγ αβγ ε= + + + + + + + +

j

k

observation number    for level a  of factor A, 
level b  of factor B, and level c  of factor C

ijkl

l

y i=
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The result of a three-way ANOVA may be summarized in the table

Source           df *        Sum of           Mean sum              F statistics           

                                 squares          of squares                                                       

Factor A    /

Factor B     /

Factor C     /

Interaction AB      /

Interaction AC      /

Interaction BC      /

Interaction ABC      

A

B

C

AB

AC

BC

SSA SSA df F

SSB SSB df F

SSC SSC df F

SSAB SSAB df F

SSAC SSAC df F

SSBC SSBC df F

SSAB /

Residual     /

Total           1     

*) can be found on computer output     

ABCC SSABC df F

RSS RSS df

n TSS−

The decomposition of the total sum of squares is unique if the 
design is balanced

Hypothesis testing is similar to two-way ANOVA


