
STK4900/9900  - Lecture 5

Program

1. Checking model assumptions
• Linearity
• Equal variances 
• Normality
• Influential observations
• Importance of model assumptions

2. Selection of predictors
• Forward and backward selection

• Criteria for selecting predictors

• Section 4.7
• Chapter 5: only some main points

1

Assumptions for linear regression
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Model: i i iy η ε= +

0 1 1 2 2 ....i i i p pix x xη β β β β= + + + +

systematic part random part (error)

(1) Linearity:

2Var( ) for all  i iεε σ=(2) Constant variance (homoscedasticity):

(4) Uncorrelated errors:

2(0, )i N εε σ(3) Normally distributed errors:

Cov( , ) 0 for all  i j i jε ε = ≠

~

We will here focus on the three first assumptions and return 
to the 4th in the second part of the course
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Fitted values and residuals

Fitted values: 0 1 1 2 2
ˆ ˆ ˆ ˆˆ ....i i i p piy x x xβ β β β= + + + +

Residuals: ˆi i ir y y= −

Diagnostic – plots of the residuals

Plots of the residuals may be used to check:

(3)  Normal errors (including outliers)

(2)   Constant variance

(1)   Linearity
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(1) Check of linearity

Assume that the correct form of the systematic part of the model is

0 1 1 1 1, 1 1,... .. .( .)i i j j i j j ii pj pijfx x x xxη β β β β β− − + += + + + + + +

i.e. the model is linear in all predictors, except possibly for the j-th

We may the estimate the function             based on a plot of the 

partial residuals                    versus the values of the predictor (     )

In the text book the plot is denoted a component-plus-residual plot 

(CPR plot) 

( )jf x
ˆ

j ji ix rβ + jix

To obtain a CPR plot in R, we have to use the  "car"  library
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Example: tree data 

trees=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/trees.txt",header=T)
fit.both=lm(volume~diameter+height, data=trees)
library(car)   
crPlots(fit.both, terms=~diameter)

We fit a model with volume as outcome and diameter and height as 
predictors, and make a CPR plot for diameter:

The plot indicates that a second degree polynomial may be more appropriate
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Component + Residual Plot
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We fit a model that also has a second degree term for diameter, and 
make a CPR plots for diameter and diameter^2
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Component + Residual Plots

fit.sq=lm(volume~diameter+I(diameter^2)+height, data=trees)
crPlots(fit.sq, terms=~diameter+I(diameter^2))

The plots indicate that the linearity assumption is reasonable both for 
diameter and diameter^2   (i.e. linearity in the parameters) 
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(2) Check of constant variance (homoscedasticity)

If the model is correctly specified, there should by no systematic 
patterns in the residuals 

A plot of the residuals versus the fitted (or predicted) values may be 
used to check the assumption of equal variances

If the variances increase with the expected outcome, the plot will 
have a fan like shape (like the right hand plot below)

8

Example: tree data
We fit a model with volume as outcome and diameter, diameter^2, and 
height as predictors, and plot the residuals versus the fitted values

fit.sq=lm(volume~diameter+I(diameter^2)+height, data=trees)
plot(fit.sq$fit, fit.sq$res, xlab="Fitted values", ylab="Residuals")
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The plot is quite reasonable, but there may be some indication of 
increasing variances
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lm(volume ~ diameter + I(diameter^2) + height)

Residuals vs Fitted
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lm(volume ~ diameter + I(diameter^2) + height)

Scale-Location
1718 30

plot(fit.sq,1) plot(fit.sq,3)

The added line helps to see if there 
is a pattern in the residuals (which 
may be due to non-linearities)

The added line helps to see if the 
variance (or standard deviation)   
is increasing

The fitted lines may not be trusted where there is little data (i.e. 
in the right-hand part of the plots above) 10

• Histogram of residuals

• Boxplot of residuals

• Normal Q-Q plot of residuals

(3) Check of normality

If the model is correctly specified, the residuals should behave as a 
sample from a normal distribution with mean zero

Various plots may be made to check this:
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Example: tree data

We fit a model with volume as outcome and diameter, diameter^2, and 
height as predictors, and make different plots of  the residuals
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hist(fit.sq$res)

boxplot(fit.sq$res)

qqnorm(fit.sq$res); qqline(fit.sq$res)

Alternative:   plot(fit.sq,2)

The Q-Q plot should be close to a 
straight line if the residuals are 
normally distributed
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Influential observations

Consider the erosion example:

Least squares fit: Least squares fit without 
the last observation: 
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Least squares fit without 
the 4th observation: 

The last observation has a larger influence on the slope estimate than 
the 4th observation
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A measure for the influence of an observation is the change in the 
estimate(s) when the model is fitted leaving out the observation

These  "dfbetas"  are easily computed in R:

R-commands:
fit=lm(erosion~water)
summary(fit)
dfbeta(fit)   # dfbetas

R-output (edited):
Estimate Std. Error

(Intercept)     0.4061     0.4454     
water             1.3900     0.2096    

(Intercept)        water
1 -0.0164         0.0059
2  0.2066        -0.0596
3  0.0089        -0.0018
4 -0.0362        -0.1093
5 -0.4386         0.4511

The command
"dfbetas(fit)"
gives standardized
dfbetas that may be 
more appropriate for 
multiple linear 
regression when the
predictors are on
different scales
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cigarettes=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/cigarettes.txt",  

header=T)

fit.cig=lm(CO~nicotine+tar,data=cigarettes)

boxplot(dfbeta(fit.cig))

boxplot(dfbetas(fit.cig))

Boxplots of dfbetas (left) and standardized dfbetas (right) for the 
cigarette data (omitting the intercept, which usually is of less interest)
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It may be useful to inspect observations that have a large influence 
on the estimates 
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R-commands for the the j-th estimate (with j=2, i.e. nicotine)

fit=lm(CO~nicotine+tar,data=cigarettes)

db=dfbeta(fit)

j=2

boxplot(db[,j])

identify(rep(1,dim(db)[1]),db[,j], labels=cigarettes$brand)

We may use the identify-command to find the cigarette brands that 
have a large influence on the estimates (for one estimate at a time)
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The importance of model assumptions

Without linearity of the predictors we have a wrong specification of the 

systematic part of the model:

• The effect of a predictor may be wrongly estimated

• A predictor may be important, but we do not know

• Serious nonlinearity jeopardizes the analysis

If the variances are not equal (and/or the errors are correlated):

• The estimates of the          will be unbiased

• The standard errors are wrongly estimated

• Confidence intervals and P-values are flawed

'sjβ
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If the errors are not normal – but the other model assumptions are 

true:

• Estimates of standard errors are valid

• Test statistics are not exactly t- and F-distributed, but for 
large n they are approximately so

• The distributional assumptions are not critical

A few influential observations may, however,  have large effects 

on the estimates. How these are treated may be critical for the 

conclusions on the relations between covariates and response
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Model misfit and possible improvements

Non-linearity:

• Transform        ,  e.g.   

• Transform       ,  e.g.   

• Include second order term(s) and/or interaction(s)

Heteroscedasticity:

• Transform       ,  typically log-transform   

• (More advanced: use weighted least-squares or a 
generalized linear model)

jix log( )jix

iy log( )iy

iy
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Non-normality:

• Transform       ,  e.g.   

• For large n the problem can be ignored

Influential observations:

• Check the coding of the observations

• Run the regression without the influential observations

How different are the estimates?

iy log( )iy
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Selection of predictors

When there are a number of predictors, a choice has to be made on 
which ones to include in a regression model

• a simple model

• with good empirical fit

These two aims may be conflicting and the trade-off  between them 
may depend on the objectives of the study

In general we would like to have

Possible objectives: 

• Study the effect of one predictor while adjusting for the effects of 
the other predictors (the predictor of main interest should always 
be included in the model)

• Identify important predictors for an outcome

• Predict the outcome for a new unit where only the values 
of the predictors are available
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Sub-models

Consider a model with p possible predictors: 

• For p = 10  there are                     different sub-models

• For p = 20 there are                    different sub-models

There are        possible ways to make a sub-model         
(i.e. a model with some of the predictors)

For each numeric covariate one may also include e.g. a quadratic term

Further one may take interactions into account

Except for small values of  p  it is not feasible to investigate all possible 
sub-models

We need strategies for deciding which sub-models to consider

0 1 1 2 2( | ) ....i i i i p piE y x x xβ β β β= + + + +x

2p

2 1024p =
62 10p ≈
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Forward selection:

1.   Fit all p models with only one predictor

Since predictors that have been included on an earlier stage need not 
continue to be important later on, step 4 can be supplemented with 
deletion of predictors that no longer contribute (stepwise regression)

2.   Chose the predictor that "contributes most"

3.   Run  p - 1 regressions with this predictor and another one

4.   Choose the model that "fits" best

5.   Continue adding predictors until "no improvement"
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Backward selection:

1.    Fit the model with all p predictors

2. Compare the model with all predictors with the p different models 
where one predictor has been left out

3.   Leave out the "least important" predictor

4. Compare the model now obtained with the p -1 different models 
where one more predictor has been left out

5.    Leave out the "least important" predictor

6.     Continue in this way until a model is obtained that only contains 
"important" predictors
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When using forward or backward selection, one needs a criterion 
for when to include/exclude a predictor

Different criteria may be used, and the choice between them may 
depend on the objectives of the study

Some possibilities:
• P-values
• adjusted R2

• cross-validated R2

Criteria for inclusion / exclusion
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P-values

Forward selection: 

• include at each step the most significant predictor (lowest P-value) 

Need to decide a cut-off for when to include/exclude a predictor

Often 5% is used, but the text book recommends a more liberal 
cut-off (combined with backward selection) when the aim is to 
correct for possible confounders

Backward selection: 

• exclude at each step the least significant predictor (largest P-value) 

P-values are mainly used when  the objective is either
• to study the effect of one predictor while adjusting for the effects 

of the other predictors
• to identify important predictors for an outcome
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measures the proportion of the total variability in the outcomes that 
is accounted for by the predictors in the model

The coefficient of determination

2 1
MSS RSS

R
TSS TSS

= = −

It could be tempting to choose the model with the largest R2

But then we would end up with a model including all predictors

Ordinary R2
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Example of R2 from 
practical exercise 14.e

Maximum for the largest model
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The adjusted R2

penalizes including more predictors

2
adj

/( 1)
1

/( 1)

RSS n p
R

TSS n

− −= −
−

The adjusted R2 will have a maximum over the different models 
considered, and it may therefore be used to select predictors

Example of adjusted R2

from practical exercise 14.e
(dashed line)
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Maximum for model 5
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Cross validation

A drawback with R2  and adjusted R2 is that the observations are 
used twice:

Idea:

• estimate the  'sjβ
• evaluate the predictions of the        :   'siy

0 1 1 2 2
ˆ ˆ ˆ ˆˆ ....i i i p piy x x xβ β β β= + + + +

• Estimate the regression model without using the observation    iy

• Predict         using the obtained estimates

Denote this prediction  
iy

( )ˆ i
iy −
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Cross validated R2

The cross-validated R2 will have a maximum over the different 
models considered, and it may therefore be used to select predictors

( ) 2
2 1
cv 2

1

ˆ( )
1

( )

n i
i ii

n

ii

y y
R

y y

−
=

=

−
= −

−
∑

∑

We have described "leave-one-out" cross validation. 
Alternative versions of cross-validation exist, e.g. 10-fold cross validation
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Example of crossvalidated R2

from practical exercise 14.e
(dotted line)

Maximum for model 5, which is the 
same as for the adjusted R2

But often the cross-validated R2 will give 
smaller models than the adjusted R2


