
STK4900/9900  -   Lecture 5 
 
Program 
 

1.  Checking model assumptions 
•  Linearity 
•  Equal variances  
•  Normality 
•  Influential observations 
•  Importance of model assumptions 

2.  Selection of predictors 
•  Forward and backward selection 
•  Criteria for selecting predictors 

 
•  Section 4.7 
•  Chapter 5: only some main points 
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Assumptions for linear regression 
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Model: i i iy η ε= +

0 1 1 2 2 ....i i i p pix x xη β β β β= + + + +

systematic part random part (error) 

(1) Linearity: 

2Var( ) for all  i iεε σ=(2) Constant variance (homoscedasticity): 

(4) Uncorrelated errors: 

2(0, )i N εε σ(3) Normally distributed errors: 

Cov( , ) 0 for all  i j i jε ε = ≠

~ 

We will here focus on the three first assumptions and return 
to the 4th in the second part of the course 
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Fitted values and residuals 

Fitted values: 0 1 1 2 2
ˆ ˆ ˆ ˆˆ ....i i i p piy x x xβ β β β= + + + +

Residuals: ˆi i ir y y= −

Diagnostic – plots of the residuals 

Plots of the residuals may be used to check: 

(3)  Normal errors (including outliers) 

(2)   Constant variance 

(1)   Linearity 
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(1) Check of linearity 

Assume that the correct form of the systematic part of the model is 

0 1 1 1 1, 1 1,... .. .( .)i i j j i j j ii pj pijfx x x xxη β β β β β− − + += + + + + + +

i.e. the model is linear in all predictors, except possibly for the j-th  

We may the estimate the function             based on a plot of the 
partial residuals                    versus the values of the predictor (     ) 
 

In the text book the plot is denoted a component-plus-residual plot 
(CPR plot)  

( )jf x
ˆ
j ji ix rβ + jix

To obtain a CPR plot in R, we have to use the  "car"  library 
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Example: tree data  

trees=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/trees.txt",header=T) 
fit.both=lm(volume~diameter+height, data=trees) 
library(car)    
crPlots(fit.both, terms=~diameter) 

We fit a model with volume as outcome and diameter and height as 
predictors, and make a CPR plot for diameter: 

The plot indicates that a second degree polynomial may be more appropriate 
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We fit a model that also has a second degree term for diameter, and 
make a CPR plots for diameter and diameter^2 
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Component + Residual Plots

fit.sq=lm(volume~diameter+I(diameter^2)+height, data=trees) 
crPlots(fit.sq, terms=~diameter+I(diameter^2)) 

The plots indicate that the linearity assumption is reasonable both for 
diameter and diameter^2   (i.e. linearity in the parameters)  
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(2) Check of constant variance (homoscedasticity) 
If the model is correctly specified, there should by no systematic 
patterns in the residuals  

A plot of the residuals versus the fitted (or predicted) values may be 
used to check the assumption of equal variances 

If the variances increase with the expected outcome, the plot will 
have a fan like shape (like the right hand plot below) 
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Example: tree data 
We fit a model with volume as outcome and diameter, diameter^2, and 
height as predictors, and plot the residuals versus the fitted values 

fit.sq=lm(volume~diameter+I(diameter^2)+height, data=trees) 
plot(fit.sq$fit, fit.sq$res, xlab="Fitted values", ylab="Residuals") 
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The plot is quite reasonable, but there may be some indication of 
increasing variances 
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lm(volume ~ diameter + I(diameter^2) + height)
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lm(volume ~ diameter + I(diameter^2) + height)
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plot(fit.sq,1) plot(fit.sq,3) 

The added line helps to see if there 
is a pattern in the residuals (which 
may be due to non-linearities) 

The added line helps to see if the 
variance (or standard deviation)   
is increasing 

The fitted lines may not be trusted where there is little data (i.e. 
in the right-hand part of the plots above) 



10	  

•    Histogram of residuals 

•    Boxplot of residuals 

•    Normal Q-Q plot of residuals 

(3) Check of normality 

If the model is correctly specified, the residuals should behave as a 
sample from a normal distribution with mean zero 

Various plots may be made to check this: 
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Example: tree data 
We fit a model with volume as outcome and diameter, diameter^2, and 
height as predictors, and make different plots of  the residuals 
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hist(fit.sq$res)	  
boxplot(fit.sq$res)	  
qqnorm(fit.sq$res);	  qqline(fit.sq$res)	  
AlternaBve:	  	  	  plot(fit.sq,2)	  

The Q-Q plot should be close to a 
straight line if the residuals are 
normally distributed 
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Influential observations 
Consider the erosion example: 

Least squares fit:  Least squares fit without 
the last observation:  
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Least squares fit without 
the 4th observation:  

The last observation has a larger influence on the slope estimate than 
the 4th observation 
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A measure for the influence of an observation is the change in the 
estimate(s) when the model is fitted leaving out the observation 
 
These  "dfbetas"  are easily computed in R: 

R-commands: 
fit=lm(erosion~water) 
summary(fit) 
dfbeta(fit)   # dfbetas 
 

R-output (edited): 
           Estimate  Std. Error     
(Intercept)     0.4061      0.4454      
water             1.3900      0.2096     
 
 
(Intercept)        water 
1 -0.0164         0.0059 
2  0.2066        -0.0596 
3  0.0089        -0.0018 
4 -0.0362        -0.1093 
5 -0.4386         0.4511 

The command  
"dfbetas(fit)" 
gives standardized 
dfbetas that may be 
more appropriate for 
multiple linear 
regression when the 
predictors are on 
different scales  
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cigareHes=read.table("hHp://www.uio.no/studier/emner/matnat/math/STK4900/v11/
cigareHes.txt",	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  header=T)	  
fit.cig=lm(CO~nicoBne+tar,data=cigareHes)	  
boxplot(dVeta(fit.cig))	  
boxplot(dVetas(fit.cig))	  

Boxplots of dfbetas (left) and standardized dfbetas (right) for the 
cigarette data (omitting the intercept, which usually is of less interest) 

It may be useful to inspect observations that have a large influence 
on the estimates  
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The importance of model assumptions 

Without linearity of the predictors we have a wrong specification of the 
systematic part of the model: 

•    The effect of a predictor may be wrongly estimated 
•     A predictor may be important, but we do not know 
•     Serious nonlinearity jeopardizes the analysis 
 
If the variances are not equal (and/or the errors are correlated): 

•    The estimates of the          will be unbiased 
•    The standard errors are wrongly estimated 
•    Confidence intervals and P-values are flawed 
•    Actually this problem is more serious for correlated data 
 

'sjβ
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If the errors are not normal – but the other model assumptions are 
true: 

•     Estimates of standard errors are valid 

•     Test statistics are not exactly t- and F-distributed, but for  
      large n they are approximately so 

•     The distributional assumptions are not critical 
 
A few influential observations may, however,  have large effects 
on the estimates. How these are treated may be critical for the 
conclusions on the relations between covariates and response 
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Model misfit and possible improvements 

Non-linearity: 

•    Transform        ,  e.g.    
•     Transform       ,  e.g.    
•     Include second order term(s) and/or interaction(s 
•     GAM (Generalized additive models, 4.10.1, more on slide 20-23) 
 
Heteroscedasticity: 

•    Transform       ,  typically log-transform    
•    (More advanced: use weighted least-squares or a  
     generalized linear model) 

jix log( )jix
iy log( )iy

iy
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Non-normality: 

•    Transform       ,  e.g.    

•    Bootstrap 
•    For large n  the problem can be ignored 
 
Influential observations: 

•    Check the coding of the observations 
•    Run the regression without the influential observations 
    How different are the estimates? 
 
  

iy log( )iy
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Generalized additive models (GAM) 
Similarly to CPR-plots we can extend the linear model 
 
 
by assuming a general functional dependency on the covariates 
 
 
 

Thus the terms           are replaced by functions             . 
 

These functions are assumed to being smooth (continuous and 
having derivatives) 
 
Loading the library gam in R allows for actually estimating and 
plotting these functions. 
 
It is also possible to estimate confidence intervals for the estimated 
curves and testing whether there is a significant non-linearity in the 
models. 

0 1 1 2 2 ....i i i p pix x xη β β β β= + + + +

0 1 1 2 2( ) ( ) .... ( )i i i p pif x f x f xη β= + + + +

j jixβ ( )j jif x
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Example GAM: tree data  

library(gam) 
fit.gam.both=gam(volume~s(diameter)+s(height), data=trees) 
par(mfrow=c(1,2)) 
plot(fit.gam.both,se=T) 

We fit a model with volume as outcome depending on smooth 
functions of diameter and height: 
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Example GAM: tree data (contd)  
The functional dependency is specified by writing s(diameter) and 
s(height) in the model fitting statement. We could (for instance) force 
the dependency on height to be linear by instead writing  
fit.gam.both=gam(volume~s(diameter)+height, data=trees) 

We obtain confidence interval by specifying se=T in the plot 
command 
 
Here we are not able to force a straight line within the confidence 
limits for the diameter-function. This indicates that there is a 
significant non-linearity for this variable. 
 
It is, however, possible to let a straight line go through the intervals 
for height. This indicates that there is no important non-linearity for 
this variable. 
 
We can test this more carefully, next slide.   
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Example GAM: tree data (contd)  
The functional dependency is specified by writing s(diameter) and 
s(height) in the model fitting statement. We could (for instance) force 
the dependency on height to be linear by writing s(diameter)+height 
 

Then non-linearities can be tested with standard F-tests: 

fit.gam.dia=gam(volume~s(diameter)+height, data=trees) 
anova(fit.both,fit.gam.dia,fit.gam.both) 
Analysis of Variance Table 
 
Model 1: volume ~ diameter + height 
Model 2: volume ~ s(diameter) + height 
Model 3: volume ~ s(diameter) + s(height) 
  Res.Df      RSS     Df        Sum of Sq         F        Pr(>F)     
1     28     421.92                                        
2     25     180.56   3.0000        241.36    10.13     0.00021  
3     22     174.73   3.0002            5.84      0.24     0.86403 

The non-linearity for diameter is clearly significant, 
there is no reason to include a non-linear term for heigth.   
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Selection of predictors 
When there are a number of predictors, a choice has to be made on 
which ones to include in a regression model 

•    a simple model 
•    with good empirical fit 

These two aims may be conflicting and the trade-off  between them 
may depend on the objectives of the study 

In general we would like to have 

Possible objectives:  
•   Study the effect of one predictor while adjusting for the effects of  
   the other predictors (the predictor of main interest should always  
   be included in the model) 
•   Identify important predictors for an outcome 
•   Predict the outcome for a new unit where only the values  
   of the predictors are available 
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Sub-models 
Consider a model with p possible predictors:  

•    For p = 10  there are                     different sub-models 

•    For p = 20 there are                    different sub-models 

 There are        possible ways to make a sub-model         
(i.e. a model with some of the predictors) 

For each numeric covariate one may also include e.g. a quadratic term 
 
Further one may take interactions into account 
 
Except for small values of  p  it is not feasible to investigate all possible 
sub-models 
 
We need strategies for deciding which sub-models to consider 

0 1 1 2 2( | ) ....i i i i p piE y x x xβ β β β= + + + +x

2 p

2 1024p =
62 10p ≈
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Forward selection: 

1.   Fit all p models with only one predictor 

Since predictors that have been included on an earlier stage need not 
continue to be important later on, step 4 can be supplemented with 
deletion of predictors that no longer contribute (stepwise regression) 

2.   Chose the predictor that "contributes most" 

3.   Run  p - 1 regressions with this predictor and another one 

4.   Choose the model that "fits" best 

5.   Continue adding predictors until "no improvement" 
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Backward selection: 

1.    Fit the model with all p predictors 

2.  Compare the model with all predictors with the p different models  
       where one predictor has been left out 

3.   Leave out the "least important" predictor 

4.  Compare the model now obtained with the p -1 different models  
       where one more predictor has been left out 

5.    Leave out the "least important" predictor 

6.     Continue in this way until a model is obtained that only contains 
"important" predictors 
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When using forward or backward selection, one needs a criterion 
for when to include/exclude a predictor 
 

Different criteria may be used, and the choice between them may 
depend on the objectives of the study 
 
 

Some possibilities: 
•   P-values 
•   adjusted R2 

•   cross-validated R2 
 

 

Criteria for inclusion / exclusion 
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P-values 

Forward selection:  

•    include at each step the most significant predictor (lowest P-value)  

Need to decide a cut-off for when to include/exclude a predictor 

Often 5% is used, but the text book recommends a more liberal 
cut-off (combined with backward selection) when the aim is to 
correct for possible confounders 

Backward selection:  

•    exclude at each step the least significant predictor (largest P-value)  

P-values are mainly used when  the objective is either 
•   to study the effect of one predictor while adjusting for the effects  
   of the other predictors 
•   to identify important predictors for an outcome 
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measures the proportion of the total variability in the outcomes that 
is accounted for by the predictors in the model 

The coefficient of determination 

2 1MSS RSSR
TSS TSS

= = −

It could be tempting to choose the model with the largest R2 

But then we would end up with a model including all predictors 

Ordinary R2 
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Example of R2 from  
practical exercise 14.e 

Maximum for the largest model 
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The adjusted R2  
 
 
 
penalizes including more predictors 

2
adj

/( 1)1
/( 1)

RSS n pR
TSS n

− −
= −

−

The adjusted R2 will have a maximum over the different models 
considered, and it may therefore be used to select predictors 

Example of adjusted R2 
from practical exercise 14.e 
(dashed line) 
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Maximum for model 5 
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Cross validation 

A drawback with R2  and adjusted R2 is that the observations are 
used twice: 

Idea: 

•    estimate the   'sjβ
•    evaluate the predictions of the        :    'siy

0 1 1 2 2
ˆ ˆ ˆ ˆˆ ....i i i p piy x x xβ β β β= + + + +

•    Estimate the regression model without using the observation     iy

•    Predict         using the obtained estimates 
    Denote this prediction   

iy
( )ˆ i
iy
−
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Cross validated R2 

The cross-validated R2  will have a maximum over the different 
models considered, and it may therefore be used to select predictors 

( ) 2
2 1
cv 2

1

ˆ( )
1

( )

n i
i ii

n
ii

y y
R

y y

−

=

=

−
= −

−

∑
∑

We have described "leave-one-out" cross validation.  
Alternative versions of cross-validation exist, e.g. 10-fold cross validation 
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Example of crossvalidated  R2 
from practical exercise 14.e 
(dotted line) 

Maximum for model 5, which is the 
same as for the adjusted R2 
 

But often the cross-validated R2 will give 
smaller models than the adjusted R2 


