
STK4900/9900  -   Lecture 9 
 
Program 
 

1.  Survival data and censoring 
2.  Survival function and hazard rate 
3.  Kaplan-Meier estimator 
4.  Logrank test 
5.  Proportional hazards and Cox regression 
 
•  Section 3.5 
•  Sections  6.1 and  6.2 
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Survival data and censoring 
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The data in this lecture have a different form from what we 
have seen earlier  

The response is the time (from a well defined starting point) until 
a specific event (end point) occurs, or until observation of the 
subject stops  

Examples: 

•    Time from birth to the onset of a disease 

•    Time from onset of a disease to death 

•    Duration of unemployment 

•    Time from starting a PhD-study to graduation 

We will often call the time until the event a survival time, also 
when the end point of interest is something else than death 
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A new aspect for survival data is censoring: 

The event of interest does not necessarily occur in the 
observation period. Then we only know that the survival time is 
longer than the observation period, but not exactly how long. This 
is denoted as censoring. Also these survival times contain 
important information and must be included in the analysis. 
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Example: clinical trial 

Assume that we want to study the time from disease onset                
until death 
 
•    New patients are diagnosed and included in the study 

•    The patients are then followed until: 

     -  death 

     -  they no longer want to participate 

     -  the study is concluded 
 
In the second and third case the survival times are censored. 
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Illustration for a hypothetical clinical trial with 10 patients: 

Follow-up of patients on 
the calendar time scale: 

Follow-up of patients on 
the study time scale: 
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Notation for censored survival times 

0 survival time for individual no iT i=

The response for subject  i  is               , i.e. a combination of 
a numerical response         and a binary response      

censoring time for individual no iC i=

We do not observe         (or      ), but only:  0
iT iC

0min ( , ) censored survival timei i iT T C= =
0

0

1 if so the survival time is observed  
0 if so the censoring time is observed

i i
i

i i

T C
D

T C
⎧ ≤

= ⎨
>⎩

( , )i iT D
iT iD

Using        as response without taking         into account does 
not make sense. We need statistical methods that use data on 
all subjects, whether their survival times are observed or we only 
observe time until censoring. 

iT iD



The following concepts may all be used to describe the distribution of 
a survival time       : 
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Concepts describing the distribution of survival times 

0Density ( ) : ( ) ( )f t P t T t f t• ≤ < +Δ ≈ Δ

0T

0Cumulative distribution function: ( ) ( )F t P T t• = ≤

0Survival function: ( ) 1 ( ) ( )S t F t P T t• = − = >

0 0Hazard function: ( ) : ( | ) ( )h t P t T t T t h t• ≤ < +Δ ≥ ≈ Δ

0

Cumulative hazard function: ( ) ( )
t

H t h s ds• = ∫
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Example: exponential distribution 

( ) tf t e λλ −• = ( ) 1 tF t e λ−• = −

( )H t tλ• =

( ) tS t e λ−• =

( )h t λ• =
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Example:  
In a clinical trial 44 
patients with chronic 
active hepatitis were 
randomized either to 
treatment with 
prednisolone or to 
an untreated control 
group 
 
 
The table shows the 
censored survival 
times and whether a 
patient died (D) or 
were still alive (A) 
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Estimation of the survival function 

We want to estimate the survival function           without  assuming 
that it belongs to a specific parametric class of distributions (like 
exponential or gamma). 
 

For illustration we look at the prednisolone group.  
 

19 of the 22 patients live more than 50 months. 
 

Therefore: 
 
 

19ˆ(50) 0.864
22

S = =

But how do we find               ?  
 
This can not be found as a simple proportion, since we do not know 
whether the patient censored at 56 months would live longer than 
100 months or not 

ˆ(100)S

( )S t



For                             the survival function is estimated by the product  
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Kaplan-Meier estimator 

Introduce: 

This is the Kaplan-Meier estimator 

More compactly we may write: 
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Example: prednisolone group 
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R commands:  
time=c(2,6,12,54,56,68,89,96,96,125,128,131,140,141,143,145,146,148,162,168,173,181) 
cens=c(1,1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0,0) 
library(survival) 
survpred=survfit(Surv(time,cens)~1, conf.type="none") 
summary(survpred) 

R output : 
  
  time  n.risk  n.event      survival        std.err 
    2      22           1          0.955         0.0444 
    6      21        1          0.909         0.0613 
   12      20        1          0.864         0.0732 
   54      19        1         0.818         0.0822 
   68      17         1        0.770         0.0904 
   89      16         1       0.722         0.0967 
   96      15         2       0.626         0.1051 
  143         8         1        0.547         0.1175 
  146         6         1        0.456         0.1285 
  168         3        1        0.304         0.1509 
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Plot of Kaplan-Meier estimate 
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R command:    plot(survpred) 



A 95% confidence interval for S(t)  is given by: 
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Standard error and confidence intervals 

The standard error of the Kaplan-Meier estimator is estimated by 
Greenwood's formula: 

Other options for confidence intervals are available 
(but note that R use a silly default) 
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Kaplan-Meier estimate with confidence limits: 

R commands:     
survpred2=survfit(Surv(time,cens)~1, conf.type="plain") 
plot(survpred2) 
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Median survival time 

is defined as the time when the Kaplan-Meier estimator 
(or crosses the value 0.5). 
    

This time can be read of graphically from a Kaplan-Meier plot (see 
next slide). 
 

Other percentiles are defined similarly, for instance the lower and 
upper quartiles are defined as solving                    and  
 
 

Furthermore confidence intervals for the median and percentiles 
are also found graphically from Kaplan-Meier plots with confidence 
limits included.  

ˆ( ) 0.5S t =

ˆ( ) 0.25S t =ˆ( ) 0.75S t =
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Median survival time: 

R commands:     
print(survpred2) 
 

R output: 
records    n.max    n.start     events    median    0.95LCL    0.95UCL  
     22         22           22           11          146           96                NA  
 



Comparison: 
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Comparing two groups 

We want to compare the survival in two groups (e.g. treatment 
and control): 

1 1 1Group 1: ( , ) 1,.....,i iT D i n• =

2 2 2Group 2: ( , ) 1,.....,i iT D i n• =
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Graphical comparison: 

R commands:     
time=c(2,3,4,7,10,22,28,29,32,37,40,41,54,61,63,71,127,140,146,158,167,182,2,               
            6,12,54,56,68,89,96,96,125,128,131,140,141,143,145,146,148,162,168,173,181) 
cens=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0, 
             1,1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0,0) 
group=c(rep(1,22),rep(2,22)) 
survboth=survfit(Surv(time,cens)~group, conf.type="plain") 
plot(survboth,lty=1:2,xlab="Time (months)",ylab="Survival") 
legend(5,0.2,c("control","treatment"),lty=1:2) 
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Median survival times: 

R commands:     
print(survpred2) 
 

R output: 
                records    n.max    n.start     events    median    0.95LCL    0.95UCL  
group=1      22           22           22          16            40           28               71 
group=2      22           22           22          11           146          96               NA 



We will test the null hypothesis that the survival function is the same 
in both groups: 

22	
  

Logrank test 

0 1 2: ( ) ( ) for all  H S t S t t=

The test is based on a comparison of the observed and expected 
(under H0)  number of events in the two groups: 

E1 and E2 : expected number of events in the two groups      
                   if the survival functions are the same 



Define for both groups combined: 
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Define also: 

Then: 



The test statistic 
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is approximately N(0,1)-distributed under the null hypothesis that 
the survival functions are the same in the two groups (H0) 

Equivalently: 

2χ =

is approximately chi-squared distributed with 1 df under H0  

The test is called the logrank test 
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R commands: 
 

survdiff(Surv(time,cens)~group)  

R output : 
   
                  N         Observed       Expected        (O-E)^2/E       (O-E)^2/V 
group=1        22               16                10.6                 2.73               4.66 
group=2        22               11                 16.4                1.77                4.66 
 
 Chisq= 4.7  on 1 degrees of freedom, p= 0.0309  
 

The logrank test may be extended to more than two groups 
 
When we compare  K  groups, we get a test statistic with K – 1 df 



Consider first the situation with only one covariate 
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Proportional hazards 

Hazard function for an individual with covariate  x 

0( | ) ( )exp( )h t x h t xβ=

The baseline hazard              is the hazard for a subject with  x=0 
    

0( )h t

If we consider two subjects with covariate values              and  x , 
respectively,  their  hazard ratio (HR)  becomes 

( | )
( | )

h t x
h t x

+ Δ ( )0

0

( )exp ( )
( )exp( )

h t x
h t x

β
β
+ Δ

= exp( )β= Δ

In particular         is the hazard ratio corresponding to one unit's 
increase in the value of the covariate 

eβ

x + Δ
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Example: Mortality rates for men and women (from SSB)  

Binary covariate  x  (0=female, 1=male) 

A proportional hazards model is not  valid for 0-100 years 

Proportional hazards is a reasonable model for 40-85 years 
with  1.8HR ≈
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Example: Melanoma data 

205 patients with malignant melanoma were operated during a 15 
years period. A number of covariates were recorded at operation 
The patients were followed until death or censoring 
 
One covariate of interest was sex (x=0 for females; x=1 for males) 
 
We fit a proportional hazards model: 

Estimate  

0( | ) ( )exp( )h t x h t xβ=

ˆ 0.662β =

The hazard ratio for males (vs females) becomes 

0.662 1.94HR e= =



Proportional hazards with several predictors 
 

Consider the situation with several predictors, and assume that the 
hazard rate for an individual with covariates                       takes the form:                        
 

1 2, ,...., px x x
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1 2 0 1 1 2 2( | , ,..., ) ( )exp( .... )p p ph t x x x h t x x xβ β β= + + +

The baseline hazard              is the hazard for a subject with  all 
covariates equal to zero 

0( )h t

1 2

1 2

( | , ,...., )
( | , ,...., )

p

p

h t x x x
h t x x x

+ Δ
1exp( )β= Δ

In particular          is the hazard ratio corresponding to one unit's increase 
in the value of the first covariate holding all other covariates constant 
 

1eβ

If we consider two subjects with values                and  x1 , for the first 
covariate and the same values for all the others,  their hazard ratio (HR) 
becomes 

1x +Δ
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Example: Melanoma data 

Consider the covariates: 

Estimates: 

1 2 0 1 1 2 2( | , ) ( )exp( )h t x x h t x xβ β= +

1 2
ˆ ˆ0.574 and 0.159β β= =

Hazard ratios: 

0.574 0.159
1 21.78 and 1.17HR e HR e= = = =

1 10 for females; 1 for malesx x• = =

We fit a proportional hazards model: 

2 tumor thickness (mm)x• =



Cox regression 
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For Cox's regression model the baseline hazard             is an arbitrary      
non-negative function 
 

Estimation in Cox's model is based on a partial likelihood of the form 
 
 
 
 

where  t1 < t2 < …. < td   are the times when events are observed, and the 
factors             only depend on the regression parameters (and not on the 
baseline hazard) 
 
The partial likelihood has similar properties as an ordinary likelihood, and 
similar methods as for logistic regression and Poisson regression 
may be used. E.g. confidence intervals, Wald tests and tests based on the 
difference in deviance (i.e. twice the difference in log likelihoods) 
 

0( )h t
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R commands:  
melanom=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v16/melanoma.dat", header=T) 
fit.sex.thickn=coxph(Surv(lifeAme,status==1)~factor(sex)+thickn	
  ,data=melanom)	
  
summary(fit.sex.thickn)	
  
	
  
 

R output (edited): 
  
    coef  exp(coef)  se(coef)      z  Pr(>|z|)     
factor(sex)2  0.574    1.776     0.265            2.164          0.0304    
thickn        0.159    1.172      0.0327           4.869         1.12e-06  
 
               exp(coef)  exp(-coef)  lower .95  upper .95 
factor(sex)2      1.776       0.5632      1.056       2.986 
thickn            1.172       0.8529      1.100       1.250 
 
Likelihood ratio test  = 23.82  on 2 df,   p=6.711e-06 
Wald test                  = 28.77  on 2 df,   p=5.662e-07 
Score (logrank) test  = 32.2    on 2 df,   p=1.020e-07 

(Here the "likelihood ratio test" corresponds to the "null deviance" 
in the output for generalized linear models) 
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R commands:  
fit.sex=coxph(Surv(lifeAme,status==1)~factor(sex)	
  ,data=melanom)	
  
anova(fit.sex,fit.sex.thickn,test="Chisq")	
  
	
  
 

R output (edited): 
  
Analysis of Deviance Table 
Cox model: response is  Surv(lifetime, status == 1) 
Model 1: ~ factor(sex) 
Model 2: ~ factor(sex) + thickn 
 
    loglik       Chisq    Df  P(>|Chi|)     
1  -280.12                         
2  -271.29     17.673                1          2.623e-05  
 

The anova-command may be used for Cox regression in the 
same way as for generalized linear models 
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When fitting a Cox regression model one should (as for all models!) 
check that the model fits reasonably well 
 
Checking the fit of a Cox model is, however,  somewhat involved and 
time does not allow us to address this here 
 
A discussion of model fit is given in Section 7.4 in the text book  

Model fit 


