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Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

a) The estimates are β̂0 = 30.511906, β̂1 = −0.082898 for β0 and β1 and
s = 2.983 for σ.

The (multiple) R-squared is defined as R2 = 1 −
∑n

i=1(Yi−Ŷi)2∑n
i=1(Yi−Ȳ )2

where Ȳ

is the mean of the Yi and Ŷi = β̂0 + β̂1xi the predicted values of the
Yi, thus R2 is proportion of the variation explained by the regression.
Also R2 is the squared correlation between the observed Yi and the
predicted values Ŷi.

In particular since this is a simple linear regression model we also have
that R2 equals the squared correlation between the Yi and the covariate
xi1, thus the correlation becomes −

√
R2 = −

√
0.4913 = −0.701 where

the minus sign follows from β̂1 being negative.

b) The reason that β̂1 is the same in the simple linear regression in question
a) and the multiple linear regression in this question is that the design
is balanced, we have equally many observations of each value of xi1 for
each value of xi2. Then the value of xi2 gives no information of the
value of xi2 and the two covariates must be uncorrelated. When we
have two uncorrelated covariates omitting one of them will not change
the estimated regression parameter of the other.

Although β̂1 did not change so did the estimate s of σ and of σ2 given
as s2 = 1

n−3

∑n
i=1(Yi − Ŷi)2 where now Ŷi = β̂0 + β̂1xi1 + β̂2xi2 is the

predicted values using both covariates. This estimate is smaller than

(Continued on page 2.)
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s2 from the simple linear regression since both covariates are important
predictors of the Yi.

This is also the reason that the new R2 = 1−
∑n

i=1(Yi−Ŷi)2∑n
i=1(Yi−Ȳ )2

is larger than

that in simple linear regression.

The standard error se1 of β̂1 is proportional to s and so this
estimate has also become smaller in this situation where the covariates
are uncorrelated, (can also be the case with moderately correlated
covariates if the effect of the covariates is sufficiently small), something
that has also led to t-value β̂1/se1 deviating more from zero.

c) The first plot show the residuals ei = Yi−Ŷi against the fitted values Ŷi.
The smoothed line through the points (Ŷi, ei) shows a clear curvature.
This indicates that transformations of the covariates or inclusion of
square terms x2

i1 and x2
i2 and possibly also interaction terms xi1xi2 might

improve the fit.

The second plot is a qqplot of the ordered (standardized) residuals e∗i
against percentiles in the standard normal distribution. When these
points are not on a straight line we have an indication that the error
terms are not normally distributed. This again could indicate that
the use of the t-distribution when calculating p-values is not optimal
(However, a close inspection reveals that the tails of the distribution of
the residuals is ”lighter” than that of the normal distribution, in this
perspective this deviation is probably not very serious).

The third plot show
√
|e∗i | agains Ŷi and is designed to show whether

we have heteroscedasticity, i.e. the variance depends on the expected
value of Yi. Although the curve show some curvature it varies from
values around 0.7 to 1.2 which is not considered very much, and so the
heteroscedasticiy is likely not very serious.

This means that the part the model that needs to be worked on is the
linear part, either including more terms or transforming those already
included.

d) It is problematic to use the standard R2 to choose a model because it
will necessarily become larger when including a new term to the model
(this improvement may be very modest, but R2 does not tell anything
about of what is an important change). It will then be better to use
the adjusted R2 or the predicted (cross-validated) R2 which can have a
maximum over the considered models and choose the model maximizing
such modified R2 measures (the predictedR2 typically chooses a smaller
model and also have other preferable properties).

The idea in the predicted R2 is to calculate new predicted values
Ŷ

(−i)
i where the regression model is fitted without using value no. i

(Continued on page 3.)
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and predicting Yi from this model. The measure is then defined as

R2
pred = 1−

∑n
i=1(Yi−Ŷ

(−i)
i )2∑n

i=1(Yi−Ȳ )2
.

From the table we see that the model with the smallest predicted R2

is the biggest model including both square terms and the interaction
term (although the improvement for the last model including also the
square term of log(Time) is quite modest and improves the model only
marginally).

Problem 2

a) With pW the probability that a woman died and pM the probability
that a man died we want to test H0 : pW = pM . This can be done
using a test statistic Z = p̂M−p̂M

se(p̂M−p̂M )
where p̂M = 372/468 = 0.795 and

p̂W = 71/288 = 0.247 are the proportions dying among men and women
and se(p̂M − p̂M) =

√
p̂(1− p̂)/(1/468 + 1/288) is the standard error

of p̂M − p̂M under the null that the mortality is the same pW = pM = p
and p̂ = (71 + 372)/(288 + 468) = 0.585.

Under the null hypothesis Z is drawn from a standard normal
distribution, thus if |Z| > 1.96 we can reject the null at a 5% level.
Here we find Z = 14.86 and so we reject the null with a very small
p-value < 0.001.

b) The odds-ratio of dying between men and women is given by OR =
pM/(1−pM )
pW /(1−pW )

. We can estimate it by simply plugging in p̂M and p̂W from

question a) giving us a value (0.795/0.205)/(0.247/0.753) = 11.8

However, this odds-ratio is also given as exp(β̂1) from the logistic
regression with outcome Y = indicator of dying and x = indicator
of man, thus again OR = exp(2.472) = 11.8

The relative risk of dying between men and women becomes RR =
pM/pW = 0.795/0.247 = 3.2 which is considerably smaller than the
odds-ratio. The odds-ratio is a good approximation to the relative risk
when the probabilities are both small, but here they are both large
and there is a striking difference. Note, however, that if the p̂M = p̂W ,
then we have both OR and RR equal to 1 and if one of them is larger
(smaller) than 1 then so is the other.

c) The model is given as, Y = 0 for a survivor and Y = 1 for passenger

that died and x = age in years, p(x) = P (Y = 1|x) = exp(β0+β1x)
1+exp(β0+β1x)

.

Similarly to question a) we have the odds-ratio interpretation

OR(x+ 1, x) =
p(x+ 1)/(1− p(x+ 1))

p(x)/(1− p(x))
= exp(β1),

(Continued on page 4.)
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thus the regression parameter for age β̂1 has the interpretation as the
estimated odds-ratio of dying between two individuals with a one year
difference in age.

For two individuals where one is 10 years older than the other we
similarly have an odds-ratio given as exp(10β̂1) = exp(0.08795) =
1.092, thus an increase in odds of 9.2%.

The confidence interval for this odds-ratio exp(10β1) is given by
the formula exp(10β̂1 ± 1.96 ∗ 10se(β̂1) = (0.986, 1.210). Since
this confidence interval overlaps OR=1 the risk of dying was not
significantly associated with age.

This test could also be done considering the test statistic Z =
β̂1/se(β̂1) = 0.008795/0.005232 = 1.681 which is less than the 97.5
percentile 1.96 in the standard normal distribution, thus the p-value is
above 0.05.

d) The model with age entered directly did not show significantly
association between age and mortality. In contrast the model with
log(Age) has a p-value < 0.001 for the regression parameter being
different from zero, thus there is a strongly significant correspondence
between log-age and mortality. So clearly log-age is the better variable.
This is also reflected in lower residual deviance and higher AIC-values
for the log-age model than for the model with age entered without
transformation.

e) The residual deviance is twice the difference between the log-likelihood
of the actual model and the loglikelihood of the ”saturated” model with
”estimated” probabilities p̃i = Yi. Denoting D1 and D2 the deviances
for two nested models M1 and M2, and where M1 is a special case
of M2, we have that the log-likelihood ratio statistic G = D2 − D1 is
approximately chi-square distributed assuming M1 as a null hypothesis.
The degrees of freedom for G is equal to the difference of parameters
in the two models.

From the deviance table we see that log(Age), Sex have G-statistics of
12.55 and 225.99 which is well above the 95 percentile of a chi-square
distribution with one degree of freedom which equals 3.84 (= 1.962).

Furthermore the G-statistic for PClass equals 99.4 also well above the
95 percentile of a chi-square distribution with 2 degrees of freedom
which equals 5.99, so again significant. We use 2 degrees of freedom
here because PClass is a categorical covariate with three levels.

Finally we see that also the interaction between Sex and PClass is
significant since G=30.4 > 5.99 with 2 degrees of freedom.

f) The log-oddsratio between a reference group woman at 1.class and the
other groups can be described as adding the appropriate main effect
parameters and the appropriate interaction parameter. We see that

(Continued on page 5.)
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the interaction effect between Sex and 2. class is insignificant, so for 2.
class a model with only the main effects seems to described the data
well.

However, for the interaction between 3. class and sex the interaction
effect is significant and negative. Thus the overall effect for men at
3. class is smaller than the sum of the two main effects, i.e. the
log-oddsratio compared to a reference women at 1. class becomes
3.61 + 3.73− 2.17 = 5.17 < 3.61 + 3.73 = 7.34.

END


