
STK4900/9900  - Lecture 2

Program
1. Comparing two or more groups
2. One-way analysis of variance (ANOVA)
3. Multiple testing and FDR
4. Covariance and correlation
5. Simple linear regression

• Section 13.4.1
• Section 2.4
• Sections 3.1.4, 3.2 (not 3.2.2), 3.3
• Supplementary material on FDR, covariance, 

correlation and one-way ANOVA 
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Comparing two groups

In Lecture 1 we considered an example where we measured bone 
mineral density (in g/cm2) for rats given isoflavone and for rats in a 
control group:

Question: Does isoflavone have an effect on bone mineral density?



3

A boxplot gives a graphical comparison of the two groups:

We would like to determine a confidence interval for the treatment 
effect and test if the difference is statistically significant (cf. next slide) 
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R-commands:

cont=c(0.228, 0.207, 0.234, 0.220, 0.217, 0.228, 0.209, 0.221, 0.204, 0.220, 
0.203, 0.219, 0.218, 0.245, 0.210)

treat=c(0.250, 0.237, 0.217, 0.206, 0.247, 0.228, 0.245, 0.232, 0.267, 0.261, 
0.221, 0.219, 0.232, 0.209, 0.255)

boxplot(treat, cont,names=c("Treatment","Control"))
t.test(treat, cont , var.equal=T)

R-output (slightly edited)

Two Sample t-test
data:  treat and cont 
t = 2.844,  df = 28,  p-value = 0.0082
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
0.0045    0.0279 
sample estimates:
mean of x mean of y 
0.2351 0.2189 



Suppose that the data for the two groups are random samples 
from                     and                     , respectively   
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2
1( , )N µ s 2

2( , )N µ s

Consider testing the null hypothesis                          versus 
the alternative

Test statistic:

where

with

0 1 2:H µ µ=
1 2:AH µ µ¹

| |tWe reject H0 for large values of  

P-value (two-sided) :  P = 2 P(T >|t|), 
where  T is t-distributed with n1+ n2 – 2 df.



In an experiment 24 rats were randomly allocated to four different 
diets, and the blood coagulation time (in seconds) was measured for 
each animal

Question: Does diet have an effect on coagulation time?
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Comparing more than two groups: one-way ANOVA

We may compare two and two diets, using two sample procedures 
We would, however, also like to have an overall test
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In general we have observations from K groups: 

Total number of observations: k
k

n n=å

,

1 1Overall mean: ik k k
i k k

x x n x
n n

= =å å

observation number  in group 
( 1,..., 1,..., )
ik

k

x i k
i n k K
=
= =

We assume that all observations are independent and that the 
observations from group k  are a random sample from 2( , )kN µ s

Notation:

1Mean in group : k ik
ik

k x x
n

= å
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We want to test the null hypothesis                                  versus the 
alternative that  not all the        are equal

Introduce the sums of squares: 

TSS MSS RSS= +

Important decomposition:

( )2k k
k

MSS n x x= -å

( )2
,

ik k
i k

RSS x x= -å

0 1: ..... KH µ µ= =
kµ

( )2
,

ik
i k

TSS x x= -å (total sum of squares)

(model sum of squares)

(residual sum of squares)
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Unbiased estimator of         : 

/( 1)
/( )

MSS KF
RSS n K

-
=

-

However, when the null hypothesis does not hold, the latter 
estimate tends to be larger than 

2 /( )s RSS n K= -

2s

Under the null hypothesis           may also be estimated by :   2s

/( 1)MSS K -

2s

We reject the null hypothesis for large values of the test statistic 

The test statistic is F-distributed with K – 1 and n – K degrees of 
freedom under the null hypothesis

This result is used to compute the P-value 
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The result may be summarized in an ANOVA table:

Source           df        Sum of           Mean sum               F statistic           P-value
                                 squares          of squares                                                       

/( 1)Model         1 /( 1)
/( )

Residual     /( )
Total           1          

MSS KK MSS MSS K F P
RSS n K

n K RSS RSS n K
n TSS

-
- - =

-
- -
-

The P-value is found by:

where  F is F-distributed with  K – 1 and  n – K degrees of freedom 

( observed value of )P P F F= >

In Lecture 3 we will see how one-way ANOVA is a special case of 
multiple linear regression



11

rats=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/
rats.txt",header=T)

rats$diet=factor(rats$diet)      # defines diet to be a categorical variable
aov.rats=aov(time~diet,data=rats)
summary(aov.rats)

R commands for coagulation times:  

Df Sum Sq Mean Sq F value        Pr(>F)    
diet               3    228               76.0                  13.6 4.7e-05 
Residuals    20    112                 5.6 

R output (edited):  
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2 /(2 1)
/( 2)

MSSt F
RSS n

-
= =

-

Consider the situation with two groups, i.e.  K = 2

Relation to two-sample t-test (two-sided)

Will test the null hypothesis                          versus the                  
alternative hypothesis 

t-test statistic:

0 1 2:H µ µ=
1 2:AH µ µ¹

| |tWe reject H0 for large values of  

We may show that 

The usual (two-sided) t-test for two samples is a special 
case of the F-test in one-way ANOVA
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R-commands for bone density example:

bonedensity=read.table("http://www.uio.no/studier/emner/matnat/math/
STK4900/data/bonedensity.txt",header=T)

aov.density=aov(density~group,data=bonedensity)
summary(aov.density)

R-output (edited)

Df Sum Sq    Mean Sq F value   Pr(>F)   
group           1 0.00197 0.00197  8.09 0.0082 
Residuals   28 0.00681 0.000243 

Note that 2 22.844 8.09t F= = =



Multiple testing
In Lecture 1, we performed a hypothesis test and calculated a P-value (using a 
t-test).

0 :jk j kH µ µ=

0 1: ..... KH µ µ= =

0 :jk j kH µ µ=

Now in Lecture 2 we have discussed one-way ANOVA for the null hypothesis:

We could also be interested in testing pair-wise differences in mean between 
category levels: 

Assume all are true and are tested with a significance level a. 

Note: This will consist of m=K (K-1)/2 different tests, i.e. multiple tests.

Then the overall probability of rejecting one or more null hypotheses (falsely) 
will be greater than a, but less than m a. 

Thus: With a initial level a’= a/m we can ensure an overall level of a.

Such a procedure is called a Bonferroni correction. Although appealing 
Bonferroni corrections can be seriously conservative. 14



Multiple testing, cont.

Often, we perform a very large number test at the same time.

For example, in genomics, maybe m=10000 tests 
are performed simultaneously. For each test, we 
have a probability α of erroneously rejecting H0, 
resulting in a false discovery (“Type I error”).

With α = 0.05, and 10000 independent tests, we expect 500 false discoveries. 
Even for small m, the probability of at least one false discovery is large. With 
f.ex. m=10 independent tests, we get

P(at least one false discovery among 10 tests) = 1 – P(no false discoveries) 
= 1 – (1-α)10 =1 – (1-0.05)10 =  0.4
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• We perform m simultaneous tests  with a common procedure.

• For a given procedure, classify the results as: 

• TN = # True Non-discoveries, FN = # False Non-discoveries, 
FD = # False Discoveries, TD = # True Discoveries. 

• Only N, D, m are observed, FD (for instance) is not known.

Multiple testing setting
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How to choose a threshold?

Borrowed from C.R. Genovese 17



We use the term raw P-values for the original P-values P1, P2, …, Pm, and 
produce adjusted P-values P1

adj, P2
adj, …, Pm

adj based on the type of control above.

Bonferroni adjustment (simplest to understand, but conservative)

All hypotheses with raw P-values < α/m are rejected. Guarantees a probability 
of any FD below α (as pointed out above).

Adjusted P-values will be    Pi
adj = min(mPi , 1),         i = 1, 2, …, m

In R: Let P be a vector of raw P-values. 

> p.adjust(P, method="…") 

returns a vector of adjusted P-values. Choices of methods for p.adjust can 
for instance be "bonferroni” or "BH” for Benjamini-Hochberg controlling the FDR. 
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FDR adjustment 
Bonferroni, controls the overall probability of having at least one false discovery. 
Bonferroni is very strict, and may rule out discoveries of interest as false. 

FDR, on the other hand, controls  the expected proportion of false discoveries 
relative to the total number of discoveries, and tolerates some false discoveries.

With an FDR of f.ex. 10 % (0.10), on average 10% of the discoveries will represent
false discoveries. Dropping the mathematics behind, the Benjamini-Hochberg 
procedure can be summarized as:

• Choose a false discovery rate Q (f.ex. 10% or 20%)

• Sort the raw P-values, giving P(1), P(2), …, P(m)  

• Compare each P(i)-value to its Benjamini-Hochberg critical value (i/m)Q

• The largest P(i)-value that has P(i)<(i/m)Q is significant, and all of the P-values 
smaller than it are also significant. 

19



The BH adjusted P-value is the raw P-value times m/i. If the adjusted P-value 
is smaller than the false discovery rate Q, the test is significant.

Garcia-Arenzana et al.(2014) Associations between dietary 
variables and breast cancer risk

Example

m=25 tests, giving raw P-values in column 2

FDR-corrected, with Q=0.25 (!large!), we see from 
column 4, that Proteins and the other variables 
above are significant. 

FDR-corrected with Q=0.15 gives Olive Oil and
Total calories as significant (check!)

Using Bonferroni-correction, only the variables with 
raw P-value < 0.05/25 = 0.002 are significant, that
is only Total calories

20
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Two numerical variables
For one-way ANOVA we study how a numerical variable (e.g. blood 
coagulation time) depends on a categorical variable (e.g. diet)

Often we  want to study the relation between two numerical variables

Example A: When water flows across a field, some of the soil will be washed 
away (eroded). An experiment has been performed in order to investigate how 
the amount of water affects the amount of soil that is eroded. 

Example B: Forced vital capacity (FVC) and peak expiratory flow (PEF) 
have been measured for 12 adults (in liter and liter per minute, respectively).
What is the relation between these two measures of lung function?
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We will consider two situations: 

1. The data  (x1,y1) , … , (xn,yn) are considered as independent 
replications of a pair of random variables  (X ,Y )

2. The data are described by a linear regression model                        

Here y1 , … , yn are the outcomes that are considered to be 
realizations of random variables, while  x1 , … , xn are considered 
to be fixed (i.e. non-random)  and the  εi's are random errors (noise)

Situation 1 occurs for observational studies (like Example B), while 
situation 2 occurs for planned experiments, where the values of the xi's 
are under the control of the experimenter (like Example A)

In situation 1 we will often condition on the observed values of the xi's, 
and analyze the data as if they are from situation 2

We start out by considering situation 1

0 1 , 1,....,i i iy x i nb b e= + + =
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Bivariate distributions
We describe the joint distribution of a pair of random variables  (X ,Y )
through their bivariate probability density,  f (x,y)
This is defined so that

The bivariate normal distribution 
depends on the parameters: 

1Mean of :X µ

2Mean of :Y µ

1Standard deviation of :X s

2Standard deviation of :Y s
Correlation : r
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Covariance and correlation
The dependence between X and Y may be summarized by the 
covariance:

or by the correlation coefficient:

Important properties of the correlation coefficient:

• corr(X,Y) takes values between  -1  and  1

• corr(X,Y) describes the linear relationship between Y and X

• If  X and Y are independent, then  corr(X,Y)=0
(but not necessarily the other way around)
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Examples of correlated data:
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Examples of uncorrelated data:
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Empirical correlation

The empirical correlation coefficient is an estimator of the theoretical 
correlation coefficient, and it takes the form 

Here  sx and  sy are the empirical standard deviations of the xi's and 
the yi's

r is called the Pearson correlation coefficient

The properties of the Pearson correlation coefficient are similar to 
those of the theoretical correlation coefficient

1
( )( ) /( 1)n
i ii

x y

x x y y n
r

s s
=

- - -
=

×
å
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Consider the example with measures of lung function:

R-commands and results:
fvc=c(3.9,5.6,4.1,4.2,4.0,3.6,5.9,4.5,3.6,5.0,2.9,4.3)
pef=c(455,603,456,523,458,460,629,435,490,640,399,526)
cov(fvc,pef)
cov(fvc,pef)/(sd(fvc)*sd(pef))
0.856

cor(fvc,pef)
0.856
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Test and confidence interval for correlation

We assume that  (x1,y1) , … , (xn,yn) are a random sample 
from a bivariate normal distribution 

Consider testing the null hypothesis                        versus the 
alternative

Test statistic:

We reject H0 for large values of  
Under H0 the test statistic is t-distributed with n – 2 df

It is more complicated to describe how one may obtain a 
confidence interval for  r (but one is obtained by the R code on 
the following slide)

0 : 0H r =
0 : 0H r ¹

2

2
1
r nt

r
-

=
-

| |t
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R-command and results:

cor.test(fvc,pef)

Pearson's product-moment correlation

data:  fvc and pef
t = 5.23,  df = 10,  p-value = 0.00038
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval:
0.554     0.959 
sample estimates:

cor
0.856 

Note that the confidence interval is not symmetric
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Spearman (rank) correlation

The Pearson correlation is sensitive to outliers in the data, and 
measures degree of linear relation.     

An alternative correlation measure is the Spearman correlation:

The smallest  xi  is replaced by rank ri =1, 
the second smallest  xi  is replaced by rank ri =2, and so on to
the largest  xi which is replaced by rank ri = n.

Similarly, the yi are replaced by ranks si .

The Spearman correlation is then simply the Pearson 
correlation of the ranks  (r1,s1) , … , (rn,sn). 

In R:
> cor(fvc, pef, method="spearman")
[1] 0.669
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Simple linear regression
We have data  (x1,y1) , … , (xn,yn)

( | )i i i iy E y x e= +

Here: 

Model: 

where the xi's are considered to be fixed quantities, and the  
εi's are independent error terms ("noise") that are assumed to 
be 2(0, ) -distributedN es

outcome  
       (or response)
       (or dependent variable)

iy =

predictor  
       (or covariate)
       (or explanatory variable)
       (or independent variable)

ix =

0 1 i ixb b e= + +
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Consider the erosion example:
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Response = erosion

Predictor = amount of water

Model: 

0 1erosion waterb b e= + +
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Least squares
We estimate the regression coefficients  using the method of 
least squares, i.e.  the estimates         and          are obtained as 
the values of        and       that  minimize the sum of squares

0.5 1.0 1.5 2.0 2.5 3.0 3.5

1
2

3
4

5
6

water

er
os
io
n

1b0b
0b̂ 1̂b

( )20 1
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Illustration:
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R-commands:
water=c(0.31,0.85,1.26,2.47,3.75)
erosion=c(0.82,1.95,2.18,3.02,6.07)
fit=lm(erosion~water)
summary(fit)
plot(water,erosion,pch=19)
abline(fit)

R-output (edited)
Coefficients:

Estimate Std. Error t value Pr(>|t|)   
(Intercept)        0.406     0.445   0.912          0.429   
water               1.390     0.210   6.630          0.007 

Residual standard error: 0.580 on 3 degrees of freedom
Multiple R-squared: 0.936,     Adjusted R-squared: 0.915 
F-statistic: 44.0 on 1 and 3 DF,  p-value: 0.007 

"Estimate"  denotes  the least  squares estimates (the meaning of 
the other parts of the output will be made clear in the following) 



37

Fitted regression line: erosion 0.406 1.390 water= + ´
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Fitted values and residuals

Fitted values:

0 1
ˆ ˆˆi iy xb b= +

Residuals:

ˆi i ir y y= -

The residuals are 
estimates of the 
unobserved  εi's
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Sums of squares

In a similar manner as for one-way ANOVA, we have the sums of squares: 

TSS MSS RSS= +

Decomposition:

( )2
1

ˆ
n

i
i

MSS y y
=

= -å

( )2
1

ˆ
n

i i
i

RSS y y
=

= -å

( )2
1

n

i
i

TSS y y
=

= -å (total sum of squares)

(model sum of squares)

(residual sum of squares)
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Standard errors
Unbiased estimator of         : 

2
|ˆVar( ) /( 2)y xs RSS ne = = -

2
es

is the "residual standard error" in the R output |y xs

The variance of        is estimated by  : 
2
|

1 2
ˆˆVar( )

( 1)
y x

x

s
n s

b =
-

1̂b

where                                                is the sample variance of the  xi's   2 2
1
( ) /( 1)n

x ii
s x x n

=
= - -å

Standard error: 1 1
ˆ ˆˆ( ) Var( )se b b=

Similar formulas hold for the variance and standard error of 0b̂

The standard errors are denoted "Std. Error" in the R output 
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Hypothesis tests
Consider testing the null hypothesis                      versus the 
alternative

Test statistic:

0 1: 0H b =

1: 0AH b ¹

1

1

ˆ
ˆ( )

t
se
b
b

=

Under H0 the test statistic is t-distributed with n – 2 df

| |tWe reject H0 for large values of  

P-value (two-sided) :  P = 2 P(T >|t|), 
where  T is t-distributed with n – 2 df.

Testing the null hypothesis                      is performed similarly        
(but is usually not of much interest)

t-statistics and P-values are given in the R output  as "t value" and  "Pr(>|t|)" 

0 0: 0H b =
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Confidence intervals

95% confidence interval for        :1b

where c is the upper 97.5% percentile in the t-distribution with n – 2 df

1 1
ˆ ˆ( )c seb b± ×

95% confidence interval in the erosion example:

1.39 3.18 0.210± ×

i.e.   from   0.72  to   2.06 

Note that the confidence interval does not contain 0 if and only if 
the P-value for the test is less than 5%
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Correlation and regression

The least squares estimate for the slope is given by:

where

is the Pearson correlation coefficient  (and  sx and  sy are the 
empirical standard deviations of the xi's and the yi's)

Further the test for                      in a linear regression model (slide 40) 
is numerically equivalent to the test for                      for bivariate data 
(slide 29)   

1
( )( ) /( 1)n
i ii

x y

x x y y n
r

s s
=

- - -
=

×
å

1̂
y

x

s
r
s

b =

0 1: 0H b =

0 : 0H r =
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Coefficient of determination
The coefficient of determination is given by

This may be interpreted as the proportion of the total variability in the 
outcomes (TSS) that is accounted for by the model (MSS)

R2 is given as  " Multiple R-squared" in the R output

For the simple linear regression model  R2 is just the square of the 
Pearson correlation coefficient:

2 1MSS RSSR
TSS TSS

= = -

2 2R r=


