
STK4900/9900  -   Lecture 10

Program

1. Repeated measures and longitudinal data 
2. Simple analysis approaches
3. Random effects models
4. Generalized estimating equations (GEE)
5. GEE for binary data (and GLMs)
6. Time series data

•Sections 7.1, 7.2, 7.3, 7.4 (except 7.4.5), 7.5
•Additional material on time series 
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Example: Fecal fat 
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Lack of digestive enzymes in the intestine can cause bowel absorption 
problems, which will be indicated by excess fat in the feces.  Pancreatic 
enzyme supplements can reduce the problem. The data are from a 
study to determine if the form of the supplement makes a difference

This is an example with repeated 
measurements (more than one observation per 
subject) 
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none tablet capsule coated

The plot shows that some patients tend to have high values for all pill 
types, while other patients tend to have low values

The values for a patient are not  independent, and this has to be 
taken into account when we analyze the data

In this plot each patients responses are displayed as a line
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Example: Birth weight and birth order

We have recorded the weights of the babies of 200 mothers who all 
have five children. We are interested in studying the effect of birth order 
and the age of the mother  on the  birth weight

Birth weights for a sample of 30 
mothers with fitted line (based on all) 

The birth weights for a mother are not  independent, and this has to 
be taken into account when we analyze the data
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This is an example of longitudinal data (repeated measures taken over 
time) 



Simple approaches to analyzing repeated measures 
and longitudinal data  
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1. Standard analysis ignoring the dependence
       Fecal fat ex: One-way ANOVA on pill type
       Birth weight ex: Linear regression on birth order
       However: Ignoring dependence is WRONG!
                        Not pursued further.

2. Looking at parts of the data for an individual to avoid the    
       dependence problem
       Fecal fat ex: one option is to compare two pill types  at a 

time using the paired t-test
       Birth weight example one option is to look at the 

difference in weight between the fifth and the first child.
       This is not wrong, but ignores part of the data (birth 

weight) or gives many comparisons (fecal fat)
       See slides 7-8.
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Approaches, contd.  

3.    Including dependence as fixed factor variable 
       Fecal fat ex: Two-way ANOVA on pill type and individual
       Birth weight ex: Linear regression on birth order with 

mother as factor variable
       However: Generally not interested in factors 

individual/mother. Also in birth weight ex many factor 
levels.

4.    Including dependence as random factor: Random 
effects model 

       Fecal fat ex: Two-way ANOVA on pill type and individual 
as random factor

       Birth weight ex: Linear regression on birth order with 
mother as random factor variable

       Pro: Individual/mother modeled as random variable. 
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R commands (comparing pill types 1(none)  and 2(tablet)): 
fecfat=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/fecfat.txt",
                            header=T)
x=fecfat$fecfat[fecfat$pilltype==1]
y=fecfat$fecfat[fecfat$pilltype==2]
t.test(x,y,paired=T)

R output :
Paired t-test 
t = 3.109,     df = 5,     p-value = 0.027
95 percent confidence interval:
     3.731         39.369 
mean of the differences:  21.55 

None Tablet Capsule

Tablet 21.6 / 2.7 % * *

Capsule 20.7 / 3.7 % -0.9 / 58.9 % *

Coated 7.0 / 23.9 % -14.5 / 7.8 % -13.7 / 8.0 %

Estimated difference / P-value for the six comparisons of two 
pill types at a time (column minus row)  

Pairwise comparisons: Fecal fat example
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R commands: 
babies=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/gababies.txt",    
          
                              header=T)
first=babies$bweight[babies$birthord==1]
fifth= babies$bweight[babies$birthord==5]
diff=fifth-first
t.test(diff)

R output :
One Sample t-test
data:  diff 
t = 4.211, df = 199, p-value = 3.849e-05
95 percent confidence interval:
 101.90      281.38 
mean of x 
   191.64  

Pairwise comparisons: Birth weight example

On average the fifth child weights 191.6 grams more than the first

A 95 % confidence interval is from 101.9 grams to 281.4 grams

If we divide by four we get the average increase per child
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Approach 3: Individual as fixed factor  
Fecal fat example: Two way ANOVA

R commands and output: 
> anova(lm(fecfat~factor(pilltype)+factor(subject),data=fecfat))

Response: fecfat
                 Df Sum Sq Mean Sq F value    Pr(>F)    
factor(pilltype)  3 2008.6  669.53  6.2574 0.0057406 ** 
factor(subject)   5 5588.4 1117.68 10.4457 0.0001821 ***
Residuals        15 1605.0  107.00

R commands and output: 
> babiesanova=lm(bweight~birthord+initage+factor(momid),data=babies)
> anova(babiesanova)

Response: bweight
               Df    Sum Sq Mean Sq F value    Pr(>F)    
birthord        1   4344611 4344611 21.9375 3.310e-06 ***
initage         1   7401953 7401953 37.3750 1.523e-09 ***
factor(momid) 198 166220126  839496  4.2389 < 2.2e-16 ***
Residuals     799 158238219  198045

Birth weight example: Two way ANOVA
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Approach 4: Random effects model

A drawback of Approach 3 is that an effect is estimated for every 
individual. The interest, however, lies in how such effects will vary over 
a population.

A useful approach for analysing repeated measures is to consider a 
random effects model

We will describe the random effects model using the fecal fat example

Here we consider the model:  
where

To fit a random effects model, we use the  "nlme"  library

ij j i ijY B     

is the fecal fat for patient    when using pill type  ijY i j

is the effect of pill type    (relative to type 1)j j

2the are the effects of patients, assumed independent (0, )i subjB N 

2the are random errors, assumed independent (0, )ij N  
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R commands: 
library(nlme)      
fit.fecfat=lme(fecfat~factor(pilltype), random=~1|subject, data=fecfat) 
summary(fit.fecfat)
anova(fit.fecfat)

R output  (edited):
Linear mixed-effects model fit by fit by REML
 

Random effects:

Formula: ~1 | subject
                 (Intercept)       Residual
StdDev:      15.900             10.344

Fixed effects: fecfat ~ factor(pilltype) 
                      Value Std.Error         DF         t-value p-value
(Intercept)         38.083   7.742          15         4.919            0.0002
factor(pilltype)2 -21.550   5.972          15        -3.608            0.0026
factor(pilltype)3 -20.667   5.972          15        -3.461            0.0035
factor(pilltype)4    -7.017   5.972          15        -1.175            0.2583

 numDF      denDF   F-value         p-value
(Intercept)                1                15                 14.266          0.0018
factor(pilltype)          3                15                   6.257          0.0057

sεssubj
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Correlation within subjects

Covariance for two measurements from the same patient (         ):

Correlation for two measurements from the same patient:
 

Variance for a measurement:

Estimate of correlation:
 

Cov( , )ij ikY Y

j k

Cov( , )j i ij k i ikB B           

Cov( , )i ij i ikB B    Cov( , )i iB B Var( )iB
2
subj

Var( )ijY Var( )j i ijB     

Var( )i ijB   2 2
subj   =Var( ) Var( )i ijB 

corr( , )ij ikY Y
Cov( , )

Var( ) Var( )
ij ik

ij ik

Y Y

Y Y
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We will then analyze the birth weight example using a random 
effects model 

We here consider the model:  

where

1 1 2 2ij ij ij i ijY x x B       

is the birth weight for the -th baby of the -th motherijY j i

2 is the effect of one year's incerase in the age of the mother

2the are the effects of mothers, assumed independent (0, )i subjB N 

2the are random errors, assumed independent (0, )ij N  

2 is the age of the -th mother when she had her first babyijx i

1 is the effect of increasing the birth order by one

1 is the birth order (parity)  of the -th baby of the -th motherijx j j i
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R commands: 
fit.babies=lme(bweight~birthord+initage, random=~1|momid, data=babies) 
summary(fit.babies)

R output  (edited):
Linear mixed-effects model fit by fit by REML
 

Random effects:
 Formula: ~1 | momid
                  (Intercept)         Residual
StdDev:       358.18             445.02

Fixed effects: bweight ~ birthord + initage 
                            Value        Std.Error       DF        t-value      p-value
(Intercept)         2526.62      163.34           799       15.469        0.0000
birthord                 46.61        9.951           799         4.684        0.0000
initage                   26.73        9.003           198         2.969        0.0034

Estimate of correlation for two babies by the same mother:
 

This analysis is also found on p. 288 in the book.
 

2

2 2

358.18
0.39

358.18 445.02
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Longitudinal data and correlation structures

A random effects model for longitudinal data assumes that the 
correlation between any two observations for the same individual 
is the same 

In general for longitudinal data, where observations are taken 
consecutively over time, it may be the case that observations that 
are close to each other in time are more correlated than those 
further apart 

E.g.  for the birth weight example a random effects model assumes 
the same correlation between the birth weights of the first and 
second child as for the first and fifth child

In order to fit a model for longitudinal data, we need to take into 
account the type of correlation between the observations 
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Common assumptions on the correlation structure of the       are  (         ):

Assume that the observations for the i-th subject are

Exchangeable:

Autoregressive:

Independence:

We may use the "gee" library to fit models with these correlation 
structures  (using a method called generalized estimating equations)

Note that a random effects model implies an exchangeable correlation 
structure

Unstructured:

1 2, ,...,i i imY Y Y

ijY

corr( , )ij ikY Y 

corr( , ) k j
ij ikY Y 




corr( , ) 0ij ikY Y 

j k

corr( , )ij ik jkY Y 
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R commands: 
library(gee)
summary(gee(bweight~birthord+initage,id=momid,data=babies,corstr="exchangeable"))
summary(gee(bweight~birthord+initage,id=momid,data=babies,corstr="AR-M"))
summary(gee(bweight~birthord+initage,id=momid,data=babies,corstr=“unstructured"))
summary(gee(bweight~birthord+initage,id=momid,data=babies,corstr="independence"))

R output  (edited):
     Estimate       Naive S.E.    Naive z      Robust S.E.       Robust z

birthord        46.61            9.96            4.68            10.00                4.66
initage          26.73            8.97            2.98            10.09                2.65

birthord        47.31          13.83             3.42            10.49               4.51
initage          27.41            7.83             3.50              9.67               2.83

birthord        44.70             9.95            4.49              9.82               4.55
initage          28.07             8.81            3.19              9.12               3.08

birthord        46.61           12.76             3.65            10.00               4.66
initage          26.73             5.61             4.77            10.09               2.65

The naive SE and z are valid if the assumed correlation structure is true 

Inference should be based on the robust SE and z, since these are 
valid also if the assumed "working correlation" does not hold 



For the example with birth 
weight and birth order we have 
the following relation between 
the birth weights 
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                  first      second     third      fourth      fifth
first         1.000     0.228       0.295     0.258      0.381
second    0.228    1.000       0.483     0.468      0.426
third        0.295    0.483      1.000      0.619      0.423
fourth     0.258    0.468       0.619     1.000      0.464
fifth         0.381    0.426      0.423      0.464      1.000

Correlations:

The weight of the first baby is 
less correlated with the others. 
Otherwise the weights have 
about the same correlation.
An exchangeable correlation 
structure is a reasonable 
"working assumption"
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In conclusion the birth weight data may be analyzed using 
generalized estimating equations with an exchangeable correlation 
structure (slide 17 ) or by using a random effects model (slide 14) 

However, if we extend the generalized estimating (GEE) approach 
and the random effects model to generalized linear models (like 
logistic regression), the results need not longer agree.

The two models give comparable results in this example

The GEE approach can be used for all glms (distributional families, 
link functions). We will only consider extension of logistic 
regression to dependent data. 
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GEE and binary data (logistic model)

Example: Birth weight data, but with an indicator of low birth weight 
(lowbrth), i.e. < 3000g.

geefit<-gee(lowbrth~birthord+initage,id=momid,family=binomial,data=babies,
                                                                                                 corstr="unstructured")

R output (edited): 
> summary(geefit)

Model:
 Link:                      Logit 
 Variance to Mean Relation: Binomial 
 Correlation Structure:     Unstructured 

Coefficients:
               Estimate Naive S.E.   Naive z Robust S.E.  Robust z
(Intercept)        1.34     0.60        2.24      0.60        2.24
birthord          -0.082    0.038      -2.16      0.038      -2.15
initage           -0.093    0.034      -2.76      0.034      -2.77

Negative coefficients for birth order and initial age indicate that low 
birth weigh is less likely with increasing order and age.
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GEE and Birth weight data, contd.

Even the homemade expcoef function from Lecture 7 works on 
gee-objects

More R output (edited): 
> expcoef(geefit)
              expcoef     lower      upper
(Intercept)      3.84      1.18      12.45
birthord         0.92      0.85       0.99
initage          0.91      0.85       0.97
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More on dependent data: Time series data (not in Vittinghoff et al.) 

•many small independent groups of subjects (measurements)
•dependence within each group 

In this lecture we have so far considered data with 

Time series data is a different dependent data structure with

•long sequences of correlated data
•only one (or maybe a few) such sequences  

Examples
•Temperature on consecutive days (weeks)
•Stock prices on consecutive days (weeks) 
•Sunspot activity years 1700-1988 

1 2 3, , ,....Y Y Y
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Autocorrelation function (ACF) 

The correlation between observation at time t,    , and its lag at 
time t-k,       , is given as  

The                                is referred to as the autocorrelation function.

For the sunspot data we have ACF with high positive correlations 
at 11 year cycles

ˆ ( ) ( , )t t kk corr Y Y 

tY

t kY 

ˆ ( ), 0,1, 2,....k k 
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Uncertainty limits for the ACF 

The dashed horizontal lines in the ACF plots lie at values 
In particular for the sunspot data with n=289 this becomes ±0.118

These limits correspond to the test in Lecture 2 for                   
using test statistic 

Then correlations within the uncertainty limits are not significantly 
different from zero.

1.96 / n

0 : 0H  

2

2

1

r n
t

r
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Example: Luteinizing hormone in blood samples at 10 min. 
intervals from a human female, 48 samples. 

The sunspot example is a bit unusual in the 11-year correlation pattern. 
The luteinizing hormone example may be more typical of a time-series in 
the sense only the first (few) correlations are significantly different from 0.  
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Autoregressive models AR(p) 

Another approach for analyzing the dependence in a time series is 
through autoregressive  models where the current value 
is regressed on previous p values                                   of the 
series, i.e. through a model                                 

where the      are regression coefficients and the      independent 
error terms. This is called an AR(p) model.

For the special case AR(1) we have 

and the current value only depends on the previous value. This is 
referred to as a Markov property.  

tY
1 2 3, , ,....,t t t t pY Y Y Y   

1 1 2 2t t t p t p tY a Y a Y a Y      

ka t

1 1t t tY a Y  
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Simulated time series from an AR(1) model 
                           with a1 = 0.1, 0.5, 0.9 and -0.9

1 1t t tY a Y  
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par(mfrow=c(2,2))
time =seq(1,100,1)
a = c(0.1, 0.5, 0.9,-0.9)
for(i in 1:4)
{
  y_t<- arima.sim(n,model=list(ar=a[i]),sd=1)
  plot(time, y_t, type="l", main=a[i])
}

R commands: 

AR(p) is a special case of the more general ARIMA(p,d,q) models for time 
series. AR-I-MA stands for AutoRegressive Integrated Moving Average, 
and p is the order of the autoregressive process, d is the order of a 
difference operator (helps against nonstationarity) and q is the order of 
the moving average process (where the time series relates to the q past 
values of the noise). 

The parameters in such models can be estimated via maximum likelihood 
estimation!

R command: arima(y,order=c(p,d,q)) # in its most simple version
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> arima(y2_t, order=c(1,0,0))

Call:
arima(x = y2_t, order = c(1, 0, 0))

Coefficients:
         ar1  intercept
      0.9013     0.8586
s.e.  0.0432     1.0011

sigma^2 estimated as 1.105: 
log likelihood = -147.73,  aic = 301.46

> arima(y1_t, order=c(1,0,0))

Call:
arima(x = y1_t, order = c(1, 0, 0))

Coefficients:
         ar1  intercept
      0.5846    -0.1587
s.e.  0.0799     0.2491

sigma^2 estimated as 1.101:  
log likelihood = -146.89,  aic = 299.79
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THE END OF THE CURRICULUM

The final exam will be a 4-hour written exam: 
-> 15:00-19:00 Friday June 13th, 2022 at Silurveien 2 (Sal 3D)

Please send any feedback on the course to: 

The second mandatory assignment will be available in the middle of next
Week with deadline on

                          Thursday April 21st 2022 at 14:30

Good luck to everybody!
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