
STK4900/9900  -   Lecture 1

Program

1. Introduction
2. Descriptive methods
3. Data and probability models
4. Normal distributions
5. Estimation and confidence intervals
6. Hypothesis testing and P-values
7. Robustness
8. Bootstrapping

•Sections 2.1 – 2.3
•Sections 3.1.1 – 3.1.3, 3.1.7 and 3.6
•Supplementary material 
      (cf. your introductory statistics textbook)
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Basic idea

The basic idea for the development and evaluation of most 
methods in statistics is to consider the data as generated by a 
probability model, and to judge the variability of the data 
actually observed in relation to data generated from that 
probability model.

Thus one has:

•  Actual empirical data, the sample, which is often 
described using numerical measures such as the mean 
and the standard deviation

•  A probability model describing the distribution of the data, 
from which one can infer the distribution of the numerical 
measures used to summarize the empirical observations
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Descriptive methods
Measure the age of 19 mineral samples from the Black Forest in 
Germany using potassium-argon dating

To summarize the data we may compute (e.g.) the 
(empirical) mean, median and standard deviation:

(Formulas for       and  s  are given below)x
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The distribution of the data may be illustrated (e.g) by a 
histogram  and by the empirical cumulative distribution (ecdf)

Histogram of age
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Other summary measures are the first 
quartile (Q1) and the third quartile (Q3)

When we use statistical software (like R) to 
compute the quartiles, the software may 
adopt some interpolations which make the 
values of the quartiles differ somewhat from 
those read directly from the ecdf

A boxplot gives another 
useful graphical display 
for a data set:
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Data

In general we consider observations  x1, … , xn   that are either:

•  replications of the same measurement (as in the example)

or

•  observations on a random sample from some population

Observations may be numerical (as in the example) or categorical         
(e.g. gender)

We focus on numerical data in the first part of the course
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Empirical mean and standard deviation for numerical data: 

The summation sign            means that we should put  i  = 1,2, …., n   
               in the expression following the summation sign and add 

together the                    n  terms thus obtained
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Random variables and distributions
Observations (measurements) can be more or  less variable (precise)

To describe the variability, we consider the data as independent 
replications of a random variable  X,  having a distribution described by a 
probability density  f(x)  or a cumulative distribution function (cdf)  F(x) 

f(x)  and F(x) are the theoretical counterparts to the histogram and the 
ecdf, respectively  

Example: Density and cdf for normally distributed random variable with 
(theoretical) mean 275 and standard deviation 25
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It is not possible to predict exactly one realization of  X, but it is 
possible compute the probability that it falls in a certain interval:
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Illustration:

a b a b

In practice statistical tables or statistical software (like R) 
are used to find the probabilities
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Distributions are described by (theoretical) summaries such as

•   Mean or expectation: 

•   Variance:

•   Standard deviation:

(The formulas above apply for a continuously distributed random variable. 
Similar formulas with sums apply for discrete random variables, e.g., counts.)

Properties of expectation and variance:

when  X  and  Y  are independent

( ) ( )E a bX a bE X  

( ) ( ) ( )E X Y E X E Y  

2Var( ) Var( )a bX b X 

Var( ) Var( ) Var( )X Y X Y  



Suppose that  x1, … , xn    are independent replications of a 

random variable  X  with mean μ  and standard deviation  σ, then

•                          

as  n  increases
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Law of large numbers

It is a common experience that empirical means (i.e. averages) become 
more precise as the number of observations increases

This empirical phenomenon has a mathematical counterpart in the law of 
large numbers:

One also has that                   as  n  increases

x 

s 
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Normal distributions
The normal distributions will play a key role in the first part of the course

A random variable  X  is normally distributed with mean  μ  and standard 

deviation  σ   [short: X ~                ]  if its density takes the form:

For all normal distributions we have: 

2
1 1

( ) exp
22

x
f x



 

   
    

   

2( , )N  
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If a random variable  Z  is normally distributed with mean  μ = 
0  and standard deviation  σ = 1 , we say that  Z  is standard 
normally distributed, i.e.  Z ~

1)   If  X ~                ,  then                    ~

Two important results:

2)   Suppose that  x1, … , xn    are independent replications 

of a random variable  X ~                 , 

[we say that  x1, … , xn  is a random sample from the normal 

distribution with mean  μ  and standard deviation σ], 
then       ~  

If the sample size is reasonably large, result 2 holds 

approximately also when  x1, … , xn  is a random sample from 

another distribution  than the normal  (central limit theorem)

(0,1)N

2( , )N  
X

Z





 (0,1)N

2( , )N  

2( , / )x N n 
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Estimation

The purpose of an investigation is often to use the data to  
estimate  an unknown quantity      

     may be a parameter describing the probability model           

  (e.g. the mean μ or the standard deviation σ ), or a function 

of the model parameters (e.g. the coefficient of variation σ/μ) 

To be specific, consider the situation where the empirical 
mean       is used to estimate the mean  μ  of a distribution

It is then common to write 

In the example with mineral samples, we estimate the age to 
be                             million years 



x

ˆ x 



ˆ 276.9x  
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We will only consider estimators that are unbiased, i.e.                   ,
(or that are approximately unbiased) i.e. estimators that give 
(approximately) the correct value "in the long run"

Then the uncertainty of an estimator may be measured by its 

standard error 

In general we have an estimator       for the unknown   

Note that       is a random variable (since it depends on the data), and 
hence we may consider the expected value and the variance of  

Consider the estimator 

Its standard error is given by 

In practice the standard error has to be estimated by replacing  σ 

by the empirical standard deviation  s 

In the example with mineral samples, the (estimated) standard 

error becomes                                                million years

ˆ( )E  

ˆ ˆ( ) Var( )se  

̂ 

̂
̂

ˆ x 

( ) /se x n

/ 27.1/ 19 6.2s n  



Confidence intervals
The typical form of a confidence interval is

where              is the  (estimated) standard error of the estimate                 

In general a confidence interval for an unknown quantity       has the form 

 ( L , U  ) , where  L  and  U  are computed from the data.

The confidence coefficient            of a confidence interval is the 
probability that the interval contains the unknown quantity:

The confidence interval (*) may more briefly be given as
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

1 

( ) 1P L U    

 ˆ ˆ ˆ ˆ( ) , ( ) (*)c se c se      

ˆ ˆ( )c se  

ˆ( )se



Confidence interval for the mean μ

Suppose that x1, … , xn    is a random sample from
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σ  known

                                 and a confidence interval takes the form

c  is defined (implicitly) by

One may find  c  from a table of the standard normal distribution 

In particular for a 95% CI we have  c = 1.96

2( , )N  
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σ  unknown

When  σ  is unknown (as is usually the case), we may estimate  σ  by 

the empirical standard deviation  s

A confidence interval then takes the form:

We now have to use the t-distribution with  n -1 degrees of freedom         

to determine  c 

For the example with mineral samples a 95% CI has limits: 

and



19

Hypothesis testing

General set-up:

•  We want to test the null hypothesis                                                 
     

        versus the (one-sided) alternative hypothesis

•  From the observed data we compute a test statistic

• Based on the observed value of the test statistic, can we reject      
  

       (and hence conclude that         is true)?

This is usually done through the P-value

The P-value is the probability, when  H0  is true, that the test statistic 
has a value equal to or more "extreme" than the one observed

In other words we compute the evidence against H0 (i.e. in favor of HA).

0 0:H  

0H

AH

0:AH  
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Test for the mean μ

Suppose that x1, … , xn    is a random sample from

We want to test the null hypothesis                         versus the 

alternative 

Again there are two situations:

σ  known

We reject  H0  for large values of the test statistic 

Under  H0  the test statistic is standard normally distributed

That can be used to compute the (one-sided)  P-value:  P = P(Z > z) 

        where ~

2( , )N  

0 0:H  

0:AH  

Z (0,1)N
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σ  unknown

We reject H0 for large values of the test statistic 

Under H0 the test statistic is t-distributed with n -1 degrees of freedom (df) 

That can be used to compute the (one-sided) P-value:  P = P(T > t) 

where  T  is t-distributed with  n -1 df.
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Consider for illustration the example with mineral samples

We want to test the null hypothesis                           versus the 

alternative 

This gives

corresponding to a P-value of 3.6%

0 : 265H  

: 265AH  



To be aware of: Lately, there have been extensive discussions in scientific 
journals and media about the misuse of P-values that has developed in 
some fields – originating from misconceptions of what P-values mean 
and how they should be used.  

23



The statement’s six principles, many of which address misconceptions and misuse 
of the p- value, are the following:

1. P-values can indicate how incompatible the data are with a specified 
statistical model.

2. P-values do not measure the probability that the studied hypothesis is true, 
or the probability that the data were produced by random chance alone.

3. Scientific conclusions and business or policy decisions should not be based 
only on whether a p-value passes a specific threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of an effect or 
the importance of a result.

6. By itself, a p-value does not provide a good measure of evidence regarding a 
model or hypothesis.

The ASA's Statement on p-Values: Context, Process, and Purpose 
 The American Statistician 2016 Volume 70(2) pp. 129-133

24
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Comparing two groups

Measure bone mineral density (in g/cm2) for rats given isoflavone and 
for rats in a control group:

Question: Does isoflavone have an effect on bone mineral density?



Suppose that the data for the two groups are random samples 

from                     and                      , respectively   

We  estimate                  by the difference in the (empirical) 

means, i.e. by 

Standard error (estimated):

Here

 

95% confidence interval  for                :
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where c is the upper 97.5% percentile in the t-distribution 

with  n1 + n2 - 2 df

2
1( , )N  

2
2( , )N  

2 1 

2 1x x

2 1 



In the example the estimated effect of the treatment becomes:

Standard error:

95% confidence interval:

i.e.

27

2 1

1 1
( ) 0.0156 0.0057

15 15
se x x   

0.0162 2.05 0.0057 

0.0162 0.0117
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We then consider testing the null hypothesis                               

       versus the (two-sided) alternative

Test statistic:

We reject H0 for large values of  

Under H0 the test statistic is t-distributed with n1+ n2 - 2  df 

That can be used to compute the (two-sided) P-value:  P = 2 P(T >|t|) 

where  T  is t-distributed with n1+ n2 - 2 df.

In the example we have

corresponding to a P-value of 0.8%

0 1 2:H  

1 2:AH  

| |t



Remark: We have assumed equal variances in the two groups,                     . 

This is often not reasonable, in which case a modification of the t-test is 
appropriate, see for instance section 3.1.9. 
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In our case, with n1= n2 , there will be little change, but with very different 

samples sizes and very different standard deviations in the two groups the 
unequal variance t-test is recommended.

You may compare the differences between the equal variance and unequal 
variance t-test in the computer class.

2 2
1 2 
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Robustness

All statistical methods are based on some assumptions on the 
probability model used.

A method is robust if it is valid also when the modeling 
assumptions do not hold.

The confidence intervals and tests we have considered 
assume that the observations come from normal 
distribution(s).

It turns out, however, that the methods are quite robust to the 
normality assumption when the number of observations is 
reasonably large.

This is due to the central limit theorem.
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Bootstrapping
However, with very small data sets robustness need not hold.

One remedy is “bootstrapping”:

•  Resample with replacement from original data
•  Calculate statistic on this bootstrap data set
•  Repeat previous 2 steps B (say 1000) times
•  Sort the B bootstrap estimates
•  Bootstrap (percentile) 95% CI from 2.5 percentile to 97.5   
   percentile of bootstrap estimates

Very general approach, can be used toward any statistic.

Computationally more demanding.

More and more often implemented in statistical software.

Better CI’s than the percentile interval exist.
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Example: Age of minerals

On slide 18 we found 95% CI = (263.8,290.0) using the t-distribution

In comparison, bootstrapping with B=1000 bootstrap samples, I obtained 
the interval (266.3, 288.9)

The bootstrap intervals are sampled and will differ somewhat when 
repeated

On slide 3 we found the median of these data to be 273.

Bootstrapping can be also be applied to find a CI for the median. 
I obtained the interval (256, 287)
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