
STK4900/9900  -   Lecture 2

Program

1. Comparing two or more groups
2. One-way analysis of variance (ANOVA)
3. Multiple testing and FDR
4. Covariance and correlation
5. Simple linear regression

•Section 13.4.1
•Section 2.4
•Sections 3.1.4, 3.2 (not 3.2.2), 3.3
•Supplementary material on FDR, covariance, 
       correlation and one-way ANOVA 
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Comparing two groups

In Lecture 1 we considered an example where we measured bone 
mineral density (in g/cm2) for rats given isoflavone and for rats in a 
control group:

Question: Does isoflavone have an effect on bone mineral density?
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A boxplot gives a graphical comparison of the two groups:

We would like to determine a confidence interval for the treatment 

effect and test if the difference is statistically significant (cf. next 

slide) 
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R-commands:

cont=c(0.228, 0.207, 0.234, 0.220, 0.217, 0.228, 0.209, 0.221, 0.204, 0.220, 
             0.203, 0.219, 0.218, 0.245, 0.210)

treat=c(0.250, 0.237, 0.217, 0.206, 0.247, 0.228, 0.245, 0.232, 0.267, 0.261, 
             0.221, 0.219, 0.232, 0.209, 0.255)

boxplot(treat, cont,names=c("Treatment","Control"))

t.test(treat, cont , var.equal=T)

 R-output (slightly edited)

Two Sample t-test

data:  treat and cont 
t = 2.844,  df = 28,  p-value = 0.0082
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 0.0045    0.0279 
sample estimates:
mean of x  mean of y 
0.2351  0.2189 



Suppose that the data for the two groups are random samples 

from                     and                     , respectively   
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Consider testing the null hypothesis                          versus 

the alternative

Test statistic:

where

with

We reject H0 for large values of  

P-value (two-sided) :  P = 2 P(T >|t|),  

where  T  is t-distributed with n1+ n2 – 2 df.

2
1( , )N  

2
2( , )N  
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In an experiment 24 rats were randomly allocated to four different 
diets, and the blood coagulation time (in seconds) was measured for 
each animal

Question: Does diet have an effect on coagulation time?

6

Comparing more than two groups: one-way ANOVA

We may compare two and two diets, using two sample procedures 

We would, however, also like to have an overall test
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In general we have observations from K groups: 

We assume that all observations are independent and that the 

observations from group  k  are a random sample from 

Notation:

Total number of observations: k
k

n n

,

1 1
Overall mean: ik k k

i k k

x x n x
n n
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We want to test the null hypothesis                                  versus the 

alternative that  not  all the        are equal

Introduce the sums of squares: 

Important decomposition:

(total sum of squares)

(model sum of squares)

(residual sum of squares)
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Unbiased estimator of         : 

However, when the null hypothesis does not hold, the latter 

estimate tends to be larger than 

Under the null hypothesis           may also be estimated by :   

We reject the null hypothesis for large values of the test statistic 

The test statistic is F-distributed with K – 1 and n – K  degrees of 

freedom under the null hypothesis

This result is used to compute the P-value 

/( 1)

/( )

MSS K
F

RSS n K
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The result may be summarized in an ANOVA table:

The P-value is found by:

where   F   is F-distributed with  K – 1 and  n – K  degrees of freedom 

In Lecture 3 we will see how one-way ANOVA is a special case of 

multiple linear regression

Source           df        Sum of           Mean sum               F statistic           P-value

                                 squares          of squares                                                       

/( 1)
Model         1 /( 1)

/( )

Residual     /( )

Total           1          

MSS K
K MSS MSS K F P

RSS n K

n K RSS RSS n K

n TSS


  



 



( observed value of )P P F F 
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rats=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/
         rats.txt",header=T)

rats$diet=factor(rats$diet)      # defines diet to be a categorical variable

aov.rats=aov(time~diet,data=rats)

summary(aov.rats)

R commands for coagulation times:  

      Df Sum Sq      Mean Sq F value        Pr(>F)    
diet               3       228               76.0                  13.6     4.7e-05 
Residuals    20       112                 5.6 

R output (edited):  
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Consider the situation with two groups, i.e.  K = 2

Relation to two-sample t-test (two-sided)

Will test the null hypothesis                          versus the                  

alternative hypothesis 

t-test statistic:

We reject H0 for large values of  

We may show that 

The usual (two-sided) t-test for two samples is a special 

case of the F-test in one-way ANOVA

2 /(2 1)

/( 2)

MSS
t F

RSS n
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R-commands for bone density example:

bonedensity=read.table("http://www.uio.no/studier/emner/matnat/math/
                        STK4900/data/bonedensity.txt",header=T)
aov.density=aov(density~group,data=bonedensity)
summary(aov.density)

 R-output (edited)

     Df    Sum Sq    Mean Sq F value   Pr(>F)   
group           1 0.00197 0.00197  8.09 0.0082 
Residuals   28 0.00681 0.000243 

Note that 
2 22.844 8.09t F  



Multiple testing
In Lecture 1, we performed a hypothesis test and calculated a P-value (using a 
t-test).

Now in Lecture 2 we have discussed one-way ANOVA for the null hypothesis:

We could also be interested in testing pair-wise differences in mean between 
category levels: 

Assume all                                are true and are tested with a significance level 
a. 
Note: This will consist of m=K (K-1)/2 different tests, i.e. multiple tests.

Then the overall probability of rejecting one or more null hypotheses (falsely) 
will be greater than a, but less than m a. 

Thus: With a initial level a’= a/m we can ensure an overall level of a.

Such a procedure is called a Bonferroni correction. Although appealing 
Bonferroni corrections can be seriously conservative. 14
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Multiple testing, cont.

Often, we perform a very large number test at the same time.

For example, in genomics, maybe m=10000 tests 
are performed simultaneously. For each test, we 
have a probability α of erroneously rejecting H0, 

resulting in a false discovery (“Type I error”).

With α = 0.05, and 10000 independent tests, we expect 500 false discoveries. 
Even for small m, the probability of at least one false discovery is large. With 
f.ex. m=10 independent tests, we get

P(at least one false discovery among 10 tests) = 1 – P(no false discoveries) 
                                                                                = 1 – (1-α)10 =1 – (1-0.05)10 =  0.4

15



• We perform m simultaneous tests  with a common procedure.

• For a given procedure, classify the results as: 
   

• TN = # True Non-discoveries, FN = # False Non-discoveries, 
      FD = # False Discoveries, TD = # True Discoveries. 

Multiple testing setting
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• Only N, D, m are observed, FD (for instance) is not known



How to choose a threshold?

Borrowed from C.R. Genovese 17



We use the term raw P-values for the original P-values P1, P2, …, Pm, and 

produce adjusted P-values P1
adj, P2

adj, …, Pm
adj

  based on the type of control above.
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Bonferroni adjustment (simplest to understand, but conservative)

All hypotheses with raw P-values < α/m are rejected. Guarantees a probability 
of any FD below α (as pointed out above).

Adjusted P-values will be    Pi
adj = min(mPi , 1),         i = 1, 2, …, m

In R: Let P be a vector of raw P-values. 

> p.adjust(P, method="…") 

returns a vector of adjusted P-values. Choices of methods for p.adjust can 
for instance be "bonferroni” or "BH” for Benjamini-Hochberg controlling the FDR. 



FDR adjustment 

Bonferroni, controls the overall probability of having at least one false discovery. 
Bonferroni is very strict, and may rule out discoveries of interest as false. 
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FDR, on the other hand, controls  the expected proportion of false discoveries 
relative to the total number of discoveries, and tolerates some false discoveries.

With an FDR of f.ex. 10 % (0.10), on average 10% of the discoveries will represent
false discoveries. Dropping the mathematics behind, the Benjamini-Hochberg 
procedure can be summarized as:

• Choose a false discovery rate Q (f.ex. 10% or 20%)

• Sort the raw P-values, giving P(1), P(2), …, P(m)   

• Compare each P(i)-value to its Benjamini-Hochberg critical value (i/m)Q

• The largest P(i)-value that has P(i)<(i/m)Q is significant, and all of the P-values 

        smaller than it are also significant. 



The BH adjusted P-value is the raw P-value times m/i. If the adjusted P-value 
is smaller than the false discovery rate Q, the test is significant.

Garcia-Arenzana et al.(2014) Associations between dietary 
variables and breast cancer risk

 

Example

m=25 tests, giving raw P-values in column 2

FDR-corrected, with Q=0.25 (!large!), we see from 
column 4, that Proteins and the other variables 
above are significant. 

FDR-corrected with Q=0.15 gives Olive Oil and
Total calories as significant (check!)

Using Bonferroni-correction, only the variables with 
raw P-value < 0.05/25 = 0.002 are significant, that
is only Total calories

20
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Two numerical variables

For one-way ANOVA we study how a numerical variable (e.g. blood 
coagulation time) depends on a categorical variable (e.g. diet)

Often we  want to study the relation between two numerical variables

Example A: When water flows across a field, some of the soil will be washed 
away (eroded). An experiment has been performed in order to investigate how 
the amount of water affects the amount of soil that is eroded. 

Example B: Forced vital capacity (FVC) and peak expiratory flow (PEF) 
have been measured for 12 adults (in liter and liter per minute, respectively).
What is the relation between these two measures of lung function?
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We will consider two situations: 

1. The data  (x1,y1) , … , (xn,yn)  are considered as independent 

replications of a pair of random variables  (X ,Y )

2. The data are described by a linear regression model                        

                                                                                                       

Here  y1 , … , yn  are the outcomes that are considered to be 

realizations of random variables, while  x1 , … , xn  are considered 

to be fixed (i.e. non-random)  and the  εi's  are random errors (noise)

Situation 1 occurs for observational studies (like Example B), while 

situation 2 occurs for planned experiments, where the values of the xi's 
are under the control of the experimenter (like Example A)

In situation 1 we will often condition on the observed values of the xi's, 
and analyze the data as if they are from situation 2

We start out by considering situation 1

0 1 , 1,....,i i iy x i n     
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Bivariate distributions

We describe the joint distribution of a pair of random variables  (X ,Y )

through their bivariate probability density,  f (x,y)

This is defined so that

 
The bivariate normal distribution 

depends on the parameters: 

1Mean of :X 

2Mean of :Y 

1Standard deviation of :X 

2Standard deviation of :Y 

Correlation : 
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Covariance and correlation

The dependence between X and Y  may be summarized by the 
covariance:

or by the correlation coefficient:

Important properties of the correlation coefficient:

•  corr(X,Y) takes values between  -1  and  1

•  corr(X,Y) describes the linear relationship between Y and X

•   If  X and Y  are independent, then  corr(X,Y)=0

    (but not necessarily the other way around)
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Examples of correlated data:
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Examples of uncorrelated data:
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Empirical correlation

The empirical correlation coefficient is an estimator of the theoretical 
correlation coefficient, and it takes the form 

Here  sx  and  sy  are the empirical standard deviations of the xi's and 

the yi's

r  is called the Pearson correlation coefficient

The properties of the Pearson correlation coefficient are similar to 
those of the theoretical correlation coefficient

1
( )( ) /( 1)

n

i ii

x y

x x y y n
r

s s
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Consider the example with measures of lung function:

R-commands and results:

fvc=c(3.9,5.6,4.1,4.2,4.0,3.6,5.9,4.5,3.6,5.0,2.9,4.3)

pef=c(455,603,456,523,458,460,629,435,490,640,399,526)

cov(fvc,pef)

cov(fvc,pef)/(sd(fvc)*sd(pef))

0.856

cor(fvc,pef)

0.856
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Test and confidence interval for correlation

We assume that  (x1,y1) , … , (xn,yn)  are a random sample 

from a bivariate normal distribution 

Consider testing the null hypothesis                        versus the 

alternative

Test statistic:

We reject H0 for large values of  

Under H0 the test statistic is t-distributed with n – 2 df

It is more complicated to describe how one may obtain a 

confidence interval for  r  (but one is obtained by the R code 

on the following slide)

0 : 0H  

0 : 0H  

2

2

1

r n
t

r
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R-command and results:

cor.test(fvc,pef)

        Pearson's product-moment correlation

data:  fvc and pef 

t = 5.23,  df = 10,  p-value = 0.00038

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval:

 0.554     0.959 

sample estimates:

      cor 

0.856 

Note that the confidence interval is not symmetric
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Spearman (rank) correlation

The Pearson correlation is sensitive to outliers in the data, and 
measures degree of linear relation.     

An alternative correlation measure is the Spearman correlation:

The smallest  xi  is replaced by rank ri =1, 

the second smallest  xi  is replaced by rank ri =2, and so on to

the largest  xi  which is replaced by rank ri = n.

Similarly, the yi are replaced by ranks si .

The Spearman correlation is then simply the Pearson 
correlation of the ranks  (r1,s1) , … , (rn,sn). 

In R:
> cor(fvc, pef, method="spearman")
[1] 0.669
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Simple linear regression
We have data  (x1,y1) , … , (xn,yn)

Here: 

Model: 

where the xi's are considered to be fixed quantities, and the  

εi's  are independent error terms ("noise") that are assumed to 
be 

( | )i i i iy E y x  

2(0, ) -distributedN 

outcome  
       (or response)
       (or dependent variable)

iy 

predictor  
       (or covariate)
       (or explanatory variable)
       (or independent variable)

ix 

0 1 i ix    
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Consider the erosion example:

0.5 1.0 1.5 2.0 2.5 3.0 3.5

1
2

3
4

5
6

water

er
os

io
n

Response = erosion

Predictor = amount of water

Model: 

0 1erosion water    



0.5 1.0 1.5 2.0 2.5 3.0 3.5

1
2

3
4

5
6

water

er
os

io
n

35

Least squares

We estimate the regression coefficients  using the method of 

least squares, i.e.  the estimates         and          are obtained as 

the values of        and       that  minimize the sum of squares
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R-commands:
water=c(0.31,0.85,1.26,2.47,3.75)
erosion=c(0.82,1.95,2.18,3.02,6.07)
fit=lm(erosion~water)
summary(fit)
plot(water,erosion,pch=19)
abline(fit)

R-output (edited)

Coefficients:

                      Estimate Std. Error      t value        Pr(>|t|)   

(Intercept)        0.406     0.445          0.912          0.429   

water               1.390     0.210          6.630          0.007 

 

Residual standard error: 0.580 on 3 degrees of freedom

Multiple R-squared: 0.936,     Adjusted R-squared: 0.915 

F-statistic: 44.0 on 1 and 3 DF,  p-value: 0.007 

"Estimate"  denotes  the least  squares estimates (the meaning 

of the other parts of the output will be made clear in the 

following) 
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Fitted regression line:
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Fitted values and residuals

Fitted values:

Residuals:

The residuals are 

estimates of the 

unobserved  εi's  
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Sums of squares

In a similar manner as for one-way ANOVA, we have the sums of squares: 

Decomposition:

(total sum of squares)

(model sum of squares)

(residual sum of squares)
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Standard errors

Unbiased estimator of         : 

        is the "residual standard error" in the R output 

The variance of        is estimated by  : 

where                                                is the sample variance of the  xi's 

  
Standard error: 

Similar formulas hold for the variance and standard error of

The standard errors are denoted "Std. Error" in the R output 
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Hypothesis tests

Consider testing the null hypothesis                      versus the 

alternative

Test statistic:

Under H0 the test statistic is t-distributed with n – 2 df 

We reject H0 for large values of  

P-value (two-sided) :  P = 2 P(T >|t|),  
where  T  is t-distributed with  n – 2 df.

Testing the null hypothesis                      is performed similarly        

(but is usually not of much interest)

t-statistics and P-values are given in the R output  as "t value" and  "Pr(>|t|)" 
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Confidence intervals

95% confidence interval for        :

where c is the upper 97.5% percentile in the t-distribution with  n – 2 df

95% confidence interval in the erosion example:

i.e.   from   0.72  to   2.06 

Note that the confidence interval does not contain 0 if and only if 

the P-value for the test is less than 5%

1

1 1
ˆ ˆ( )c se  

1.39 3.18 0.210 
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Correlation and regression

The least squares estimate for the slope is given by:

where

is the Pearson correlation coefficient  (and  sx  and  sy  are the 

empirical standard deviations of the xi's and the yi's)

Further the test for                      in a linear regression model (slide 40) 

is numerically equivalent to the test for                      for bivariate data 

(slide 29)   
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Coefficient of determination

The coefficient of determination is given by

This may be interpreted as the proportion of the total variability in the 
outcomes (TSS) that is accounted for by the model (MSS)

R2  is given as  " Multiple R-squared" in the R output

For the simple linear regression model  R2  is just the square of the 
Pearson correlation coefficient:

2 1
MSS RSS

R
TSS TSS

  

2 2R r
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