STK4900/9900 - Lecture 2

Program

1. Comparing two or more groups -

2. One-way analysis of variance (ANOVA)
@ Multiple testing and FDR

4. Covariance and correlation

5. Simple linear regression

—

*Section 13.4.1

*Section 2.4

*Sections 3.1.4, 3.2 (not 3.2.2), 3.3

*Supplementary material on FDR, covariance,
correlation and one-way ANOVA



Comparing two groups

In Lecture 1 we considered an example where we_measured bone
mineral denstty (in g/cm?) for rats given isoflavone and for rats in a
control group: —

1) Control (n1 = 15)
0.228 207 0.234 0.220 0.217
0.228 0.209 0.221 0.204 0.220
0.203 0.219 0.218 0.245 0.210
@Isoﬂavone (no, = 15)
0.250 0.237 0.217 0.206 0.247
0.228 0.245 0.232 0.267 0.261
0.221 0.219 0.232 0.209 0.255

Question: Does isoflavone have an effect on bone mineral density?




A boxplot gives a graphical comparison of the two groups:
———
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We would like to determine a confidence interval for the treatment
effect and test if the difference is statistically significant (cf. next
slide)




R-commands:

cont=c(0.228, 0.207, 0.234, 0.220, 0.217, 0.228, 0.209, 0.221, 0.204, 0.220,
~ 0.203,0.219, 0.218, 0.245, 0.210)

treat= C(O 250, 0.237,0.217, 0.206, 0.247, 0.228, 0.245, 0.232, 0.267, 0.261, />
~0.221,0.219, 0.232, 0.209, 0.255) /V C/S Gb_

boxplot(treat, cont,names= c("Treatment"A”ControI")) )Q-—
3> t.test( treat cont, var.equal= TKU&) !

)<2,-
@('sllghtly edltedD t S'Z (=, - x) f) +h, -2

Two Sample t-test
data: treat and cont /é‘ /&
(D=2.844, df = 28, p-value&g 0082

alternative hypothe5|s true difference in means is not equal to 0 ﬁ[/é( %
‘ )

95 percent confidence interval:

Qs (0.0045' 0.0279)

sample estimates:
mean of x mean of y
0.2351 0.2189 P Ll

é28/ 0.0{5:




Suppose that the data for the two groups are random samples
from N(u,0?) and N(u,,0%), respectively

Consider testing the null hypothesis H, :u, =u, versus
the alternative H,:u, #u,

Test statistic: Ty — 71

t =
se(To — 1)

where

with

ny—1 no — 1
=g 2
ny+ no — 2 ny+no —2

We reject H, for large values of |t|

e,
anlE—

P-value (two-sided) : P =2 P(T >|t|),

where T is t-distributed with n,+ n, — 2 df.



Comparing more than two groups:@y ANOVA

In an experimen rats were randomly allocated to four different
diets, and the blood coagulation time?(ln seconds) was measured for
—_ —_—

each animal =~ ——
Dlet< treatment
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- Question;) Does diet have an effect or:%lmez C )

We may compare two and two diets, using two sample procedures

We would, however, also like to have an overall test
_—




k=4

In general we have observations from K groups:

e

Xy :oPEervation numbe@in group k _

(i =1,...,n, k=1..K
12,34 ., s AE8<

We assume that all observations are independent and that the

observations from group k are a random sample from iV(Mk,cf)

———— rj

Notation:

. o=
Total number of observations:{ 1 —_—

-
—_—
—

: _ 1
Mean in group k: @-—Zi'x®

‘Overall mean: @/ Z xl.k :lan X,
k

n

S



We want to test the null hypothesis H: u, =.....

——
)

alternative that not all the u, are equal

Pr——

Important decomposition:

TSS =MSS + RSS

.‘-’,——-

(total sum of squares)

(model sum of squares)
—_——— >

(residual sum of squares)

T———



Unbiased estimator of o’ :

ﬁ

s> =RSS /(n- K)

/
Under the null hypothesis gi may also be estimated by .

MSS/(K-1) &

However, when the null hypothesis does not hold, the latter ?.U‘
— - Z -
estimate tends to be larger than O

fibe/ap

freedom under the null hypothesis _ols

This result is used to compute the P-value == =

; J HZEAS
The test statistic i§ E-distributed with K—1 and n — K degrei[ of
—_—— —= —_—



The result may be summarized in an ANOVA table:

Source df Sum of Mean sum F statistic P-value
SOUICE

squares of squares

_ MSS/(K - 1)
ot (k- DS (assix- D
—_ @ "~ RSS/(n- 9)

-t-
Residual RSS RSS /(n- K)
Total n- *Q TSS =

The P-value is found by: Fég
______/KM
P =P(F > observed value of F

( )

where F_is F-distributed with K—1and n—K degrees of freedom

—

In Lecture 3 we will see how one-way ANOVA is a special case of
multiple linear regression

—

10



R commands for coagulation times:
g’gs=read.table§ "http://www.uio.no/studier/emner/matnat/math/STK4900/data/
rats.txt",header=T)
rats$diet=factor(rats¢diet) # defines diet to be a categorical variable
_ e

[ ——

aov.rats=aov(time~diet,data=rats)
summary(aovrats) A H A
A / /I qL
2/({ g‘( {(‘35 %% e’Th

/

{

DX
1]

R output (edited):

Df  Sum Sq Mean Sq F value Pr(>F)

diet (3> 228 76.0 13.6 \*\
Residuals —

f 112 5.6 S
4=t/ 23 7




Relation to two-sample t-test (two-sided) €

Consider the situation with two groups, i.
/4

Will test the null hypothesis H, : &4, =, versus the ~
) . e E—ee—
alternative hypothesis H,: u, #u,
—_ - 7 —~o

t-test statistic: _
; o — T1q t\'(§§ (L("\
se(To — 1) ’ F"” @SS ,/1-§
We reject H, for large values of |t|
We may show that &< =<

The usual (two-sided) t-test for two samples is a@
casiof the F-test in one-way ANOVA

12



R-commands for bone density example:

bonedensity=read.table("http://www.uio.no/studier/emner/matnat/math/
STK4900/data/bonedensity.txt",header=T)
aov.density=aov(density~group,data=bonedensity)
= ?" .

summary(aov.density)

R-output (edited)

Df Sum Sq Mean Sq F value Pr(>F)
group. (1) 000197  0.00197 0.0082
Residuals 0.00681  0.000243

Note that i =2.844* =8.09 =F

S

13



) et }%\'}Qﬁ/
2vibes ws 95 <cs Multiple testing 2

61-\14‘0-2’) w, QoS ! T
In Lecture 1, we performed a hypothesis test and calculated a P- value (usmg a

t-test). —

Now in Lecture 2 we have dlscussed one-way ANOVA for the null hypothesis:

We could also be interested in testing pair-wise differences in mean between
category levels: -
gory H% . Mj — Uy

4

Assume all Hy;, t 1, =4, are true and are tested with a significance level

Note: This will consist of m=K (K-1)/2 different tests, i.eﬁgﬁge tests.

P

Then the overall probability of rejecting one or more null hypothese

will be greater than o, but less than m «. ‘—'
. ——

: Wi initi o'= o o.
Thus: With a initial level o'= o/m we can ensure an overall level of
e = ﬂ'

Such a procedure is called @erroni correction. Although appealing

L] .‘ . L]
Bonferroni corrections can be seriously conservative. 14
m




BooZ. Multiple testing, cont.

Often, we perform a very large number test at the same time.

For example, in genomics, maybe m=10000 tests =
are performed simultaneously. For each test, we s -

have a probability a of erroneously rejecting H,,,
resulting in a false discovery (“Type | error”).

With a = 0.05, and &)_O_deependent tests, we expealse discoveries.
Even for small m, the probability of at least one false discovery is large. With

f.ex. m=10 independent tests, we get
m

P(at least one false discovery amongthests) =1 - P(no false discoveries)
e P e————— 1031 — (1_(2.05)10: @)

15




Multiple testing setting

e We perforr@imultaneous tests with a common procedure.

* For a given procedure, classify the results as:

Hg Retained  H( Rejected | Total

HO Tru_e_
Hy False 7

Tal | (N) (D) (>

* TN =# True Non-discoveries, FN = # False Non-discoveries,
FD = # False Discoveries, TD = # True Discoveries.

* Only N, D, m are observed, FD (for instance) is not known

ﬁ

16



How to choose a threshold?

e Control Per-Comparison Type | Error (PCER)

—a.k.a. "uncorrected testing,” many type | errors
— Gives P{FD; > 0} < a marginally for all 1 <i <m

e Control Familywise Type | Error (FWER) ’

—e.g.: Bonferroni:_u r-comparison significance Ieve

— Guarantee

e Control False Discovery Rate (FDR)
— first defined by Benjamini & Hochberg (BH, 1995, 2000)

FD
— Guarantees FDR = (F) <

Borrowed from C.R. Genovese 17



We use the term raw P-values for the original P-values P,, P,, ..., P, and

——

produce adjusted P-values P 24, P2 .., Pmadj based on the type of control above.

]

Bonferroni adjustment (simplest to understand, but conservative)

———
All hypotheses with raw P-values < a/m are rejected. Guarantees a probability
of any FD below a (as p0|nfe=d_ouf agove)
Adjusted P-values will be P24 = min(mP,, 1), i=1,2,....m

In R: Let P be a vector of raw P-values.

> p.adjust(P, method="...")
— 1 ¥

returns a vector of adjusted P-values. Choices of methods for p.adjust can

for instance be "bonferroni” or "BH for Benjamini-Hochberg controlling the FDR.

—

_0‘05 ©.0 0o0QsS
AQ'OOO T

18



FDR adjustment

Bonferroni, controls the overall probability of having at least one false discovery.
Bonferroni is very strict, and may rule out discoveries of interest as false.

FDR, on the other hand, controls the expected proportion of false discoveries

relative to the total number of discoveries, and tolerates some false discoveries.

With an FDR of f.ex. 10 % (O 10), on average 1 10% of the discoveries will represent
false discoveries. Dropp ng the mathematics behind, the Ben!amlnl Hochber
‘7‘=——

rocedure can be summarized as:
P R
* Choose a false discovery rate Q (f.exr 20%) A wA-
— —
refef
* Sort the raw P-values, giving P, P ,, ..., P, o
» Compare each P -value to its Benjamini- Hochberg critical value |/r{1 (=
) ‘-—-
e The largest P,-value that has is significant, and all of the P-values

smaller than it are also significant.  { 3

a—

o\g
9

- A
oL %‘% ot(_
z

2% 2



The BH adjusted P-value is the raw P-value times m/i. If the adjusted P-value

is smaller than the false discovery rate Q, the test is significant.

Example Garcia-Arenzana et al.(2014) Associations between dietary

variables and breast cancer risk
S — e ————

——

=0.001

~— Total calories 1
o« o . L Olive pil (1008 2 o
m=25 tests, giving raw P-values in column 2 T e mik g 003 o
TEEES——— White meat 0.041 4

Proteins 5 0050 A%
FDR-corrected, with Q=0.25 (!large!), we see from - andpf‘;;:j 00 o
column 4, that Proteins and the other variables White fish 0205 8 oo
above are significant. Vegetables 0216 10 0100
/ Skimmed milk 222 11 0.110
Red meat 251 12 .120
. . . . Fruit (269 13 (130
FDR-corrected with Q=0.15 gives Olive Oil and Eggs 0275 14 0.140
Total calori : “Fl_r( heck!) Bluefish 034 15  0.150
otal calories as significant (check! Legumes 0341 16 0160
Carbohydrates [.384 17 L170
Potatoes .5a9 18 0.180
Usin = n, only the variables with Bread O34 19 010
. o Fats (Le%%6 20 (1200
raw P-value < 0.05/25 = 0.002 are significant, that Sweets 0762 21 0210
. T e—— Dairy products 0.94 22 0.220
IS onIy Total ca|or|es Semi-skimmed milk 0.942 23 0230
Total meat 0.975 24 0.240
Processed meat (L9806 25 (0.250

Ce €~ {
— e 20
—_—



Two numerical variables

For one-way ANOVA we study how a numerical variable (e.qg.
~coagulation-time) depends on a categorical variable (e.g. diet
[ i it imsia e)

Often we want to study the relation between twm

T — —

———

Example A: When ross a field, some of the soil will be washed
away (eroded). An experiment has been performed In order to investigate how
the amount of water affects the amount of soil that is eroded.

—> Amount of water (I/s) ( 0.32 0.85 1.26 2.47 3.75 j_\
—— Erosion (kg) (0822 1.95 218 3.02 6.07

>

Example B: Forced vital capacity (FVC) and peak expiratory flow (PEF)
have been measured for 12 adults (in liter and liter per minute, respectively).
What is the relation between these two measures of lung function?

—_—

Person 1 2 3 4 5 6
—= FVC 39 56 41 42 40 3.6 <
_.» PEF 455 603 456 523 458 460 —

Person 7 38 9 10 11 12

FVC 59 45 36 50 29 43
PEF 629 435 490 640 399 526 ;D

21




Example A Example B

600
|

4
|
pef -
550
|

3
I
»
500
|

>/ erosion
®

2
I
®
450
|
)
&
®

®
400
|
®

05 10 15 20 25 30 35 3.0 3.5 4.0 4.5 5.0

water fvc

5.5

6.0
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We will consider two situations:

1. Thedata (x,,y,),...,(x,y,) are considered as independent

replications of a pair of random variables (X ,Y)

2. The data are described by a linear regression model

Here y,, ..., Yy, arethe outcomes that are considered to be

— ————

realizations of random variables, while x,, ..., x are considered

>

to be fixed (i.e. non-random) and the €&'s are random errors (noise)

Situation 1 occurs for observational studies (I|ke Example B), while

situation 2 occurs for_ﬁiﬂg_ggl_,e)gpﬁnmemgwhere the values of the x/'s
are under the controlof the experimenter (like Example A)

In situation 1 we will often condition on the observed values of the x's,

and analyze the data as if they are from situation 2

@ut by considering situation 1 23




Bivariate distributions Nn—\T
o ‘{ g U

We describe the joint distribution of a pair of random variables (X,Y)
through their bivariate probability density, f (x,y)

This is defined so that 7(/ \( / ﬁ

70% PCLY) €4) = [ f(oy) dadyf])
i o

] 2 Ao
The bivariate normal distribution N\jo l X

depends on the parameters:

Mean of X @\ N

Meanof Y : wu,
Standard deviation of X { o,
Standard deviation of Y ¢




Covariance and correlation /) =Qf

The dependence between X and Y may be summarized by the ,_ 4
covariance: JO
y A

Cov(X,Y) = E[(X —pu1)(Y — p2)]

—_

or by the correlation coefficient:

A / ~"
| \= corr X,Y LN
@ (XY) B (X sd(v) ‘Cle
( °
\ -
Important properties of the correlation coefficient: \ j :<
— = _.i

* corr(X,Y) takes values between -1 and 1

* corr(X,Y) describes the linear relatio
— — = <P ——




Examples of correlated data:

Correlation 0.9 / Correlation 0.5
[ ]
—
L J
[ J

26



Examples of uncorrelated data:

—

Correlation 0.0

Correlation 0.0

27



Empirical correlation / r

The empirical correlation coefficient is an estimator of the theoretical

correlation coefficient, and it takes the form

2L D0 - 1)

S, S,

Here s, and s, are the empirical standard deviations of the X;'s and

the yl.'s&

@s called the Pearson correlation coefficient

——

The properties of the Pearson correlation coefficient are similar to
those of the theoretical correlation coefficient

- A < r< Ao
[irp2r c?ﬁ/;enaéa
X._U_\( =D ﬂ‘:@ 74:/% = éé;(_u%)/




—

Consider the example with measures of lung function:

Person 1 2 3 4 5 6

FVC 3.9 56 41 42 40 3.6
PEF 455 603 456 523 458 460
Person 7 8 9 10 11 12
FVC 59 45 36 50 29 43
PEF 629 435 490 640 399 526

R-commands and results:

fvc=c(3.9,5.6,4.1,4.2,4.0,3.6,5.9,4.5,3.6,5.0,2.9,4.3)
pef=c(455,603,456,523,458,460,629,435,490,640,399,526)

cov(fvc,pef)
g)s\_/_(fvc, pef)/(sd(fvc)*sd(pef))

0.856

cor(fvc,pef)
‘9 :

pef

550 600

500

450

400

@

e®e

3.0

3.5

4.0 4.5 5.0

fvc

5.5

6.0

29



Test and confidence interval for correlation

—_—
We assume that (x,,y,), ..., (X ,y.) are a random sample
L — — AN <
from a bﬁ/arlate normal distribution XY jc @Q,&)
Consider testing the null hypothesis Hy: 0 =0 versus the
alternative H,: 0 #0

e
Test statistic:

n- 2

REG,

We reject H, for large values

Under H, the test statistic is t-distributed with n — 2 df

It is more complicated to describe how one may obtain a

confidenE'e'_TﬁFeR/al for I (but one is obtained by the R code

—

on the following slide) 30




R-command and results: (A

Cor. test(fvc pef)

Pearson S product-moment %orrelatlon /
data: fvc and pef s 5
) = - =
df = 10,(p value = 0.00038Y) |
alternative hypothesis: true corrélation is not equal to O

95 percent confidence interval:
( 0554 0.959 ) AL ) C >
—Sample estimates:. !
cor ~A. -,

0.856
P

Note that the confidence interval is not symmetric

—

31



Spearman (rank) correlation

The Pearson correlation is sensitive to outliers in the data, and ,
measures degree of linear relation.

—

An alternative correlation measure is the Spearman correlation:
—_——— e e

= G, A, G %%
The smalle@s replaced by ran ~ 3.4 g, ,yy Ys

the second smallest X. is replaced by rank r,=2, and so on 10

the largest x. which is replaced by rank r, = n. y [
Similarly, the y. are replaced by rank@ 33;;4' );ag g);
S BB a5
The Spearman correlation is then simply the Pearsor?ﬁ
correlation of the ranks (rl,sl) e s (1sS,0)-
7122 -

In R: S 4122 A4 2 24
/1 2 2¢

[

>
> cor(fvc, pef, method="spearman") 2 =<
[£70.669 —_—— —>als 22




Simple linear regression
We have data (x,,y,), ..., (X,y.)

—

Here:

@ = outcome _
(or response) <~
(or dependent variable)

x, = predic ;f: IQ&) TE
— (or covariate)

(or explanatory variable)

(or independent variable)

—

Model:
Vi :E(yi |Xi)+gi %E;}@

where the x's are considered to be fixed quantities, and the

E's areli erms ("noise") that are assumed to
be N(O,0 *)-distributed
‘m

33



Consider the erosion example:

—>  Amount of water ({/s) | 0.31 0.85 1.26 247 3.75
__» Erosion (kg) 0.82 1.95 2.18 3.02 6.07

ST '

Response = erosion
———

Predictor = amount of water

Model: ~

o - ~ s o
erosmn .k@Nater te 3 f——_b
o 0.5 1.0 1.5 2.0 2.5 3.0 3.5

water
\

34



Least squares

We estimate the regression coefficients using the method of
least squares, i.e. the estimates _/_3_)_0 and f, are obtained as
the values of b, and b, that minimize the sum of squares

Z(yi - b, - blxl.)2
L e

=] -

o A ).
lllustration: gkﬁ *ﬁ.K{ - % >

35



R-commands: = ( ¢
water=c(0.31,0.85,1.26,2.47,3.75) Cf(é - ]m %N K) ZLQJ o

erosion=c(0.82,1.95,2.18,3.02,6.07) j@\ﬁ
‘_frtzlmierosion~water) l.g
ummary
plotf{(water,erosion,pch=19)
abline(fit)
/\
R-output (edited) ?0
Coefficients:
Std. Error  t value Pr(>[t|) T{‘O ﬁ(_—p
Intercept) 0.445 0.912 0.4
7
Cuate)) 60.2105 6.630

Residual standard error: on 3 degrees of freedom

m—

Adjusted R-squared: 0.915

Multiple R-square 0.915
44.0 on'l and 3 DF, p-value: 0.007

"Estimate" denotes the least sguares estimates (the meaning
of the other parts of the output will be made clear in the 36




R

e~ -9

N e = =~ -

Fitted regression line:

~ L. -
£

erosion =0.406 +1.390 Xwater

T

37



Fitted values and residuals

Fitted values:

Residuals:
@:yi B j}i
w

The residuals are
estimafes of the

unobserve

e

38



Sums of squares

c—
P

In a similar manner as for one-way ANOVA, we have the sums of squares:

~

(total sum of squares)

(model sum of squares)

(residual sum of squares)
——,

39



Standard errors

/\
Unbiased estimator of OE

—s . =RSS/(n- 2) ‘ﬁ’ ‘}’
: ey ——————

Sy is the "residual standard error" in the R output

The variance of /JA’l IS estimated by :

( Vér(ﬁ:):

where S, =2, _(x,- X)*/(n-1) s the sample variance of the x's

—

Standard error: Se(/a’l)( Var(/a’ )

Similar formulas hold for the variance and standard error of /9’0

The standard errors are denoted "Std. Error” in the R output

40



Hypothesis tests

Consider testing the null hypothesis H, : f5, jO versus the

alternative H,: 3, #0 / -

Test statistic:‘@ - /3,1,_0 f _ Tﬁ\\ Y
= A\
se(f,) S (f )

We reject H, for large values of |t|

Under Ho—the test statistic is t-distributed with n —
P-value (two-sided) : P =2 P(T >|t|),
where T is t-distributed with n — 2 df.

(but is usually not of much interest)

—

———,

t-statistics and P-values are given in the R output as "t value" and "Pr(>[t[)"

41



Confidence intervals ?
7

/ 95% confidence interval for @

}Q.S:_A
/3;1 *c 'Se(/§1) -""an-g;ajzg = {0025

where c is the upper 97.5% percentile in the t-distribution with n — 2 df

S

95% confidence interval in the erosion example: on

~

)

1.39 £3.18 -0.210

—_..#—‘

l.e. from 0.72 to 2.06

&—‘—-—-‘
SRS Res
K3
Note that the confidence interval does fiot icontain O if and only if
B =~ —

the P-value for the test is less than 5%

42



Correlation and regression

—

The least squares estimate for the slope is given by:
~ sy
507 )
" Sx

3" (x- (- Y(n-1)

S, °S,

——

where

Is the Pearson correlation coefficient (and s, and s, are the

empirical standard deviations of the x's and the y's)

e

Further the test for H,:f, =0 In a linear regression model (slide 40)

IS numerically equivalent to the test 1:6r Hy:p =0 for bivariate data
— e —
(slide 29)

43



Coefficient of determination

The coefficient of determination is given by ""_{j

=.=j' 0l (=

This may be interpreted as the proportion of the total variability in the
outcomes (TSS) that is accounted for by the model (MSS)—
_outcomes

R? is given as " Multiple R-squared” in the R output

For the simple linear regression model R2 IS jUSt the square of the
Pearson correlation coefficient:

Cri=r
& ,

44
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