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Example (cf. practical exercise 10)
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Can we conclude that exercise on average decreases the blood 
glucose level with 1.7 mg/dL ? 

Simple linear regression:

 Estimate Std. Error t value      Pr(>|t|)    
(Intercept)   97.36     0.282 345.8         < 2e-16 
exercise      -1.693     0.438  -3.87     0.00011

Residual standard error: 9.715 on 2030 degrees of freedom
Multiple R-squared: 0.0073,   Adjusted R-squared: 0.0068 
F-statistic: 14.97 on 1 and 2030 DF,  p-value: 0.00011 

How does exercise affect blood 
glucose level?

Use the HERS data, 
disregarding women with 
diabetes
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Problem:

The women who exercise are not a random sample of all women 
in the cohort (as they would have been in a randomized clinical 
trial), but differ from the women who don't exercise, e.g. with 
respect to age, alcohol use, and body mass index (BMI)

Further age, alcohol use, and BMI may influence the glucose level

Illustration for BMI:
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Confounding
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In such case we say that the association is spurious and that BMI 
and the other covariates are confounding variables, more precisely 
we have

It is possible that the observed significant association between 
exercise and glucose levels is due to the dependency between 
exercise and BMI and other covariates, i.e. not causal.

Conditions for confounding

A covariate  X2  is a confounder for the causal effect of X1  
provided that 

•    X2  is a plausible cause of the outcome Y 
     (or a proxy for such determinants)

•   X2  is also a plausible cause of predictor X1  
    (or they share a common causal determinant)
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Confounding patterns

Examples of confounding patterns when X2 is a numerical covariate  

Complete 
confounding

Negative 
confounding

Fig. 4.1 in the book



Consider the situation where all causal determinants other than 
X1  are captured by the binary covariate  X2

Control of confounding
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In general we may use multiple linear regression to correct for a 
number of confounders by including them as covariates in the model 
(assuming that  all relevant confounders are recorded in the data)

In practice this is obtained by fitting the linear model

Then, given the level of X2 (= 0,1), there is no more confounding 
and the causal effect of  X1  may be estimated by comparing the 
means of exposed and unexposed within levels of X2 

since here        is the effect of one unit's increase in  X1  keeping 
the value of  X2  constant  

0 1 1 2 2i i i iy x x      

1



Example (contd)
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We now find that exercise on average decreases the blood glucose 
level with 1.0 mg/dL 

This should be closer to the causal effect of exercise 

Multiple linear regression:

Estimate Std. Error t value    Pr(>|t|)    
(Intercept) 78.96     2.592   30.45       <2e-16 
exercise    -0.950     0.429   -2.22        0.0267  
age          0.064     0.03    2.02        0.0431   
drinkany     0.680     0.422     1.61        0.1071    
BMI          0.489     0.042   11.77       <2e-16 

Residual standard error: 9.389 on 2023 degrees of freedom
  (4 observations deleted due to missingness)
Multiple R-squared: 0.072,    Adjusted R-squared: 0.070 
F-statistic: 39.22 on 4 and 2023 DF,  p-value: < 2.2e-16

We fit a multiple regression model with blood glucose level as response 
and exercise, age, alcohol use, and body mass index (BMI) as covariates
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but the data are analyzed with a model omitting x2, thus as 

In particular: 

Suppose that the true model is given by

We then have 

(1)

(2)

where      is the least squares estimate of b under model (2),

     and     are least squares estimates of model (1),

     is the Pearson correlation between x1 and x2  

and the sj the empirical standard deviations of x1 and x2

(3)

1 1 2 2( )E Y x x    

1( )E Y a bx 

2
1 2 12

1

ˆ ˆ ˆ s
b r

s
  

b̂

1̂ 2̂

12r
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It follows: 

When the two covariates are correlated,            ,

and when there is a causal effect of x2 on Y, so             ,

then we estimate different effects of x1 under model (1) and (2),

that is:  

However when the two covariates are weakly correlated,            ,

or when there is no important causal effect of x2 on Y, so             ,

then the estimates differ little,

From equation (3) it follows that inclusion of a new covariate x2 can

both make the association between x1 and Y weaker as well as 

stronger. 

12 0r 

2
ˆ 0 

1
ˆ ˆb 

12 0r 

2
ˆ 0 

1
ˆ ˆb 
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Example (contd)

We will demonstrate equation (3) on the glucose data. Note that BMI had 
a strongly significant association with glucose. It turns out that BMI is the 
essential confounder of the exercise.
However, there were 2 subjects with unknown (missing) BMI. These have 
to be removed from the data before the comparison

R code for removing the missing:

hers.nob=hers.no[!is.na(hers.no$BMI),]

We then fit models with and without BMI:
fit.a=lm(glucose~exercise,data=hers.nob)
fit.a$coef
(Intercept)           exercise 
  97.370059         -1.701807
 
fit.b=lm(glucose~exercise+BMI,data=hers.nob)
fit.b$coef
(Intercept)      exercise        BMI 
 83.9422021  -0.9172885   0.4736147 
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Example (contd)

We then calculate the correlation between, and the standard deviations 
of, exercise and BMI

>r12=cor(hers.nob$exercise,hers.nob$BMI)
>r12
 -0.1587467
>s1=sd(hers.nob$exercise)
>s1
 0.4927197
>s2=sd(hers.nob$BMI)
>s2
 5.141301

Finally we demonstrate that equation (3)                                holds in the 
example 

fit.b$coef[2]+fit.b$coef[3]*r12*s2/s1
 exercise 
-1.701807 

The answer is identical to the estimate     for the simple model!

2
1 2 12

1

ˆ ˆ ˆ s
b r

s
  

b̂
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If all confounding variables are recorded and included 
adequately in a multiple regression model we should then 
identify the causal effects also in an observational study.

But there is of course no way we can know that all confounders 
have been identified and measured without error.

We should therefore be cautious about concluding about causal 
effects from observational studies.

Still we may hope that we are closer to identifying causality 
after adjusting (or controlling) for known confounders   

Control of confounding
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Not all measured variables should be adjusted for.

Exampe: Statin drugs may reduce (bad) cholesterol which in 
turn may reduce risk of heart attack. 

Adjusting for cholesterol measured after taking statins may then 
hide a causal effect of statins on risk of heart attack.

In this case cholesterol is a mediator, or intermediate variable. It 
is likely correlated (caused by) to statin use and causally 
related to heart attack. However, since it is on the causal 
pathway between statin use and heart attack we should not 
adjust for it. 

Mediation, Sec. 4.5

statin   lower cholesterol    reduced risk of heart attack

heart attack ~ statin + cholesterolX
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In a study where subjects are randomized to different 
treatments we can ignore confounding.

This can be deduced from equation (3)

After randomization the treatment x1 and the confounder x2 will 
be (approximately) uncorrelated, thus r12 ≈ 0 and            . 

Why randomization works

Hence the causal effect is estimated after randomization! 

We don’t even need to know the confounding factors

2
1 2 12

1

ˆ ˆ ˆ s
b r

s
  

1
ˆ ˆb 



We have considered the situation where two binary predictors 
X1  and X2  have a causal effect on the outcome 

Interaction for binary covariates
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We could then estimate the (causal) effects by fitting the linear model

Note that we assume that the effect of  X1  is the same for both 
levels of  X2  (and vice versa):  

0 1 1 2 2i i i iy x x      

1 2

0

0 1

0 2

0 1 2

( | )

0 0

1 0

0 1

1 1

X X E y



 

 

  





 

x



If the effect of  X1  depends on the level of  X2  we have an interaction 
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We may then fit a model of the form

The effect for different values of the covariates are then given by:

0 1 1 2 2 3 1 2i i i i i iy x x x x        

1 2 1 2

0

0 1

0 2

0 1 2 3

( | )

0 0 0

1 0 0

0 1 0

1 1 1

X X X X E y



 

 

   





  

x



Example
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(In the model formula  HT:statin  specifies the interaction term "HT*statin")

R commands:

ht.fit=lm(LDL1~HT+statins+HT:statins, data=hers)
summary(ht.fit)

R output (edited):

 Estimate Std. Error t value       Pr(>|t|)    
(Intercept)      145.157      1.326 109.507      < 2e-16 
HT               -17.73      1.87  -9.477         < 2e-16 
statins          -13.81      2.15  -6.416          1.65e-10 
HT:statins       6.24      3.08    2.030           0.0425 

Use the HERS data to study how low-density lipoprotein cholesterol 
after one year (LDL1) depends on hormone therapy (HT) and statin 
use (both binary)

The effect of HT seems to be lower among statin users
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Estimate Std. Error t value       Pr(>|t|)    
(Intercept)      145.157      1.326 109.507      < 2e-16 
HT               -17.73      1.87  -9.477         < 2e-16 
statins          -13.81      2.15  -6.416          1.65e-10 
HT:statins       6.24      3.08    2.030            0.0425 

HT reduces LDL cholesterol for non-users of statins by 17.7 mg/dl

For users of statins the estimated reduction is  17.7 - 6.2 = 11.5 mg/dl

R commands:

library(contrast)
par1= list(HT=1,statins=1)    # specify one set of values of the covariates
par2= list(HT=0,statins=1)    # specify another set of values of the covariates
contrast(ht.fit, par1,par2)      # compute the difference between the two sets

R output (edited):

  Contrast     S.E.     Lower       Upper       t   df Pr(>|t|)
 -11.48 2.44 -16.27  -6.69   -4.7 2604        0

To obtain the uncertainty, we use the "contrast" library
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Another options for interpretating interactions can be to construct a new 
categorical variable with one level for each combination of levels of the 
original factors.

In the Hypertension-Statin example we construct a variable with 4 levels:
• Level 1: HT=0 and statins=0
• Level 2: HT=1 and statins=0
• Level 3: HT=0 and statins=1
• Level 4: HT=1 and statins=1

hers$HTstat=1*(hers$HT==0&hers$statins==0)+2*(hers$HT==1&hers$statins==0)
                       +3*(hers$HT==0&hers$statins==1)+4*(hers$HT==1&hers$statins==1)
hers$HTstat=factor(hers$HTstat)

ht.fit.b=lm(LDL1~HTstat, data=hers)
summary(ht.fit.b)

                  Estimate      Std. Error t value Pr(>|t|)    
(Intercept)  145.2               1.33   109.5      < 2e-16 ***
HTstat2         -17.7               1.87        -9.5      < 2e-16 ***
HTstat3         -13.8               2.15        -6.4     1.65e-10 ***
HTstat4         -25.3               2.20     -11.5      < 2e-16 ***

Level 4 estimates the effect of HT=1 and statins=1 compared to HT=statins=0



We now consider the situation where  X1  is a binary predictor 
and X2  is numerical 

Interaction for one binary and one numerical covariate
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As an illustration we consider the HERS data, and we will see how 
baseline LDL cholesterol depends on statin use ( X1 )  and BMI ( X2 ) 

assumes that the effect of BMI is the same for statin users and 
those who don't use statins

The model

It may be of interest to consider a model where the effect of BMI 
may differ between statin users and those who don't use 
statins, i.e. where there is an interaction

0 1 1 2 2i i i iy x x      
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We then consider the model 

This is a model with different intercepts and different slopes for the 
numerical covariate depending on the value of the binary covariate

Note that the model may be written

When considering such a model, it is useful to center the numeric 
covariate (by subtracting its mean) to ease interpretation

0 1 1 2 2 3 1 2i i i i i iy x x x x        

0 2 2 1

0 1 2 3 2 1

when   0

( ) when   1
i i i

i
i i i

x x
y

x x

  

    

  


    
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In the example, we let X2 correspond to the centered BMI-values, 
denoted cBMI  

R commands:

hers$cBMI=hers$BMI - mean(hers$BMI[!is.na(hers$BMI)])
stat.fit=lm(LDL~statins+cBMI+statins:cBMI,data=hers)
summary(stat.fit)
 

R output (edited): 

             Estimate Std. Error       t value   Pr(>|t|)    
(Intercept)  151.09     0.881        171.58  < 2e-16 
statins      -16.72     1.463             -11.43  < 2e-16 
cBMI               0.640     0.156             4.09 4.41e-05 
statins:cBMI     -0.721     0.269           -2.68  0.0075 

  



We finally consider the situation  where X1  and X2  are both 
numerical  

Interaction for two numerical covariates
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A model with interaction is then given by

For such a model, it is useful to center the covariates.

But even then the interpretation of the estimates is a bit complicated.

0 1 1 2 2 3 1 2i i i i i iy x x x x        



We may here introduce the covariates:

Two-way ANOVA
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Then a regression model with interaction takes the form (cf slide 15)

Consider the situation where the outcome  yi  for an individual 

depends on two factors,  A  and  B, each with two levels, denoted 
a1, a2  and  b1, b2

One such example is how LDL cholesterol depends on HT (with 
levels "placebo" and "hormone therapy") and statin use (with levels 
"no" and "yes");  cf. slide 16 

0 1 1 2 2 3 1 2i i i i i iy x x x x        

1
1

2

0 if individ  has level a  for factor A (reference)

1 if individ  has level a  for factor A i

i
x

i






1
2

2

0 if individ  has level b  for factor B (reference)

1 if individ  has level b  for factor B i

i
x

i





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A model with interaction then takes the form

If (e.g.) factor  B has three levels b1, b2 , b3, we need to introduce 
two x's for this factor (cf slide 26 of Lecture 3):

It becomes quite complicated to write the model like this, so it is 
common to use an alternative formulation

0 1 1 2 2 3 3 4 1 2 5 1 3 (*)i i i i i i i i iy x x x x x x x            

2
2

1 if individ  has level b  for factor B

0 otherwise i

i
x






3
3

1 if individ  has level b  for factor B

0 otherwise i

i
x





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We have the following relations between the parameters in 
model (*) and model (**)

In order to rewrite model (*), we denote the outcomes 
for level aj of factor  A  and level  bk of factor  B  by

We may then rewrite model (*) as

We recapitulate:

In model (**) the parameters for the reference levels are 0 :

for 1,...,ijk jky i n

( ) (**)ijk j k jk ijky         

0 1 2 3 4 5

2 2 3 22 23

(*)

(**) ( ) ( )

     

     

0 1 1 2 2 3 3 4 1 2 5 1 3 (*)i i i i i i i i iy x x x x x x x            

1 1 11 12 13 21( ) ( ) ( ) ( ) 0          
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Note that the model formulation 

works equally well when factor  A  has  J   levels and 
factor  B has  K  levels, while the formulation (*) would 
become much more complicated

In Lecture 3 (cf. slide 30), we considered a study of how the 
extraction rate of a certain polymer depends on temperature 
and the amount of catalyst used. 

We there assumed a linear effect of 
temperature and the amount of catalyst 
 

We will here consider temperature and 
catalyst as factors, each with three 
levels

( ) (**)ijk j k jk ijky         
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R commands:
polymer=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/polymer.txt",header=T)

polymer$ftemp=factor(polymer$temp)
polymer$fcat=factor(polymer$cat)
fit=lm(rate~ftemp+fcat+ftemp:fcat,data=polymer)
summary(fit)

R output:

 Estimate Std. Error t value     Pr(>|t|)    
(Intercept)       39.5      1.23  32.25     1.30e-10 
ftemp60               4.0      1.73    2.31      0.046 
ftemp70               6.0      1.73    3.46      0.007  
fcat0.6               6.5      1.73    3.75      0.005  
fcat0.7            18.5      1.73  10.68     2.06e-06 
ftemp60:fcat0.6      6.5      2.45   2.65      0.026  
ftemp70:fcat0.6       6.0      2.45   2.45      0.037  
ftemp60:fcat0.7       7.5     2.45   3.06      0.014
ftemp70:fcat0.7       4.5      2.45   1.84           0.099  

Residual standard error: 1.73 on 9 degrees of freedom
Multiple R-squared: 0.986,     Adjusted R-squared: 0.973 
F-statistic: 78.78 on 8 and 9 DF,  p-value: 2.012e-07 
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In a planned experiment we can make sure that we have the same 
number of observations for all the J x K  combinations of levels of factor 
A and factor B.

We then have a balanced design, and the total sum of squares (TSS) 
may be uniquely decomposed as a sum of squares for each of the two 
factors (SSA, SSB), a sum of squares for interaction (SSAB), and a 
residual sum of squares (RSS):

To each of these sum of squares there correspond a degree of freedom 
as given in the ANOVA table on the next slide.

NB!       If the design is not balanced, the decomposition of the 
              total sum of squares is not unique

TSS SSA SSB SSAB RSS   
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The result of a two-way ANOVA may be summarized in the table

The F-statistics (with their appropriate degrees of freedom) may 

be used to test the following null hypotheses:

Source           df        Sum of           Mean sum               F statistics           

                                 squares          of squares                                                       

/( 1)
Factor A    1 /( 1)

/( )

/( 1)
Factor B     1 /( 1)

/( )

/( 1)( 1)
Interaction      ( 1)( 1) /( 1)( 1)

/( )

Residual     /(

SSA J
J SSA SSA J F

RSS n JK

SSB K
K SSB SSB K F

RSS n JK

SSAB J K
J K SSAB SSAB J K F

RSS n JK

n JK RSS RSS n


  




  



 
    



  )

Total           1          

JK

n TSS

0 : all ( ) 0 (no interaction)jkH  

0 : all 0 (no main effect of A)jH  

0 : all 0 (no main effect of B)kH  
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R commands:

anova(fit)

R output:

 

Analysis of Variance Table

    Df      Sum Sq Mean Sq F value    Pr(>F)    

ftemp          2      332.11  166.06  55.35 8.76e-06

fcat             2    1520.11  760.06 253.35 1.23e-08 

ftemp:fcat   4         38.56        9.64   3.213   0.067   

Residuals   9         27.00        3.00  

For the example:



Higher level ANOVA
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Consider for illustration the situation with three factors,  A, B, and  C.

Data:

Model with interaction:

( ) ( ) ( ) ( )ijkl j k l jk jl kl jkl ijkly                 

j

k

observation number    for level a  of factor A, 
level b  of factor B, and level c  of factor C

ijkl

l

y i
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The result of a three-way ANOVA may be summarized in the table

The decomposition of the total sum of squares is unique if the 

design is balanced.

Hypothesis testing is similar to two-way ANOVA.

Source           df *        Sum of           Mean sum              F statistics           

                                 squares          of squares                                                       

Factor A    /

Factor B     /

Factor C     /

Interaction AB      /

Interaction AC      /

Interaction BC      /

Interaction ABC      

A

B

C

AB

AC

BC

SSA SSA df F

SSB SSB df F

SSC SSC df F

SSAB SSAB df F

SSAC SSAC df F

SSBC SSBC df F

SSAB /

Residual     /

Total           1     

*) can be found on computer output     

ABCC SSABC df F

RSS RSS df

n TSS
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Expected values and prediction with new covariate

Example: Consider a new tree with measured diameter (and height)
                 What is the expected volume of the tree?
                 How certain is the estimate of the expected volume?
                 How certain are we about the volume of the actual tree?

Example: Systolic blood pressure and age
                 What is the expected blood pressure at age 50?
                 What is the confidence interval for this expected blood pressure?
                 What is the level of uncertainty in blood pressure for a new patient    
                 aged 50 years? 

The confidence intervals for the expected values will only depend on uncertainties 
in the estimated regression coefficients.

The prediction intervals for new observations also requires the individual 
variation!
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Confidence intervals expected values

Consider a new covariate vector

The expected outcome with this covariate is given by

which is naturally estimated by plugging in least squares estimates:

i.e. t-distributed with n-p-1 degrees of freedom and a CI of             is 
given as 

The variance of           only depends on the variances of (and covariances 
between) the least squares parameter estimates and with standard error
                  for             we have that

1 2( , ,..., )new new new new
px x xx

0 1 1 2 2 ...new new new new
p px x x        

0 1 1 2 2
ˆ ˆ ˆ ˆˆ ...new new new new

p px x x        

1

ˆ
 ~  

ˆ( )

new new

n pnew
t t

se

 


 




ˆ ˆ  ( )new newc se  

ˆ new

ˆ newˆ( )newse 

new



36

A new outcome with the covariate                                                     is given as 

where the new error term            is independent of the previous data
and so of the least squares parameter estimates.

Prediction intervals for a new outcome 

But an interval for the prediction of the new outcome also needs to 
incorporate the random noise               and so becomes 

where again the c is a percentile i the t-distribution with n-p-1 degrees of 
freedom.

The natural point estimate (best guess) for             also equals

0 1 1 2 2     ...new new new new new new new
p pY x x x             

new

1 2( , ,..., )new new new new
px x xx

newY

0 1 1 2 2
ˆ ˆ ˆ ˆˆ ...new new new new

p px x x        

2 2
|ˆ ˆ  ( )new new
Y xc s se   

new



37

In particular for simple linear regression 

Hence the confidence interval for the expected value
becomes   

wheras the prediction interval for the new outcome value is given as 

Note that both the confidence and prediction intervals are most narrow when  
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Example: Blood pressure and age
R commands:
sbpage=lm(sbp~age,data=hers.sample)
age=45:80
newage=as.data.frame(age)
estsbp=predict(sbpage,newage,int="conf")
predsbp=predict(sbpage,newage,int="pred")
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yint=c(min(predsbp[,2]),max(predsbp[,3]))
plot(age,estsbp[,1],type="l",ylim=yint,
          ylab="Systolic blood pressure")
lines(age,estsbp[,2],lty=2)
lines(age,estsbp[,3],lty=2)
lines(age,predsbp[,2],lty=3)
lines(age,predsbp[,3],lty=3)
points(hers.sample)
legend(42,186,c("Estimated","Confidence 
int.","Prediction int."),lty=1:3,bty="n")
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Example: Diameter and tree volume

Model: Volume = b0+b 1 Diameter Model: Volume = b 0+b 1 Diameter

                                 + b 2 Diameter2
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