
STK4900/9900  -   Lecture 5

Program

1. Checking model assumptions
• Linearity
• Equal variances 
• Normality
• Influential observations
• Importance of model assumptions

2. Selection of predictors
• Forward and backward selection

• Criteria for selecting predictors

3. High dimensional regression

Section 4.7
Chapter 5: only some main points
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Assumptions for linear regression
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Model:

systematic part random part (error)

(1) Linearity:

(2) Constant variance (homoscedasticity):

(4) Uncorrelated errors:

(3) Normally distributed errors: ~

We will here focus on the three first assumptions and return 
to the 4th in the second part of the course
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Fitted values and residuals

Fitted values:

Residuals:

Diagnostic – plots of the residuals

Plots of the residuals may be used to check:

(3)  Normal errors (including outliers)

(2)   Constant variance

(1)   Linearity
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(1) Check of linearity

Assume that the correct form of the systematic part of the model is

i.e. the model is linear in all predictors, except possibly for the j-th 

We may the estimate the function             based on a plot of the 

partial residuals                    versus the values of the predictor (     )

In the text book the plot is denoted a component-plus-residual plot 

(CPR plot) 

To obtain a CPR plot in R, we have to use the  "car"  library
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Example: tree data 

trees=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/trees.txt",header=T)
fit.both=lm(volume~diameter+height, data=trees)
library(car)   
crPlots(fit.both, terms=~diameter)

We fit a model with volume as outcome and diameter and height as 
predictors, and make a CPR plot for diameter:

The plot indicates that a second degree polynomial may be more appropriate
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We fit a model that also has a second degree term for diameter, and 
make a CPR plots for diameter and diameter^2
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fit.sq=lm(volume~diameter+I(diameter^2)+height, data=trees)
crPlots(fit.sq, terms=~diameter+I(diameter^2))

The plots indicate that the linearity assumption is reasonable both for 
diameter and diameter^2   (i.e. linearity in the parameters) 
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(2) Check of constant variance (homoscedasticity)

If the model is correctly specified, there should by no systematic 
patterns in the residuals 

A plot of the residuals versus the fitted (or predicted) values may be 
used to check the assumption of equal variances

If the variances increase with the expected outcome, the plot will 
have a fan like shape (like the right hand plot below)
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Example: tree data
We fit a model with volume as outcome and diameter, diameter^2, and 
height as predictors, and plot the residuals versus the fitted values

fit.sq=lm(volume~diameter+I(diameter^2)+height, data=trees)
plot(fit.sq$fit, fit.sq$res, xlab="Fitted values", ylab="Residuals")
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The plot is quite reasonable, but there may be some indication of 
increasing variances
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lm(volume ~ diameter + I(diameter^2) + height)
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plot(fit.sq,1) plot(fit.sq,3)

The added line helps to see if there is 
a pattern in the residuals (which may 
be due to non-linearities)

The added line helps to see if the 
variance (or standard deviation)   
is increasing (heteroscedasticity)

The fitted lines may not be trusted where there is little data (i.e. 
in the right-hand part of the plots above)
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•   Histogram of residuals

•   Boxplot of residuals

•   Normal Q-Q plot of residuals

(3) Check of normality

If the model is correctly specified, the residuals should behave as a 
sample from a normal distribution with mean zero

Various plots may be made to check this:
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Example: tree data

We fit a model with volume as outcome and diameter, diameter^2, and 
height as predictors, and make different plots of  the residuals
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hist(fit.sq$res)
boxplot(fit.sq$res)
qqnorm(fit.sq$res); qqline(fit.sq$res)
Alternative:   plot(fit.sq,2)

The Q-Q plot should be close to a 
straight line if the residuals are 
normally distributed
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Influential observations

Consider the erosion example:

Least squares fit: Least squares fit without 
the last observation: 
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Least squares fit without 
the 4th observation: 

The last observation has a larger influence on the slope estimate than 
the 4th observation
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A measure for the influence of an observation is the change in the 
estimate(s) when the model is fitted leaving out the observation

These  "dfbetas"  (delete-and-fit-betas) are easily computed in R:

R-commands:
fit=lm(erosion~water)
summary(fit)
dfbeta(fit)   # dfbetas

R-output (edited):
          Estimate Std. Error    
(Intercept)     0.4061     0.4454     
water             1.3900     0.2096    

(Intercept)        water
1 -0.0164         0.0059
2  0.2066        -0.0596
3  0.0089        -0.0018
4 -0.0362        -0.1093
5 -0.4386         0.4511

The command 
"dfbetas(fit)"
gives standardized 
dfbetas that may be 
more appropriate for 
multiple linear 
regression when the 
predictors are on 
different scales 
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cigarettes=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/cigarettes.txt",  
                                      header=T)
fit.cig=lm(CO~nicotine+tar,data=cigarettes)
boxplot(dfbeta(fit.cig))
boxplot(dfbetas(fit.cig))

Boxplots of dfbetas (left) and standardized dfbetas (right) for the 
cigarette data (omitting the intercept, which usually is of less interest)

It may be useful to inspect observations that have a large influence 
on the estimates 
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The importance of model assumptions

Without linearity of the predictors we have a wrong specification of the 

systematic part of the model:

•   The effect of a predictor may be wrongly estimated

•    A predictor may be important, but we do not know

•    Serious nonlinearity jeopardizes the analysis

If the variances are not equal (and/or the errors are correlated):

•   The estimates of the          will be unbiased

•   The standard errors can be wrongly estimated

•   Confidence intervals and P-values can be flawed

•   Prediction intervals are flawed

 

'sj
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If the errors are not normal – but the other model assumptions are 

true:

•    Estimates of standard errors are valid

•    Test statistics are not exactly t- and F-distributed, but for 
      large n they are approximately so

•    The distributional assumptions are not critical

A few influential observations may, however,  have large effects 

on the estimates. How these are treated may be critical for the 

conclusions on the relations between covariates and response
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Model misfit and possible improvements

Non-linearity:

•   Transform        ,  e.g.   

•    Transform       ,  e.g.   

•    Include second order term(s) and/or interaction(s)

•    GAM (Generalized additive models, 4.10.1, more on slide 20-23)

Heteroscedasticity:

•   Transform       ,  typically log-transform or root-transform 

•   (More advanced: use weighted least-squares or a 
     generalized linear model)
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Non-normality:

•   Transform       ,  e.g.   

•   Bootstrap

•   For large n  the problem can be ignored

Influential observations:

•   Check the coding of the observations

•   Run the regression without the influential observations

    How different are the estimates?

 

iy log( )iy
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Generalized additive models (GAM)

Similarly to CPR-plots we can extend the linear model

These functions are assumed to being smooth (continuous and 
having derivatives)

by assuming a general functional dependency on the covariates

Thus the terms           are replaced by functions             .

Loading the library gam in R allows for actually estimating and 
plotting these functions (based on regression splines)

It is also possible to estimate confidence intervals for the estimated 
curves and testing whether there is a significant non-linearity in the 
models.
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Example GAM: tree data 

library(gam)
fit.gam.both=gam(volume~s(diameter)+s(height), data=trees)
par(mfrow=c(1,2))
plot(fit.gam.both,se=T)

We fit a model with volume as outcome depending on smooth 
functions of diameter and height:
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Example GAM: tree data (contd) 

The functional dependency is specified by writing s(diameter) and 
s(height) in the model fitting statement. We could (for instance) force 
the dependency on height to be linear by instead writing 

fit.gam.dia=gam(volume~s(diameter)+height, data=trees)

We obtain confidence interval by specifying se=T in the plot 
command

Here we are not able to force a straight line within the confidence 
limits for the diameter-function. This indicates that there is a 
significant non-linearity for this variable.

It is, however, possible to let a straight line go through the intervals 
for height. This indicates that there is no important non-linearity for 
this variable.

We can test this more carefully, next slide.  
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Example GAM: tree data (contd) 

The functional dependency is specified by writing s(diameter) and 
s(height) in the model fitting statement. We could (for instance) force 
the dependency on height to be linear by writing s(diameter)+height

Then non-linearities can be tested with standard F-tests:

fit.gam.dia=gam(volume~s(diameter)+height, data=trees)
anova(fit.both,fit.gam.dia,fit.gam.both)
Analysis of Variance Table

Model 1: volume ~ diameter + height
Model 2: volume ~ s(diameter) + height
Model 3: volume ~ s(diameter) + s(height)
  Res.Df      RSS     Df        Sum of Sq         F        Pr(>F)    
1     28     421.92                                       
2     25     180.56   3.0000        241.36    10.13     0.00021 
3     22     174.73   3.0002            5.84      0.24     0.86403

The non-linearity for diameter is clearly significant,
there is no reason to include a non-linear term for height.  
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Selection of predictors

When there are a number of predictors, a choice has to be made on 
which ones to include in a regression model

•   a simple model

•   with good empirical fit

These two aims may be conflicting and the trade-off  between them 
may depend on the objectives of the study

In general we would like to have

Possible objectives: 

•  Study the effect of one predictor while adjusting for the effects of 
   the other predictors (the predictor of main interest should always 
   be included in the model)

•  Identify important predictors for an outcome

•  Predict the outcome for a new unit where only the values 
   of the predictors are available
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Sub-models

Consider a model with p possible predictors: 

•   For p = 10  there are                     different sub-models

•   For p = 20 there are                    different sub-models

 There are        possible ways to make a sub-model         
(i.e. a model with some of the predictors)

For each numeric covariate one may also include e.g. a quadratic term

Further one may take interactions into account

Except for small values of  p  it is not feasible to investigate all possible 
sub-models

We need strategies for deciding which sub-models to consider
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Forward selection:

1.   Fit all p models with only one predictor

Since predictors that have been included on an earlier stage need not 

continue to be important later on, step 4 can be supplemented with 

deletion of predictors that no longer contribute (stepwise regression)

2.   Chose the predictor that "contributes most"

3.   Run  p - 1 regressions with this predictor and another one

4.   Choose the model that "fits" best

5.   Continue adding predictors until "no improvement"
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Backward selection:

1.    Fit the model with all p predictors

2. Compare the model with all predictors with the p different models 
       where one predictor has been left out

3.   Leave out the "least important" predictor

4. Compare the model now obtained with the p -1 different models 
       where one more predictor has been left out

5.    Leave out the "least important" predictor

6.     Continue in this way until a model is obtained that only contains 
"important" predictors
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When using forward or backward selection, one needs a criterion 

for when to include/exclude a predictor

Different criteria may be used, and the choice between them may 

depend on the objectives of the study

Some possibilities:
•  P-values
•  adjusted R2

•  cross-validated R2

Criteria for inclusion / exclusion



28

P-values

Forward selection: 

•   include at each step the most significant predictor (lowest P-value) 

Need to decide a cut-off for when to include/exclude a predictor

Often 5% is used, but the text book recommends a more liberal 
cut-off (combined with backward selection) when the aim is to 
correct for possible confounders

Backward selection: 

•   exclude at each step the least significant predictor (largest P-value) 

P-values are mainly used when  the objective is either
•  to study the effect of one predictor while adjusting for the effects 
   of the other predictors
•  to identify important predictors for an outcome
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measures the proportion of the total variability in the outcomes that 
is accounted for by the predictors in the model

The coefficient of determination

It could be tempting to choose the model with the largest R2

But then we would end up with a model including all predictors

Ordinary R2
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The adjusted R2 

penalizes including more predictors

The adjusted R2 will have a maximum over the different models 

considered, and it may therefore be used to select predictors

Example of adjusted R2 
from practical exercise 14.e
(dashed line)
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Cross validation

A drawback with R2  and adjusted R2 is that the observations are 
used twice:

Idea:

•   estimate the  

•   evaluate the predictions of the        :   

•   Estimate the regression model without using the observation    

•   Predict         using the obtained estimates

    Denote this prediction  
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Cross validated R2

The cross-validated R2  will have a maximum over the different 

models considered, and it may therefore be used to select predictors

We have described "leave-one-out" cross validation. 
Alternative versions of cross-validation exist, e.g. 10-fold cross validation
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Example of crossvalidated  R2 
from practical exercise 14.e
(dotted line)

Maximum for model 5, which is the 
same as for the adjusted R2

But often the cross-validated R2 will give 
smaller models than the adjusted R2
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The regression methods we 
have studied, require p  ≤ n; fewer 
covariates than observations. 

High-dimensional regression: p > n; 
more covariates than observations  

High-dimensional regression

Examples: 
Genomics

p=25.000 gene 
expressions, or
p=1.000.000 SNPs
n=200 patients

Astrophysics

p=50.000 stellar 
spectral features
n=10.000 spectra

Other examples?
Psychology, 
Chemometrics, 
Marketing ++



Remember the multiple linear regression model:

Data: 

Model: 

systematic part
(linear predictor)

random part
(noise)
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The least squares estimators from Lecture 3 are not unique 
when p > n. We need some regularization to find estimates for 
the p+1 coefficients!
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For p < n, in Ordinary Least Squares (OLS) regression, we are minimizing the MSE

resulting in

We can constrain the regression coefficients in order to stabilize estimation and 
shrink or even eliminate the coefficients of unimportant predictors. Works also 
when p > n!   

Ridge

Lasso

L2 penalty

L1 penalty

Penalty parameterPenalty parameter
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• Lasso leads to shrinkage of the 
coefficients, but even more 
important, it zeros out the 
coefficients of the unimportant 
variables – variable selection!

• This is due to the shape of the L1 
penalty

• Challenging optimization problem, 
several fast algorithms
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A Lasso plot – the size of  λ determines the amount of zero coefficients
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• Ridge regression only shrinks the 
coefficients, introducing bias, but 
reducing variance of the 
estimators.

• No variable selection

• Explicit solution to the 
optimization problem
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Lasso cont.

Lasso assumes what we call sparsity: That only a few of the p 
covariates matter. If sparsity is true, Lasso will recover it 
(theorems etc.).

  λ might be chosen by the data via (K-fold) Cross Validation.

Lasso and/or Ridge in R:  Recommend the package glmnet (incl. 
linear, logistic, Poisson, Cox regression)
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Install the R-package glmnet:

>install.packages("glmnet", repos = "http://cran.us.r-project.org")
>library(glmnet)

Data  should be organized in a vector y (n x 1) (the response variable)
and a matrix x (n x p) (the p predictor variables)

This is a piece of an example of a data matrix x, with 20 predictors 
measured for 100 subjects (so here p < n, for comparison with OLS)
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And this is the corresponding y,
with 100 responses

Two first predictors:
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>cv.fit.lasso=cv.glmnet(x,y,family="gaussian",alpha=1)

>lambda.min=cv.fit.lasso$lambda.min

>beta.lasso=coef(cv.fit.lasso, s=lambda.min)

Running glmnet with cross validation for the penalty parameter: 

alpha=1:Lasso
alpha=0:Ridge
0<alpha<1: net

alpha=1:Lasso
alpha=0:Ridge
0<alpha<1: net

Continuous 
response, 

normal noise

Continuous 
response, 

normal noise

Does cross-
validation for 

lambda

Does cross-
validation for 

lambda

The lambda 
value that 

minimizes the 
CV-curve

The lambda 
value that 

minimizes the 
CV-curve

The estimated 
coefficients for 

lambda.min

The estimated 
coefficients for 

lambda.min
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> beta.lasso
21 x 1 sparse Matrix of class "dgCMatrix"
                      1
(Intercept)  0.14867414
V1           1.33377821
V2           .         
V3           0.69787701
V4           .         
V5          -0.83726751
V6           0.54334327
V7           0.02668633
V8           0.33741131
V9           .         
V10          .         
V11          0.17105029
V12          .         
V13          .         
V14         -1.07552680
V15          .         
V16          .         
V17          .         
V18          .         
V19          .         
V20         -1.05278699

                  Estimate    Pr(>|t|)    
(Intercept)  0.109068    0.347598    
x1            1.381072     < 2e-16 ***
x2            0.025016   0.811399    
x3            0.767490   9.68e-10 ***
x4            0.066767   0.537749    
x5           -0.905978   7.07e-12 ***
x6            0.618388   2.28e-08 ***
x7            0.124492   0.248793    
x8            0.401052   0.000138 ***
x9           -0.036556   0.732835    
x10          0.136530   0.212670    
x11          0.251597   0.026115 *  
x12         -0.069913   0.532250    
x13         -0.049396   0.660097    
x14         -1.164018      < 2e-16 ***
x15         -0.147334   0.254664    
x16         -0.051572   0.644480    
x17         -0.055904   0.597418    
x18          0.057081   0.591626    
x19         -0.006423   0.944577    
x20         -1.148534     2.08e-14 ***
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1. Good luck with the assignment!

2. See you in March!
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