STK4900/9900 - Lecture b5 .
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Program = 7
1. Checking model assumptions %(*
+ ~Tinearity Po +Bx 45y
<he

* Equal variances _

 Normali

* Influential observations

* Importance of model assumptions

2. Selection of predictors
e Forward and backward selection

* Criteria for selecting predictors

High dimensional regression
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Section 4.7
Chapter 5: only some main points



Assumptions for linear regression

Model: y, =n, +¢, =Xx) T ¢
ode y\_?_;\_g'_i %‘ pr)

( @Linearity: m =Py + b X, +_.._/52X21 +°"'ixpi A 2 «gf{%)

7

4 onstant variance (homoscedasticity): Var(g;) = for all i
o~ " —

é@NormaHy distributed errors: ¢, ~ N(0,07)
—_—

Uncorrelated errors:  Cov(e;,e;) =0 forall i #j

e ——, || e ——

We will here focus on the three first assumptions and return
to the 4th in the second part of the course




Fitted values: /50 + /51 X; /52 X +.
Residuals:@—yi - Y ' —A %
L, Ta
Diagnostic — plots of the residuals K e [/
9 Jpa- — ——— " o (X)

Plots of the residuals may be used to check:

( ) Linearity
@Constant variance

(3) )Normal errors (including outliers)




@Check of linearity

Assume that the correct form of the systematic part of the model is

/)) +/31X1 +. +/5]1 ]1 /3]+1XJ+11"”'+ pxpi

l.e. the model is linear in all predictors, except possibly for the j-th

\
We may the estimate the functi ased on a plot of the

partial residuals P ;X; + T, versus the values of the predictor (X;i)
—————< s > ———

In the text book the plot is denoted a component-plus-residual plot
(CPR plot)

To obtain a CPR plot in R, we have to use the "car" library
-@
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Example: tree data \/oém\e = ({59 + D hprfﬁf + % %97‘_’ e

We fit a model with volume gs outcome and diameter and heigﬁt as
predictors, and make a CPR plot for dlameter Q
velint = P4 0’7);4(’/ + f(o’ew 7

20 30 40
| | |

Component+Residual(volume)

diameter

The plot indicates that a second degree polynomial may be more appropriate

e ——
——

==

rees=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/trees.txt",header=T)
fit. both=Im(volume~diameter+height, data=trees)

library(car)

crPlots(fit.both, terms=~diameter) 5



We fit a model that also has a second degree term for diameter, and
make a CPR plots for diameter and diameter”2

Component + Residual Plots

15

o
©
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quw+ Residual(volume)
15 -10

20 -

8 10 12 14 16 18 20 100 200 300 400
diameter I(diameter~2)
The plots indicate that the lineari lon_is reasonable both for
diameter and diameter (l.e. linearity in the parameters)
e [a—

fit.sg=Im(volume~diameter+l(diameter*2)+height, data=trees)
crPlots(fit.sq, terms=~diameter+I(diameter~2))



heck of constant variance (homoscedasticity)

If the model is correctly specified, there should by_no systematlc
patterns in the residuals

—

A plot of the residuals versus thgfitted) (or predicted) values may be
used to check the assumption of equal variances

If the variances increase with the expected outcome, the plot will
have a fan like shape (like the right hand plot below)

/—
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Example: tree data
We fit a model with volume as outcome and diameter, diameter*2, and
height as predictors, and plot the residuals versus the fitted values

Residuals

10 20 30 40 50 60 70 80

Fitted values‘ U—CWN"

The plot is quite reasonable, but there may be some indication of

Increasing variances A
= nodel <= Iy Colmourdsredes Tionok?s,

_fit.sg=Im(volume~diameter+I(diameter"2)+height, data=trees) V éé [m‘\i@/
plot(fit.sq%fit, fit.sq$res, xlab="Fitted values", ylab="Residuals")

=
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Residuals

plot(fit.sq,1)
Residuals vs Fitted
017 260
_ 7 .
o o ©
] (@]
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_ ® D ————
\/-\/ ﬁ

10 20 30 40 50 60 70

Fitted value
Im(volume ~ diamé't't—:-r—rl_(dﬂrsn-eter’\m + height)

The added line helps to see if there is
a pattern in the residuals (which may

be due to non-linearities)

>

JIStandardized residuals|

plot(fit.sq,3)

1.2

00 0.2 04

Scale-Location
0300

oons

I I I I I
10 20 30 40 50 60 70 80

Fitted values
Im(volume ~ diameter + I(diameter™2) + height)

The added line helps to see if the
variance (or standard deviation)
IS Increasing (heteroscedasticity)

The fitted lines may not be trusted where there is little data gi.e.
in the right-hand part of the plotSabove)




@Check of normality

If the model is correctly specified, the residuals should behave as a

T —
samptefromma normal distribution with mean zero

e

Various plots may be made to check this: /W(O 6

* Histogram of residuals

* Boxplot of residuals

e

S

* Normal Q-Q plot of residuals

—

I

10



Example; tree data -.

We fit a model with volume as outcome and dlame
@s predictors, and make different plots“c)T}tT\e reS|dua

Histogram - t

Boxplot

————

The Q-Q plot should be close to a
straight line if the residuals are
normally distributed

Sample Quantiles

qgnorm(fi tsq$res ggline(fit.sq$res) S
——mee———
Alternative: plot(fit.sq,2) <Tv_(‘k _g) 11

.)'))‘_



Influential observations /
>

|

Consider the erosion example:

Amount of water (I/s) | 031 085 1.26 247 3.5 7 o
Erosion (kg) 0.82 1.95 2.18 3.02 6.07 /

—)

_Least squares fit: Least squares fit without  Least squares fit without

the 4th observation: the last observation:
© — ’r © — © —
1 — o — 1 —
< < <
lo-r

o — oM — o —
N — Q & N — N — @ 2
— — % — = & — — %

[ [ [ [ [ | | [ | | | [ [ | [ [ [ [ [ [ |

05 10 15 20 25 30 35 05 1.0 15 20 25 3.0 35 05 1.0 15 20 25 30 35

The last observation has a larger influence on the slope estimate than

the 4th observation
12



A measure for the influence of an observation is the change in the

estimate(s) when the model is fitted leaving out the observation
—— p—— '

These "dfbetas” (delete-and-fit-betas) are easily computed in R:

R-commands: R-output (edited):
fit=Im(erosion~water) Estimate  Std. Error
summary(fit) (Intercept) _0.4061 0.4454
dfbeta(fit) # dfbetas water 1.3900 0.2096
The command (Intercept)
“dfbetas(fit)" — 7 1-00led
gives standardized — 20,2066
dfbefasthat may be —+ 3 0.0089

) —— 4 -0.0362
more appropriate for — 5.0.4386
multiple linear — N
Tegression when the

predictors are on
different scales




Boxplots of dfbetas (left) and standardized dfbetas (right) for the
cigarette data (omitting the intercept, which usually is of less interest)

t o w | [
AL & 4 et - —s 3 — ]
M o o
':IJ
o~ &
=
1 ) :
— I !
nicotine tar tar

—

It may be useful to inspect observations that have a large influence
. e e
on the estimates

cigarettes=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/cigarettes.txt",
header=T)

fit.cig=Im(CO~nicotine+tar,data=cigarettes)

boxplot(dfbeta(fit.cig))

boxplot(dfbetas(fit.cig)) 14



The importance of model assumptions ii//"“
e imp p ,H_F

Without linearity of the predictors we have a wrong speC|f|cat|on of the

S,

systematic part of the model:

—_— . .
* The effect of a predictor may be wrongly estimated

. redictor mayye important, but we do not know"

* Serious nonlinearity jeopardizes the analysis

e

If the variances are not equal (and/or the errors are correlated):
* The estimates of tH¢ ;'S 5Wi|| be unbiased 2
* The standard errors can be wrongly estimated O/c/

* Confidence intervals an can be flawed
nce tervals anvauES

* Prediction intervals are flawed /' 2

T [
(SRR = L




If the errors are not normal — but the other model assumptions are
= ——— — o

true:
—

e Estimates of standard errors are valid

e Test statistics are not exactlx t- and F-distributed, but for

arge n they are approximately so
- 3

—
~N——

. Thecdistributignal assumptions are not critical

A fewgnfluential observationg)may, however, have large effects

——

w. How these are treated may be critical for the
conclusions on the relations between covariates and response

16



Vol < 2 -F

Model misfit and possible iImprovements

ot = el o dieweder e
Non-linearitﬁy: [Vn/u‘ﬁw) » fos [LJZZ)—} f (%me{p)*f
* Transform Xji , 108(X )

 Transform yi, e.g. loggg;)

* Include second order term(s) ind/or iInteraction(s)
. ed additive models, 4.10.1, more on slide 20-23)
e g
]

Heteroscedasticity:

— ~— )
. Transform@ typicall log-transformor, root-transform '{_5_/_’

* (More advanced: use weighted least-squares or a
generalized linear model)

go {-}- X ’Pig * <
/@ F" ’3) {/oj(‘)éh.lggxa s+ €

%:ﬁa#ﬁf(/*/?g(—cd-t.gﬂ

R




* Transform e.g. log(y)

Non-normalit_;g:

—-_—

e Bootstrap

* For Iarg§:> the problem can be ignored

Influential observations:

* Check the coding of the observations
* Run the regression without the influential observations
How different are the estimates” ‘f

18



( Generalize(}! additive models (GAM) % /

Similarly to CPR-plots we can exiend the linear model

A

These functions are assumed to being smooth (continuous and
having derivatives)

e

Loading the library gam in R allows for actually estimating and
plotting these functions (based on regression splines

-

It is also possible to estimate confidence intervals for the estimated

curves and testjng whether there is a significant non-linearity in the
WS_ 42

1 |
1 { l

19
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Example GAM: tree data

—-‘/

We fit a model with volume as outcome depending on smooth
functions of diameter and height:

s{diameter)
stheight)

e

|I|IJJI|I|| IIH!II ll IIIII | 'I"I'IIII I|||II I||II|HI||1’J|III | 1

8 10 12 ) - 5 18 20 65 70 .: 80 85
(\
. [x 3(2
I|brary§gam) f ’)

fit.gam.both=gam(volume~s(diameter)+s(height), data=trees)
par(mfrow=c(1,2))

plotgﬁt.!am.bott. f(dtzwtf) - }*pb[ A‘"}@ 20




Example GAM: tree data (contd)

The functional dependency is specified by writing s(diameter) and
s(height) in the model fitting statement."We could (for instance) force

the degendenc¥ on height to be linear by instead writing

fit.gam.dia=gam(volume~s(diameter)+height, data=trees)
- e —— 2

We obtain confidence interval by specifying se=T in the plot
command

Here we are not able to force a straight line within the confidence
limits for the diameter-function. This indicates that there is a

ﬁgnificant non-linearity for this variable.

It is, however, possible to let a straight line go through the intervals

for height. This indicates that there is no important non-linearity for
this variable. —

We can test this more carefully, next slide.

21



P
Example GAM: tree data (contd) ‘,o(anf =£l(¢imtf) "&U\fgm + e

The functional dependency Is specified by writing s(diameter) and

s%height? In the model fitting statement. We could (for instance) force
e dependency on height to be linear by writing s(diameter)+height

Then non-linearities can be tested with standard F-tests:

——— ‘__‘—

fit.gam.dia:gam(volume@diameter)+height, data=trees)
anova(fit.both,fit.gam.dia,fit.gam.both)

“Analysis of Variance Table S‘(CéZ‘ﬂ-c\é

Model 1: volume ~ diameter + hei

Model 2: volume ~ s(diameter) + height 3
Model 3: volume ~ sédiamete;% + s(height)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 28 421.92
2 25 180.56 3.0000 24136 10.13 600021
3 22 17473 3.0002 5.84  0.24¢0.86403~y
The non-linearity for diameter is clearly significant,

there is no reason to include a non-linear term for height.
——

22



Selection of predictors

When there are a number ' _a choice has to be made on
which ones to inclfude In a regression model

e
In general we would like to have

* _a simple-metdet——
_,___._———-e- = —

Possible objectives:

* Study the effect of one predictor while adjusting for the effects of

the other predictors (the predictor of main interest should always
be included in the model)

. Identiz Important predictorsfor an outcome

* Predict the outcome for a new unit where only the values
P——— . .
of the predictors are available

23



=3 ;IC}J“L y 6{Q“”’g’/

Sub-models = %
_ + B,
Consider a model wiossible predictors: wj
— = — ﬁ’ fépd

—4 E(yl |X.) =06, + B, x,; + B, X, +....+[3’pxpl.
@ ._ﬂiﬁ; KB AN A~ B
There ard ) possible ways to make a sub- model

(l.e. a model with some of the predictors)

* Forp =10 there arg
pRa———— 3

* For p =20 there are

For each numeric covariate one may also include e.g. a quadratic term

————

Further one may take interactions into account

——

Except for small values o( p @_ris not feasible to investigate all possihle
sub-models

—

We need strategies for deciding which sub-models to consider

—

24



Chat)

S Forward selection:

—

Fit all p models with only one predictor

Chose the predictor that "contributes most”

=

Choose the model that "fits" best

1.
2.
3. Run p -1 regressions with this predictor and another one
4.
5.

Continue adding predictors until "no improvement”

Since predictors that have been included on an earlier stage need not
continue to be important later on, step 4 can be supplemented with
deletion of predictors that no longer contribute (stepwise regression)

B e —

25



Backward selection:

—

1. Fit the model with all p predictors

2. Compare the model with all predictors with the p different models
where one predictor has been left out

3. Leave out the "least important” predictor
4. Compare the model now obtained with the p -1 different models
wheré one more predictor has been [eft out —

—

5. Leave out the "least important" predictor

—_—
-

6. Continue Iin this way until a model is obtained that only contains
“important” predictors —

— — — TéHn
———— (1) fﬂl) (cnbrzf*) o.(a}
gﬂé ©. 3 Jt‘éﬁre . o000 )
Ld(aﬁug/ ;':::j‘ },ec);"l\ Q .03

l'LcJ"f~ N‘ a.éj

26



Criteria for inclusion / exclusion

= QQ

When using forward or backward selection, one needs a criterion
for when to include/exclude a predictor

Different criteria may be used, and the choice between them may
depend on the objectives of the study

e possibilities:
*( P-values |

* adjusted R?

e cross-validated R?
"___4::’— =

27



Vot AR élﬁg P~Uee
P-values 2 <R“ B e £ q 2@‘1(“4‘)
f., fﬁ}m lzé9 \ _
Forward selection:

———

* include at each step the most significant predictor (lowest P-value)
—— ——————— o T —

—

Backward selection:

* exclude at each step the least significant predictor (largest P-value)
”_4"7'——— T —_—

P-values are mainly used when the objective is either

. to study the effect of one predictor while adjusting for the effects
of the other predictors

* to identify important predictors for an outcome
B e e ——— . -

Need to decide when to include/exclude a predictor

Ofte)s used, but the text book recommends a more liberal

cut-offYcombined with backward selection) when the aim Is to
—

correct for possible confounders
28




Ordinary R?

measures the proportion of the total variability in the outcomes that

is accounted for by the predictors in the model o
————

It could be tempting to choose the model with thglargest R?
But then we would end up with a model including all predictors

Example of R? from
practical exercise 14.e

Maximum for the largest model

—— T —

0.0 0.2 04 06 08 1.0

Model number

29



The adjusteo@
R 1- RSS /(n &p) 1)
— TSS /(n- 1)

penalizes including more predictors

The adjusted R? will have a maximum over the different models
considered, and it may therefore be used to select predictors

Example of adjusted R?
from practical exercise 14.e
(dashed line)

Maximum for model 5

2

00 0.2 04 06 08 1.0

Model number 30



Cross validation

—

~

A drawback with R? and adjusted R? is that the observations are
used twice: = - — —

e estimate th s‘@

. evaluate the predlctlons of the y,'s

/3)0"'/31)( +/3’2X +. +ﬁpxpl

e —

|dea:

* Estimate the regression model without using the observat'
—‘ﬂ

* Predict Y; using the obtained estlmates &/ 4 @ s
Denote this prediction y' " xc-c)) g

" A ()

b — g Vox

I ' 31




The cross-validated R?)will have a maximum over the different

models considered, and it may therefore be used to select predictors

Example of crossvalidated R?
from practical exercise I4. €
(dotted line)

Maximum for model 5, which is the

same as for the‘ﬂusvg_gd,_:__lg_;

But often the cross-validated R? will give
smaller models than the adjusted R? 2 4 5 8

2 Model number

We have described "leave-one-out" cross validation.
Alternative versions of cross-validation exist, e.g. 10-fold cross validation

00 0.2 04 06 08 10

32




Bk 4

regression

g High-dimension
h‘j?\fl'o\e’l.ﬂhnk/ f:g ———
(e J “’>/7 Examples:
The regression methods we p=23-090 gene
have studied, requigg p_< n-;z‘ewer €Xpressions, or
- ; — p=1.000.000 SNPs
covariates than observations.

Nn=200 patients

—— 3

° ° . ° /"
_High-dimensional regressioCp > n; ) e
more covariates than observations

€p=50.000 stellar

spectral features
n=10.000 spectra

Other examples?
Psychology,
Chemometrics,

‘Marketing ++ 33
14 - \

o



Remember the multiple linear regression model:

Yo 2)
Data: (yl,xll,le,...,xpl) i :].,...,n \ 0 L
— A= v
— . . 2 9
y. =outcome for unit no. i

x; =predictor (covariate) no. j for unit no. i

— —
Model: =
O e

=Py + Py X + Py Xy e +/3p X, TE
\ J

systematic part
(linear predictor)

/"T'
The least squares estimators from Lecture 3 are pot unique
whe We need some regularization to ﬁné e!stlmates for

the p+T coefficients!
a—;\

34



For p < n, in Ordinary Least Squares (OLS) regression, we are minimizing the MSE

/ e —

MSE = (3~ Xofy — X1 = = = X,5,)" = (v~ Xp>
resulting in

@_ argmin ; (y Xﬂ)
————

We can constrain the regression coefficients in order to stabilize estimation and
shrink or even eliminate the coefficients of unimportant predictors. Works also
when p > n!

L,penalty S = argmin ; (y — Xﬁ)z
EE—

—

L, penalty f = Hf‘gmiﬂﬁ(}’ - Xﬁ)z /

35



* Lasso leads to shrinkage of the
coefficients, but even more
important, it zeros out the ‘

coefficients of the unimportant

variables - variable selection!
—————NE—

. Thi§ is due to the shape of the L1
/'peﬁa-l—ty_\

* Challenging optimization problem)

/4

: j/m’ﬁé




3‘ = P"p
A Lasso plot the size o@etermme&e amount of zero coefficients l]7/
7

30

25+

coefficients

Xk
o

5 ] ] | ] 1
-2.0 -1.5 —1.0 = 0.0 0.5 1.0
-Log(alpha)

g p ) ~o 37




Ridge regression

PRSS;dge(,B) — E?:l (Yt' o /BU o

Ridge regression only shrinks the /’:,;jjjf:__
coefficients, introducing bias, but . /5//
reducing variance of the BQ - 5 /,/{;;
: / /.f'f /
estimators. /| ,__./)'/'f yd
” L _/ gl
No variable selection é(f\o P {
Ne : - l
Explicit solution to the '.
optimization problem g R, — B
=il s B,
ALY . o A
'F r— é( X "‘)I) )< 8



Lasso cont.
ﬁ————==

Lasso assumes what we call sparsit t onIy a few of the p
covariates matter. If sparsity is trueg ) nrirecovesit
D - (MO(\K.S V{"/V w-e / \ o

@night be chosen by the data via (K-fold) Cross Validation.

Lasso and/or Ridge in R: Recommend thegﬁyagefl net (incl.

linear, logistic, Poisson, Cox regression) o S
= = a
‘:.j‘:\ ’\L E A
- < AL’_ b
E '
LT e

exv -\,
39



A

Install the R-package glmnet:
CEEE—EE——

£

>install.packages("glmnet",

rary(glmnet

repos = "http://cran.us.r-project.org")

Data should be organized in a vector y (n x 1) (the response variable)
and a matrix x (n x p) (the p predictor variables)

47 glmnet_start.R

1
2
3
4
5
6
7
o

V1
0.27385621
2.24481689
-8.12542383
-8.54357344
-1.45939839
1.e63208e7

0.11584499
A INQT7ARTI

X

V2
-8.036672202

-8.546030016
-8.606878202
1.108358273

-8.274494523
-8.753523175
-8.966302384

A 1097947284

V3
0.85472694

@.23406507
-9.85392169
-0.1e424799
©.11198596
-1.38255341
8.27417918

-4 ARARRAQR?D

V4
0.967524215

-1.335e3e427
-0.148777203
1.916526228
-9.851787700
1.976226985
8.018531025

A A7TRIR12A

100 observations of 20 variables

V5
1.41548975

1.31307582
-9.66468279
0.69990418
©.31528387
0.37ee3310

-9.21038723
A RAR?9179

This is a piece g an example of a data matrix x, wit}
measured .(@ subjects (so here p < n, for comparison with OLS)

@
@
@
1.65501642
1
1
e
a

Vé

.52340587
52127458
.60661641

.85074928
.49872124

. 54408945
25743579

Yredictors

—‘

V7
0.56268818

-0.6100346
0.16172065
0.48996346
1.38635753
-9.3604525
-2.5@54893

-A AQQAQAR



(Rl nlmnpt_start,R X 1y

~/glmnet_start.R

NV A W N e

. 100 observations of 1 variables
V1
-1.27488603 . . .
T And this is the corresponding y,

0.45923632 with 100 responses
0.56404074

1.87296326
09.52753173
2.43465887

-0 RAARQART?D

Two first predictors:

O - % o
o) o o ©
o o}
< o ° o
o D o)
Al ° OOO © %Ooo
= 0 00 o
o ° O o 8 0 OOOO
o 0060 o ©
> o ° o
N ) 0.0 80%0 ° So o
(@] lo) O
(0]%)) o
T - % ¢
o)
Q;.) _
o)
[ [ [ [ [ [ [ [ [ [ [
-2 -1 0 1 2 3 -3 -2 -1 0 1




t ,nlg\gf}%)

<

with cros valldatlo for the penalty, parameter:
o MG} Ael) « (-4 6
u

_a >cvfit.las o=cv.g|mnet(X,y,fam“Y:"gaUSSia”"

R ——— g -

>lambda.min=cv.fit.lassoglambda.min

(I ——
s >peta.lasso=coef(cv.fit.lasso, s=lambda.min)
e ———— ._£
4
S flo-{_ (Cl/ g’"(.llsso) [ \L 1}
— - ‘_l I —_ ] A
=}

J >
D)



— TN
sparse Matrix of class "dgCMatrix"
1
(Intercept) 0.14867414
— Vi 1.33377821
2
W T~
— V3 0.69787701
/ﬂ‘\ C
4= V5 -0.83726751
i— V6 0.54334327
A= )V7 0.02668633
_ . V8 033741131
~ . SS()\
o P
— V11 0.17105029 \2’
— V14 -1,07552680 o
Y .
<
V .
A==\/20 -1.05278699

E@Itl)

(Intercept) 0.109068 0.347598

* 3k %

x1 1.381072
a0

X2 0.025014 0.

X3 0.767490 9.

x4 0.066767

X5 -0.905978 7.07e-12 ***

X6 0.618388 2.28e-08

X7 0.124492( 0.248793
—_=_
x8 0.401052 OOCRXL38

—

X9 -0.036556 0.732835
x10 0.136530 0.212670

x11 0251597 _Q026115*

T —
* 3k %k

N

e OLS cannot be found!!!

x12 -0.069913 0.532250
x13 -0.049396 0.660097

x14 -1.164018

<2e-16 ***
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