
STK4900/9900  - Lecture 6

Program
1. Binary data and proportions
2. Comparing two proportions
3. Contingency tables
4. Excess risk, relative risk, and odds ratio
5. Logistic regression with one predictor
6. Some comments on classification

• Section 3.4
• Section 5.1
• Supplementary material on proportions and contingency

tables (cf. your introductory statistics textbook)
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Binary data and proportions
In the first part of the course, we considered the situation 
where the outcome was numerical

We will now consider the situation where the outcome is a 
binary variable (coded as 0 or 1)

Example: Opinion polls

In February 2017 Norstat asked n = 
935 individuals  which party they 
would support if there had been 
election to the parliament tomorrow 
309 would have voted Ap
Ap's support on the opinion poll is

Brief Article

The Author

April 22, 2018

1 First section

309

935

= 0.330 = 33.0%

se(p̂) =

s
0.33(1� 0.33)

935

= 0.0154

0.33± 1.96 · 0.0154

0.33± 0.03

p(x) � 0.5

p(x) < 0.5

�0 + �1x � 0

�0 + �1x < 0

p(x) =

exp (�0 + �1x1 + �2x2)

1 + exp (�0 + �1x1 + �2x2)

�0 + �1x1 + �2x2 � 0

� = [�3, 1, 1]

T

�3 + x1 + x2 � 0

x1 + x2 � 3

1
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ˆ ˆ(1 )ˆ( ) p pse p
n
-

=

In general we have a sample of  binary data                      
from a population  

1 2, ,..., ny y y

Here               if subject  i has a certain property (e.g. vote Ap), while               
otherwise  

1iy =
0iy =

We let ( 1)ip P y= =

Then  p is the proportion in the population (with 0 ≤ p ≤ 1 ). 

We may estimate   p by the sample proportion:  

1 #( 1)ˆ
n

i ii
y yp

n n
= =

= =å

Standard error:

In the example, the standard error becomes
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ˆ ˆ1.96 ( )p se p± ×

One may show that       is approximately normally distributed 
(cf. the central limit theorem)  

In the example a 95% confidence interval becomes:

p̂

95% confidence interval for the population proportion p :

i.e.

Thus our estimate of Ap's support is 33.0% with a 
"margin of error" of  ± 3%
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Comparing two proportions
Assume that we have a random sample of binary data from each of 
two populations, and that the two samples are independent

Example: "Divorce" among seagulls

Kittiwake (krykkje) is a seagull whose 
mating behavior is basically monogamous, 
but some couples do not reunite the next 
breeding season ("divorce")

Does the "divorce rate" depend on 
whether breeding was successful or not?  

769 kittiwake pair-bonds were studied over two breeding seasons
Of the 160 couples that had not successful breeding the first season,  
100 divorced
Of the 609 couples that were successful, 175 divorced



6

2 2 1 1 2 2
1 2 1 2

1 2

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ ˆ ˆ( ) ( ) ( ) p p p pse p p se p se p
n n
- -

- = + = +

Population 1:

Population proportion: 1p

where

Sample size: 1n
Sample proportion: 1p̂

Population 2:

Population proportion: 2p
Sample size: 2n
Sample proportion: 2p̂

1 2 1 2ˆ ˆ ˆ ˆ1.96 ( )p p se p p- ± × -

95% confidence interval for               :1 2p p-

We are interested in estimating                 and testing   1 2p p- 0 1 2:H p p=
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In the example:

Unsuccessful (population 1):

Sample size: 1 160n =
Sample proportion: 1

100ˆ 0.625
160

p = =

Successful (population 2):

Sample size: 2 609n =
Sample proportion: 2

175ˆ 0.287
609

p = =

1 2ˆ ˆ 0.625 0.287 0.338p p- = - =
We obtain:

1 2ˆ ˆ( ) 0.0424se p p- =

95% confidence interval:

0.338 1.96 0.0424± × i.e. 0.338 0.083 (0.255,0.421)± =
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We then consider testing the null hypothesis                                      
versus the (two-sided) alternative

0 1 2:H p p=
1 2:AH p p¹

Test statistic:

1 2

0 1 2

ˆ ˆ
ˆ ˆ( )
p pz

se p p
-

=
-

Here                         is the estimated standard error under the 
null hypothesis, obtained by using the sample proportion       in 
the two samples combined:

0 1 2ˆ ˆ( )se p p-
p̂

0 1 2
1 2

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ( ) p p p pse p p
n n
- -

- = +

We reject H0 for large values of  | |z

Under  H0 the test statistic is approximately standard normal

P-value (two-sided):  P = 2 P(Z >|z|) where  Z is standard normal
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In the example:

Unsuccessful (population 1):

1 160n =

Successful (population 2):

2 609n = 2
175ˆ 0.287
609

p = =

100 175ˆ 0.358
160 609

p +
= =

+

We obtain:

0 1 2ˆ ˆ( ) 0.0426se p p- =

The test statistic takes the value

0.625 0.287 7.9
0.0426

z -
= =

which is highly significant

1
100ˆ 0.625
160

p = =

NB! Important to also 
consider and report 
effect size NB!



2x2 tables
It is common to summarize the situation with two binary samples 
in a 2x2 table. For the example we have the 2x2 table:  

Unsuccessful
Successful

divorced

100 60
175 434

160
609

not divorced Total

An alternative way of formulating the test for the null hypothesis of 
no difference between the populations (cf. slide 8), is to compare the 
observed numbers in the table (denoted O's) with the corresponding 
expected numbers if the null hypothesis is true (denoted E's) 

769494275Total
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If there is no difference between the two groups we would  (e.g.) expect                                         

divorces among the unsuccessful couples 

275160 57.2
769
× =



Expected numbers:  

Unsuccessful
Successful

divorced

57.2 102.8
217.8 391.2

160
609

not divorced Total

769494275Total

Test statistic:                                  
2

2

all cells

( )O E
E

c -
= å
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We reject H0 for large values of  2c

Under H0 the test statistic is approximately chi-square distributed
with 1 degree of freedom (df) provided that all E's are at least 5

P-value:                          where     is chi-square distributed with 1 df2 2
obs( )P c c³ 2c

One may show that                 so this is a reformulation of the test 
on slide 8    

2 2zc =
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R commands: 
kittiwake=matrix(c(100,175,60,434),nrow=2)
dimnames(kittiwake)=list(c("unsuccessfull","successful"),c("divorced","not_divorced"))
kittiwake
chisq.test(kittiwake,correct=F)$expected
prop.test(kittiwake,correct=F)

R output (edited):
divorced       not_divorced

unsuccessfull 100                        60
successful                   175                      434

divorced       not_divorced
unsuccessfull 57.217             102.783
successful             217.783             391.217

X-squared = 62.8813, df = 1, p-value = 2.196e-15
alternative hypothesis: two.sided
95 percent confidence interval:
0.25446 0.42082 
sample estimates:

prop 1       prop 2 
0.62500     0.28736 



Contingency tables
The chi-square test may be extended to contingency tables of higher 
order

Lower third
Middle third

Lower
third

14 11
11 11

33
31

Total

923231Total
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Example: Blood pressure

Upper third

Middle
third

Upper
third

8
9

29

6 10 12 28

Blood pressure of 92 teenagers according to the blood pressure of 
their fathers:

Does the blood pressure of the children depend on the blood 
pressure of their fathers?

Fa
th

er
's 

bl
oo

d 
pr

es
su

re

Child's blood pressure



We will test the null hypothesis that there is no difference between 
the groups (in the example, that the blood pressure of the children 
does not depend on the blood pressure of their fathers)

Test statistic:                                  
2

2

all cells

( )O E
E

c -
= å

14

We reject H0 for large values of  2c

Under H0 the test statistic is approximately chi-square distributed with
provided that all E's are at least 5   

Expected numbers (E's) are computed as for 2x2 tables  

(#rows 1) (#columns 1)df = - × -

In the example we have (3 1) (3 1) 4df = - × - =
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R commands: 
bloodpr=matrix(c(14,11,6,11,11,10,8,9,12),nrow=3)
dimnames(bloodpr)=list(c("F.low","F.middle","F.upper"), c("C.low","C.middle","C.upper"))
bloodpr
chisq.test(bloodpr,correct=F)$expected
chisq.test(bloodpr,correct=F)

R output (edited):
C.low C.middle C.upper

F.low 14             11             8
F.middle 11             11             9
F.upper 6             10           12

C.low C.middle C.upper
F.low 11.120      11.478        10.402
F.middle 10.446     10.783          9.772
F.upper 9.435        9.739         8.826

Pearson's Chi-squared test
X-squared = 3.814, df = 4, p-value = 0.432 



Risk measures
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We assume that population 1 corresponds to an "exposed" 
population (specified by x = 1) and that population 2 
corresponds to an "unexposed" population (specified by x =0)   

Unsuccessful (x=1)
Successful  (x=0)

divorced (y=1)

100 60
175 434

160
609

not divorced (y=0) Total

769494275Total

Assume  that we have a random sample of binary data from each of 
two populations, and that the two samples are independent

Example: "Divorce" among seagulls

1Population 1:     (1) ( 1| 1)p p P y x= = = =

2Population 2:     (0) ( 1| 0)p p P y x= = = =
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On slide 6 we used the excess risk

(1) (0)ER p p= -

An alternative would be to use the relative risk  given by:

(1)
(0)
pRR
p

=

In the example, estimates of these two measures of risk are 
given by (cf. slide 7) 

ˆ(1) 0.625 2.18
ˆ(0) 0.287
pRR
p

= = =

to measure the effect of the "exposure"

ˆ ˆ(1) (0) 0.625 0.287 0.338ER p p= - = - =
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A third risk measure is based on the concept of odds, so we 
will first discuss this concept

Assume that an event has a probability  p of occurring

Then the odds for the event is  

odds
1
p
p

=
-

The odds is one if the probability that an event will 
happen is equal to the probability that it will not happen, 
cf. the expression "a fifty-fifty chance"

When you throw a die, the odds that it will face six is 1 : 5                   
(i.e. it is five times more likely that it will not face six than it will face six)  
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We then return to the situation with two populations:

Then a third risk measure is the odds ratio

[ ]
[ ]

(1) 1 (1)
(0) 1 (0)
p p

OR
p p

-
=

-

Population 1:    (1) ( 1 | 1)p P y x= = =

Population 2:     (0) ( 1 | 0)p P y x= = =

The odds for the two populations are:

(1)Population 1:     
1 (1)
p
p-

(0)Population 2:     
1 (0)
p
p-

In the example, an estimate for the odds ratio becomes (cf. slide 7) 

0.625 (1 0.625) 1.667 4.14
0.287 (1 0.287) 0.403

OR -
= = =

-
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Why Odds-ratio?

• Turns up in logistic regression!

[ ]
[ ]

(1) 1 (1) (1)
(0) 1 (0) (0)
p p pOR RR
p p p

-
= » =

-

• Related to relative risk in the following way

+ Examples: p(1)=0.2 and p(0)=0.1 gives RR=2 and OR=2.25
p(1)=0.1 and p(0)=0.05 gives RR=2 and OR=2.11

+ RR=1 when OR=1 (and vice versa)

+ if RR>1 we have 1<RR<OR

+ if RR<1 we have  OR < RR < 1

+ if p(1) and p(0) are both small then

OR=1 Exposure does not affect 

odds of outcome

OR>1 Exposure associated 

with higher odds of outcome

OR<1 Exposure associated 

with lower odds of outcome



Logistic regression with one predictor
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When discussing logistic regression, we will to a large extent use the 
WCGS study for illustration

WCGS is a large epidemiological study designed to study risk factors 
for coronary heart disease (CHD) among middle-aged men 

How does the age (at entry to the study) affect the risk (probability) 
of developing CHD?

# Total
# CHD

35-40
(39.5)

543
31

5.7 %% CHD

41-45
(42.9)

1091
55

5.0 %

46-50
(47.9)

750
70

9.3 %

51-55
(52.8)

528
65

12.3 %

56-60
(57.3)

242
36

14.9 %

Age group
(mean)

The men were followed for 10 years, and for each man it was recorded 
if he developed CHD (y=1) or not (y=0) over the course of the study
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The figure shows the 
observed proportion with 
CHD plotted versus the 
mean age in each age group  

A least square fit to the 
observed proportions gives 
the fitted line

This least squares line may give an all right description of the 
observed proportions, but there are in general problems with using 
linear regression for binary data and proportions
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In general we have data  (x1,y1) , … , (xn,yn)

( ) ( | ) ( 1 | )p x E y x P y x= = =

Here        is a binary outcome  (0 or 1)  for subject  i and       is 
a predictor  for the subject  (which may be binary or numerical)   

In general we let

iy ix

In the WCGS study,              if man number  i developed CHD 
during the course of the study,             if not, and       may be 
his age (at entry to the study)  

1iy =
ix0iy =

We want a model that specifies a relation between             and  ( )p x x
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0 1( )p x xb b= +

One option would be a linear model:

This is an additive risk model, which may be useful in some situations

However, it is a main problem with the additive risk model that it may 
give impossible values for the probabilities (negative or above 1) 

To avoid this problem it is common to consider 
the logistic regression model given by 

0 1

0 1

exp( )( )
1 exp( )

xp x
x

b b
b b
+

=
+ +

This gives a "S-shaped"
relation between  p(x) and  x
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If we fit a logistic regression model for the WCGS data using the 
mean age in each age group as a numeric covariate, we get                        

and 

30 35 40 45 50 55 60 65

0.
00

0.
05

0.
10

0.
15

0.
20

Age

C
H

D
 ri

sk

exp( 5.947 0.0747 age)ˆ (age)
1 exp( 5.947 0.0747 age)

p - + ×
=

+ - + ×

0
ˆ 5.947b = - 1̂ 0.0747b =

This gives the fitted model

The method for estimating the parameters of a logistic 
regression model will be described in Lecture 7
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The logistic model may alternatively be given in terms of the odds:

0 1
( ) exp( )

1 ( )
p x x
p x

b b= +
-

If we consider two subjects with covariate values  and  x , 
respectively,  their odds ratio becomes

[ ]
[ ]

( ) 1 ( )
( ) 1 ( )

p x p x
p x p x
+ D - + D

-
( )0 1

0 1

exp ( )
exp( )

x
x

b b
b b
+ + D

=
+ 1exp( )b= D

In particular          is the odds ratio corresponding to one unit's 
increase in the value of the covariate

1eb

x + D

In the WCGS study the odds ratio for one year increase in age is
while the odds ratio for a ten-year increase is 

(The numbers deviate slightly from those on pp 144-145 in the text book, 
since we have used mean age for each age group in this illustration; cf. the 
exercises for the results when actual age is used.) 

0.0747 1.078e = 0.074710 2.11e × =
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R commands: 
wcgs=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/wcgs.txt",   

sep="\t",header=T,na.strings=".")
wcgs$agem=39.5*(wcgs$agec==0)+42.9*(wcgs$agec==1)+47.9*(wcgs$agec==2)+

52.8*(wcgs$agec==3)+57.3*(wcgs$agec==4)
attach(wcgs)
cbind(chd69, agem)

R commands for logistic regression
Binary CHD data with mean age in each age group as covariate 

R output of binary CHD data (edited):
chd69   agem

[1,]     0   47.9
[2,]     0   52.8
[3,]     0   57.3
[4,]     0   52.8
[5,]     0   42.9
[6,]     0   47.9
[7,]     0   39.5
[8,]     0   42.9
[9,]     0   47.9

chd69    agem
[10,]     0      42.9
[11,]     0      57.3
[12,]     0      52.8
[13,]     0      47.9
[14,]     1      39.5
[15,]     0      47.9
[16,]     0      52.8
[17,]     0      42.9
[18,]     0      57.3
[19,]     0      42.9

chd69    agem
[3145,]     0         42.9
[3146,]     0         42.9
[3147,]     0         52.8
[3148,]     0         42.9
[3149,]     0         42.9
[3150,]     0         47.9
[3151,]     0         42.9
[3152,]     0         52.8
[3153,]     0         52.8
[3154,]     0         47.9
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When we use the mean age in each age group as covariate, all 
information is summarized in the table

# Total
# CHD

35-40
(39.5)

543
31

41-45
(42.9)

1091
55

46-50
(47.9)

750
70

51-55
(52.8)

528
65

56-60
(57.3)

242
36

Age group
(mean)

R commands: 
chd.grouped=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/chd_grouped.txt ",   

header=T)
chd.grouped

As an alternative to using the individual binary data, we may therefore 
use the grouped data given in the table

R output of grouped CHD data:
no     chd    agem
543     31    39.5

1091     55    42.9
750      70    47.9
528      65    52.8
242      36    57.3
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R commands for binary data: 
fit.binary=glm(chd69~agem, data=wcgs,family=binomial)
summary(fit.binary)
predict(fit.binary, type = "response”, data.frame(agem=50)) #predicts prob. at age 50

We may fit the logistic regression model using the individual binary 
data or by using the grouped data 

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -5.9466         0.5616             -10.588                    < 2e-16 
agem 0.0747         0.0116                 6.445                     1.15e-10

R commands for grouped data: 
fit.grouped=glm(cbind(chd,no-chd)~agem, data=chd.grouped, family=binomial)
summary(fit.grouped)

The two ways of fitting the logistic regression model give the same 
estimates and standard errors:

(Other parts of the R output will differ, as we will discuss in Lecture 7)
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• We introduced logistic regression as a regression model for qualitative 
(=categorical) response variables, with two categories (response 0 or 1)

• When there are more than two categories, there exist natural multiple-
class extensions (but for simplicity we stick to binary problems here)  

• When we use the fitted logistic model to predict a categorical response, 
we first predict the probability of each of the categories, and can then use 
this predicted probability to select a category. In this sense logistic 
regression can be viewed as a CLASSIFIER – we perform CLASSIFICATION

• Logistic regression is one of the most widely used classifiers, and is the 
basic building block underlying many statistical/machine learning 
methods such as the deep learning algorithm

Binary classification with logistic regression



31

ç Is this the digit  ´3´?

Will this consumer 
click on my ad? è

ç Will this patient survive?

Binary classification
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0 1

0 1

exp( )( )
1 exp( )

xp x
x

b b
b b
+

=
+ +

Remember we had

If , or equivalenty, 

è classify as y=1

If , or equivalenty, 

è classify as y=0

NB! Not mandatory to
divide at 0.5. Depends on 
the application in question
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Extend to two predictors x1 and x2

x1

x2

è classify as y=1

Example:

Linear separator(Figure from Andrew Ng)
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With higher order terms

Example:

è classify as y=1

x1

x2
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There exist several different classification techniques that we can use to 
predict qualitative responses (like above).

The most commonly used are 

• logistic regression
• linear discriminant analysis (LDA)
• K-nearest neighbours (KNN)

Logistic regression and LDA are very similar, but the LDA assumes that 
predictors are normally distributed. KNN is completely non-parametric. No 
method will systematically dominate the other.

More computer intensive methods are for example

• generalized additive models (tomorrow)
• tree-based methods
• random forests
• boosting
• support vector machines (SVM)

Suggested reading:

An Introduction to Statistical Learning

James, Witten, Hastie, Tibshirani

Springer 2013


