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Excess risk, relative risk, and at'o )
Logistic regression with one pregictor
Some comments on classification

e

Section 3.4

Section 5.1

Supplementary material on proportions and contingency
tables (cf. your introductory statistics textbook)



Binary data and proportions_ \f_£9 —

In the first part of the course, we considered the situation
where the outcome was numerical

—

We will now consider the situation where the outcome is a

binary variable (coded as 0 or 1)
e - —

Example: Opinion po”‘i NorstatforNRKS.febr

——,A—— —
In February 201 asked n = ) 7 Mhorstat -lir-l Whorstat, uke 2/2017
932 individuals which party theyé a Q)

upport if there had been

election to the parliament tomorrow .,
N - 2
@ ould have voted Ap .
Ap's support on the opinion poll is p
— 309 :

—— = 0.330
— 935 &

Yoo




In general we have a sample of binary data@ Vyserrs VY

from a population

S ————

i) /Y
Here y, =1 ifsubject i has a certain property (e.g. vote Ap), while

—_—

otherwise y. =0

We le P(y =1)

Standard error:  se(p) = \/p(l —p) l/{f (F):
— n

In the example, the standard error becomes

se(p) = \/0—(1_033 = 0.0154

— 935 _—




One may show that p is approximately normally distributed

cf. the central limit theorem . 2
( ) o %(?9 < (f))
@confidence interval for the population proportion p : \
px1.96-s¢e(p) + 0.975
= 5= B

In the example a 95% confidence interval becomes:

0.33 + 1.96 - 0.0154
[8)
l.e. r faﬂ.s,zs Q@)
= 0.33 = 0.03 329 + 3%

Thus our estimate of Ap's support is 33.0% with a

"margqgin of error" of + 3% %
- -L..I
VP




ik mad e e
Comparing two proportions );{ e/l JJ{ el

Assume that we have g_random sample of binary data from each of

two populations, and that the %g ggeles are mdegendent
W

_» Example: "Divorce" among seaqgulls
- \_—’_

Kittiwake (krykkje) is a seagull whose
mating behavior is *as;l_c_au;Lmnnogamm,ls,

but some

769 kittiwake pair-bonds were studied over two breeding seasons

Of theouples that had not successful breeding the first season,
~% 100 divorced ’

P
’:L' ¥ Of thouples that were successful, 175 divorced

———



Population 1: Population 2:

Populatlon proportlon )4 _~ Population proportion:  p,
Sample size @ T Sample size: n, )
Sample proportion: p, Sample proportion: p,

—= /
We are interested in estimating and testing H,: p, =p,

~ o

95% confidence interval for p,—p, :  «—
—— — e

{

151 _152 T 1-96':?3(151 _152)

where

se(p,— p,) = /se(p,)* +se(p,)’

e ., B

/"\




In the example:

Unsuccessful (population 1):
Sample size:@: 160

Sample proportion: p, = %

[ g

Q
Successful (population 2):
Sample size: n, =609
= — . 175

Sample proportion: p, = 6_()9

———

We obtain:

p,— P, =0.625-0.287& 0.338

—~———

se(p, — p,) =0.0424

—_

95% confidence interval:

e

0.338+1.96-0.0424 le.

>~

J

0.338+0.083 =(0.255,0.421)
S —)



We then consider testing the null hypothesis H : p, = p, _ﬁ =0
versus the (two-sided) alternative H ,: p, # p, — =

- . Q\ ——\7\
Test statistic: 1D [
“A et
-vx

,————'ﬂ ~ ~
p— D, <
SeO(ﬁl _152)

Here se,(p, — p,) is the estimated standard error uader the
null hypothesis, obtained by using the sample proportion p in

the two samples combined:

.. p(1-p)  p(1—p
se(Pr— p)= Jp( p), p(1-p)
L

)

\f |.5¢

n n
1 2 ) g‘_ 1.5
We reject H, for large values of |z | >

Under H, the test statistic is approximately standard normal

P-value (two-sided). P = 2 P(Z >|z|) where Z is standard normal

r g




In the example:
Unsuccessfuf(population 1

n =160  p =1

— 16

é\.

/"

Successful (population 2):

600 —175/
@_ pz—@

We obtain: h\

)
~—100+175 A a
P =160+ 609 s¢ (P~ p,) =0.0426
.-/ %
The test statistic takes the value

i 04.6&5.._ Q—Zﬁ(_ 79 )
0.0426

which is highly significant

NB! Important to also
consider and report
effect size NB!




2x2 tables

It7s common to summarize the situation with two binary samples
In a 2x2 table. For the example we have the 2x2 table:

/ d|vorceg_..\ not divorced Total 160 <285
~a  Unsuccessful
x(./ Successful

Total

An alternative way of formulating the test for the null hypothesis of

~no difference between the populations (cf. slide 8), is to compare the
observed numbers in the table (denoted O's) with the corresponding

expected numbers if the null hypothesis is true (depated E's)

S

——

If there is no difference between the two groups we would (e.g.) expect

160- 27>

769

divorces among the unsuccessful couples 10



Expected numbers:

H;?(:?z_

divorced not divorced Total
Unsuccessful >7. ' (<60
Successful 217.8 391.2 609 a 70 oy
Total (275 494 769 i
/X e
(0 E@ ) o( /*c'?(,y
Test statistic: Z S -
———— all cells = _ / / “'&0 <<y
'y z“ﬂ
We reject H, for large values of x° 75& 3:5’,‘ “
Under Hy the test statistic is approximately chi-square distributed "/, o5
————

v@@.@.&@ﬁﬂm

P-value: P(»*>2 y2) where X’ is chi-square distributed with 1 df

One may show that y* =z’

on slide 8

) provided that all E's are at least 5
-

—

so this is a reformulation of the test
F

11



R commands:

@matrix(c(loo,175,60,434),nrow=2)
dimrrames(kittiwake)=list(c("unsuccessfull","successful"),c("divorced","not_divorced"))

kittiwake

chisq.test(kittiwake,correct=F)Sexpected (\‘ J c{vf

prop.test(kittiwake,correct=F) 72

R output (edited): — ¥ : -
divorced  not_divorced / 4

unsuccessfull 100 60 A ;6’ f\VPo/

successful 175 434

divorced not divorced

unsuccessfull 57.217 _102.783 L Q@Q C’éc/

successful 217.783 391.217
~lo2, %)
Xﬁ&e_d@df: 1, p-value = 2.196e-15 an SZZ + ( ° e
: . - — (22 2. €&
alternative hypothesis: two.sided 7
95 percent confidence interval: _ 91118 (43¢ — 351 2j
0.25446 0.42082 + (35 -2 ) =

~ (.22
sample estimates: 20t .28 37

pDrop 1

26288




Contingency tables

The chi-square test may be extended to contingency tables of higher
order o

/A

Example: Blood pressure

Blood pressure c(9_2>teenagers according to the blood pressure of

X

——

their fathers:

m—

Child's blood pressure y ~ /

LN
wer Middle @

ower third 14 11 8 G3)

iddle thir 11 11 9 31

er thifd 6 10 12 (287
J Total 31 32 29 (92)

Does the blood pressure of the children depend on the blood
pressure of their fathers? 13

Father's blood
pressure




We will test the null hypothesis that there is no difference between
the gr groups (in the example, that the blood pressure of the children _

" does not depend on the blood pressure of their fathers)
N

Expected numbers (E's) are computed as for 2x2 tables

e
—_—

Test statistic: @ Z M /

all cells

———

We reject H,, for large values of )(2

-

Under H, the test statistic is approximately ggl square distributed with

‘: (#rows — 1) - (#columns — 1) provided that all E's are at least 5

In the example we have df=(3—1).(3_1) becefon A J‘Zf Fe ol
| - ok foose.
{7 =
— (?—94(24)38’

df = @ 1)x(5=)=1 :

—~ —




R commands:
bloodpr=matrix(c(14,11,6,11,11,10,8,9,12),nrow=3)
dimnames(bloodpr)=list(c("F.low","F.middle","F.upper"), c("C.low","C.middle","C.upper"))
bloodpr ] ‘ ’ ‘
chisg.test(bloodpr,correct=F)Sexpected
chisq.test(bloodpr,correct=F)

— N A\

R output (edited):
C.low C.middle C.upper

F.low 14 11 8
F.middle 11 11 9
F.upper 6 10 12

C.low C.middle  C.upper
F.low 11.120 11.478 10.402
F.middle 10.446 10.783 9.772
F.upper 9.435 9.739 8.826

Pearson's Chi-sguared test
X-squaredf = 4, p-value




Risk measures

Assume that we have a random sample of binary data from each of

two populations, and tifatrthe two sampies are mﬂependent
##A _ .

We assume that population 1 corresponds to an_"exposed”

population (specified by x = 1) and thatpﬁ%
“corresponds to an "unexposed" population (specified by x =0)

_—

—

Example: "Divorce" among seaqulls

divorced (y=1 not divorced (y=0) | Total

X/ Unsuccessful (x=1) 100 6 160
— Successful (x=0) 175 434 609
Total 275 494 769

Population I:  p, =p(l)=P(y=1|x=1)
Population2:  p,=p(0)=P(y=1|x=0)




—

On slide 6 we used th :iM

ER = p(1) - p(0)

R

to measure the effect of the "exposure”
— E—

An alternative would be to use the relative risk given by:

(R
p(0)
In the example, estimates of these two measures of risk are

given by (cf. slide 7)

ER = p(1) - p(0) = 0.625—-0.287 = 0.338

R = P _ 0625 £
5(0)  0.287

17



A third risk measure is based on the concept so we

will first discuss this concept

Assume that an event has a probability p of occurring

Then the Qdds for the event is

The odds is one if the probability that an event will
hapﬁen is equal to the probability that it will not happen
cfthe expression "a  fifty-fifty chance”

When you throw a die, the odds that it will face six is 1 : 1:5
(i.e. it is five times more likely that it will not face six than it will face SiX)

>

18



We then return to the situation with two populations:
Population 1: p(l)=P(y=1|x=1)
Population 2:  p(0)=P(y=1|x=0)

g _

The odds for the two populations are:

p(0)
1-p(0)

Population 1: Population 2:

Then a third risk measure is the odds rat/o

_ p)/[1-p(D)] o IS peposed t£)
p(O)/[l — p(O)] S b pasea] (= o)

In the example, an estimate for the odds ratio becomes (cf. slide 7)

_ 0.625/(1-0.625) @

0.287/(1-0.287) 0.403 ™

19



Why Odds-ratio?

_

— /
Turns u@' logistic regression! 3;

— —

Related to relative risk in the following way

e ———
+ RR=1 when OR=1 (and vice versa) X
—— re—— X aﬁeC

+ if RR>1 we have 1<RR<OR

—— =0,

+ if RR<1 we have OR<RR <1

e

-y

+ if p(1) and p(0) are both small then

R — M{l—p(l)] ~ RR :&
= p0)/[1-p0)] == p(0)

—

+ Examples: p(1)=0.2 and p(0)=0.1 gives RR=2 and QR=2.25

p(71)=0.1 and p(0)=0.05 gives RR=2 and OR=2.11

20
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Ll

Logistic regression with one predictor 3&

FT <)
ehid /"j\

When discussing logistic regression, we will to a large extent use the

WCGS study for illustration

WCGS is a large epidemiological study designed to study risk factors

—&_

for coronary heart disease (CHD) among middle-aged men

—

@ ere followed for 10 years, and for each man it was recorded
if e\TélopeQ:CﬁB (y=3%or not (y=0) over the course of the study

How does the

of developing

rage Yat entry to the study) affect the risk (probability)

¢CHD?

Age group 46-50
mean (47 9)
CT—- —
# Total 543 1091 750 528 242
# CHD 31 55 70 65 36
% CHD 5.7% 50% 9.3 % 12.3 % 14.9 % 21

——



N
AV
)
\’L CHD risk
i)S 0.10 0.15 0.20
(] | |

The figure shows the
‘observed proportion with
"CHD plotted versus the
mean age in each age group

0.00 O

30 35 40 45 50 55 60 65

|

|

A least square fit to the
observed proportions gives
the fitted line -

|
>

‘ CHD risk
0.00 0.05 0.10 0.15 0.20
|

35 40 45 50 55 60 65

This least squares line may give an all right description of the
observed proportions, but there are in general problems with using

linear regression for binary data and proportions

P

22



In general we have data (x,),), ..., (x,,),)

v_

Here Y, is a binary outcome (0 or 1) for subject’_i_ and x, is
a predictor for the subject (which may be binary or numerical)

nnelel)

In the WCGS study if man number i developed CHD
during the course of the study, y, =0 if not, anc@may be

h’is’éﬁat entry to the study) —

In general we let

p(x)=E(y|x)=P(y=1]x)

We want a model that specifies a relation between p(x) and x
-_— e — e e—— —_—

23



One option would be a linear model:

x)=f,+ 0 x <) = go f <=2
p( ) .&) ,ﬁ f((.:) e B + ?, :'f Ty
This is an additive risk model, which may be useful in some situations

However, it is a main problem with the additive risk model that it may

give impossible values for thé probabilities (negative or above 1)
e ——

To avoid this problem it is common to consider
the logistic regression model given by
R e

_oxp(By+Bix)
@_ 1+exp(f3, + B, x)

This gives a "S-shaped"”
relation between p(x) and x

24



If we fit a logistic regression model for the WCGS data using the

mea in each age as a numeric covariate, we get
B, =—5.947/ and” 3 =0.0747

This gives the fitted model

(age) = exp(—5.947 +0.0747 -age) ye oy (B89
,,].D_.E.. 1+exp(—5.947 +0.0747-age) Lrey (F‘“‘f"‘)

o + e (i +ix) = 2p(f+ )
)= ag[fofs) - PO ear (8 ¢
00 = exp(forboc)(4-0C)

\_?Eﬂ—f— = o< (Boﬂg"‘}\
A -p )

CHD risk
0.15 0.20
| | |

0.05 0.10

0.00
|

\ \ \ \ \ \ \ \
30 35 40 45 50 55 60 65

A

Age

The method for estimating the parameters of a logistic

regression mode] will be described in Lecture 77—

25



The logistic model may alternatively be given in terms of the odds:

exp(f, + B, x)
f

If we consider two subjects with covariate values x+ A and x,
respectively, their odds ratio becomes — =

s
& 7 - '€F

— p(x+A)/[I-p(x+A)] exp(B, %+ B (x+A))
— p/[1-p»] exp(B, + B, x)
F

In particular ¢” is the odds ratio corresponding to one unit's
increase in the value of the covariate

A:i 5:)0

In the WCGS study the odds ratio for one year increase in ageis /
e e I — —

"1 {1.078) while the odds ratio for a ten-year increase is ¢’ =2.11

—_—
—————

(The numbers deviate slightly from those on pp 144-145 in the text book,
since we have used mean age for each age group in this illustration; cf. the

exercises for the results when actual age is used.)
26



R commands for logistic regression

Binary CHD data with mean age in eac;rLage group as covariate

T~

R commands:
wcgs=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/wcgs.txt",

sep="\t",header=T,na.strings=".")
wcgsSagem=39.5*(wcgsSagec==0)+42.9*(wcgsSagec==1)+47.9*(wcgsSagec==2)+
52.8*(wcgsSagec==3)+57.3*(wcgsSagec==4)
attach(wcgs)
cbind(chd69, agem)

R output of binary CHD data (edited):
chd6g

chd69 agem chd69 agem

~ [1] @ 473" [10] O 429 [3145] 0 42.9
— [2] 52.8 [11] 0 57.3 [3146] 0 429
[3.] 0 57.3 [12] 0 5258 [3147] 0 528

[4] 0 528 [13] 0 479 [3148] 0 429

[5] 0 429 4] @) 39.5 [3149] 0 429

6] 0 47.9 [15] 0 479 [3150,] O 47.9

[7.] 0 395 [16] 0 528 [3151] 0 429

[8] 0 429 7] 0 429 [3152] 0  52.8

9] 0 479 18] 0 57.3 [3153] 0  52.8
[19] 0 429 [3154] 0  47.9

27



When we use the mean age in each age group as covariate, all
information is summarized in the table

-

Age group | 35-40 41-45 46-50 51-55 56-60

(mean) Q(39.5)> @ (47.9) (52.8) (57.3)

# Total 543 1091 750 528 242

# CHD (1) 55) 70 65 36

As an alternative to using the individual binary data, we may therefore
use the grouped data given in the table

R commands:

chd.grouped=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/chd_grouped.txt ",
header=T)

chd.grouped

R output of grouped CHD data:
chd agem

no
cp——

543 31 395 n B(

091 55 42.9 (4 - R:( )

750 70 47.9 ng'(/?) /Y

528 65 52.8

242 36 573 28




We may fit the logistic regression model using the individual binary
data or by using the grouped data ]

R commands for binary data:
fit.binary=glm(chd69~agem, data=wcgs,family=binomial)
summary(fit.binary)

préa'ict(fit.binary, type = "response”, data.frame(agem=50)) #predicts prob. at age 50

R commands for grouped data:
fit.grouped=gim(cbind(chd,no-chd)~agem, data=chd.grouped, family=binomial)
summary(fit.groupea, ”

—_—

The two ways of fitting the logistic regression model give the same
estimates and standard errors:

R output (edited):

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.9466 0.5616 -10.588 < 2e-16
agem 0.0747 0.0116 6.445 1.15e-10

SRR —

(Other parts of the R output will differ, as we will discuss in Lecture 7)

~
‘#
29



. £ A
\.”‘%()/ Binar

) ‘
"

(classificationp)with logistic regression
§ ‘7‘4'/9 T T = ﬁ

We introduced logistic regression as a regression model for qualitative_

(=categorical) response variables, with two categories Zresponse Oor1l)
—— — - —————

When there are more than two categories, there exist natural multiple-

;cgss_é__exie‘g_sm (butTor simplicity we stick to binary problems here)

When we use the fitted Iogistic model to predict a categorical response,

we first predict the probability of each gf the catgegries, and can then use

mm——

this predicted probability to sel ory. In this sense logistic
regression can be viewed as zCLASSIFIE% we perform CLASSIFICATION

 _Logistic regression is one of the most widely used classifiers, and is the

basic building block underlying many statisticai?macﬁme fearning

methods such as the deeg Igarning algorithm —

30



Binary classification

Ay dsh

€ s this the digit '3°? O

—

31



Remember we had
A\
p(x)

If p(x) > 0.5, or equivalenty,
f

=

Bo+ iz >0 = classify as y=1
L —— — -

If p(z) < 0.5, or equivalenty,

Bo + b1z <0 =» classify asy=0

——

— <=

NB! Not mandatory to
divide at 0.5. Depends on
the application in question

32



Extend to two predicto x1 anm

exp (Bo + Przr1 +, 212)
1 4 exp (Lo + frx1 + ,821'2)

@ Bo + Bix1 + Paxeg >0 =»  classify as y=1
;_5_—#*.'

p(z) =

/ ™~
.
@‘ /s ™ Example:
e
il 4
4 A ~ /8 — [_37 1) 1]T
31\ | e ~ i B
RS 5 D
i~ © —34z1+125>0
NN —_— .
& =
fa | o 11+ 73 > 3

(Figure from Andrew Ng)\ /

=S

Linear separator



With higher order terms
M
exp (Bo + Bix1 + Poxa + Bax? + @41‘2

T
p( ) 1+9Xp(ﬁ0+ﬂ1$1+;82$2+;833:1+ﬂ4$2)
—_ -
Bo + Brx1 + Boxy + Paz? + Pyl >0
— — =» classify as y=1
PR yasy
/A ‘ A A A\
2' / P P! A/ — \i & Aa \
ALY, e A | Example:
L A ‘:..'%0'. .o o\
y‘*.‘: /..; e ...\Af»\ ﬁz[_g’o’o’l,l]T
o1+ s (SRR S
®%® ‘0%
1‘\AAA\\O....:Q 80 g /gAfA/ I%—I-IgZQ
\ 0 \': -.}/ i
o | N K
N A ‘A “A . 4
— | ‘/ = |
-3 | | T- | I l

-3 -2 -1 0 1 2 3x 1

(Figure from Andrew Ng) 34



—
There exist several different classification techniques that we can use to
predict qualitative responses (like above).

A,

The most commonly used are

* |ogistic regression
* linear discriminant analysi
) N k=3

K-nearest neighbours (KN
. T

m———

Logistic regression and LDA are very similar, but the LDA assumes that
predictors are normally distributed. KNN Is completely non-paranpetric. No
method will systematically dominate the other.

——

More computer intensive methods are for example
— > L

. ' itive models (tomorrow)
tree-based methods

random forests ___.>

boosting </— clecs (L Eaho 44 Q;:

support vector machines (SVM)




