
STK4900/9900  - Lecture 7

Program
1. Logistic regression with one predictor
2. Maximum likelihood estimation
3. Logistic regression with several predictors
4. Deviance and likelihood ratio tests
5. A comment on model fit

• Sections 5.1, 5.2 (except 5.2.6), and 5.6
• Supplementary material on likelihood and deviance
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We have data  (x1 ,y1) , … , (xn ,yn)

( ) ( | ) ( 1 | )p x E y x P y x= = =

Here        is a binary outcome (0 or 1) for subject  i and       is 
a predictor  for the subject    

We let

iy ix

The logistic regression models take the form:

Logistic regression with one predictor
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This gives a "S-shaped" relation 
between  p(x) and  x and ensures 
that   p(x) stays between 0 and 1
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The logistic model may alternatively be given in terms of the odds:
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If we consider two subjects with covariate values  and  x , 
respectively,  their odds ratio becomes
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In particular          is the odds ratio corresponding to one unit's 
increase in the value of the covariate

1eb

x + D
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( )log (**)
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Thus the logistic regression model is linear in the log-odds

By (*) the logistic regression model may also be given as:
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R commands: 
wcgs=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/wcgs.txt",   

sep="\t",header=T,na.strings=".")
fit=glm(chd69~age, data=wcgs,family=binomial)
summary(fit)

Consider the WCGS study with CHD as outcome and age as predictor 
(individual age, not grouped age as we considered in Lecture 6)

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -5.9395    0.5493 -10.813  < 2e-16 
age          0.0744    0.0113 6.585 4.56e-11 

The odds ratio for one year increase in age is 0.0744 1.077e =
0.074410 2.10e × =

How is the estimation performed for the logistic regression model?

(The numbers deviate slightly from those on slide 25 from Lecture 6, since there 
we used mean age for each age group while here we use the individual ages) 

while the odds ratio for a ten-year increase is
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Maximum likelihood estimation

Estimation in the logistic model is performed using maximum 
likelihood estimation

We first describe maximum likelihood estimation for the linear 
regression model:

For ease of presentation, we assume that  σ2 is known

The density of  yi takes the form (cf slide 12 from Lecture 1):
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The likelihood is the simultaneous density

considered as a function of the parameters and        for the 
observed values of the  yi

0b 1b

We estimate the parameters by maximizing the likelihood. 
This corresponds to finding the parameters that make the observed 
yi as likely as possible

Maximizing the likelihood  L  is the same as maximizing

which is the same as minimizing

For the linear regression model, maximum likelihood estimation 
coincides with least squares estimation
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We then consider the situation for logistic regression

We have data  (x1 ,y1) , … , (xn ,yn),  where       is a binary 
outcome  (0 or 1)  for subject  i and       is a predictor  

iy
ix
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Here we have

( 1| )i i iP y x p= =

Thus the distribution of yi may be written as 

where

( 0 | ) 1i i iP y x p= = -

1( | ) (1 )i iy y
i i i iP y x p p -= -
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The likelihood becomes
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Since

the likelihood is, for given observations, a function of the 
unknown parameters and           0b 1b

We estimate          and           by the values of these parameters 
that maximize the likelihood            

0b 1b

These estimates are called the maximum likelihood estimates (MLE)
and are denoted        and        0b̂ 1̂b
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Confidence interval for      and odds ratio 1b
95%  confidence interval for        (based on the normal approximation):

1 1
ˆ ˆ1.96 ( )seb b± ×

1b

is the odds ratio for one unit's increase in x1exp( )OR b=

We obtain a 95% confidence interval for OR by transforming the 
lower and upper limits of the confidence interval for 1b

In the CHD example we have                       and 1̂ 0.0744b = 1̂( ) 0.0113se b =
95%  confidence interval for        :1b

0.0744 1.96 0.0113 i.e.   from 0.052  to  0.096 ± ×

Estimate of odds ratio  exp(0.0744) 1.077OR = =
95%  confidence interval for  OR :

from exp(0.052) 1.053  to  exp(0.096) 1.101 = =
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R function for computing odds ratio with 95% confidence limits 

expcoef=function(glmobj)
{
regtab=summary(glmobj)$coef
expcoef=exp(regtab[,1])
lower=expcoef*exp(-1.96*regtab[,2])
upper=expcoef*exp(1.96*regtab[,2])
cbind(expcoef,lower,upper)
}

expcoef(fit)

R output  (edited):

expcoef lower       upper
(Intercept) 0.0026 0.0009 0.0077
age         1.077 1.054 1.101
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Wald test for 0 1: 0H b =

To test the null hypothesis                      versus the two-sided 
alternative                      we often use the Wald test statistic:

0 1: 0H b =

1: 0AH b ¹

1

1

ˆ
ˆ( )

z
se
b
b

=

We reject H0 for large values of  | |z

Under  H0 the test statistic is approximately standard normal

P-value (two-sided):  P = 2 P(Z >|z|) where  Z is standard normal

In the CHD example we have                       and 1̂ 0.0744b = 1̂( ) 0.0113se b =

Wald test statistic 

0.0744 / 0.0113 6.58z = =

which is highly significant (cf. slide 4) 



Multiple logistic regression
Assume now that we for each subject have 

Logistic regression model: 

   a binary outcome y•

1 2   predictors , ,...., px x x•
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The logistic model may also be given in terms of the odds:

1 2
0 1 1 2 2

1 2
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If we consider two subjects with values  and  x1 , for the first 
covariate and the same values for all the others,  their odds ratio becomes

1 2 1 2

1 2 1 2
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p p
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0 1 1 2 2
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+ + D + + +

=
+ + + + 1exp( )b= D

In particular          is the odds ratio corresponding to one unit's increase 
in the value of the first covariate holding all other covariates constant

1eb

1x +D

A similar interpretation holds for the other regression coefficients
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Wald tests and confidence intervals

95%  confidence interval for       : ˆ ˆ1.96 ( )j jseb b± ×jb

is the odds ratio for one unit's increase in the 
value of the j-th covariate holding all other covariates constant

exp( )j jOR b=

We obtain a 95% confidence interval for  ORj by transforming the 
lower and upper limits of the confidence interval for jb

ˆ MLE for j jb b• =

ˆ ˆ( ) standard error for  j jse b b• =

To test the null hypothesis                     we use the Wald test statistic:0 : 0j jH b =
ˆ
ˆ( )
j

j

z
se
b
b

=

0 jHwhich is approximately N(0,1)-distributed under 
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R commands: 
wcgs.mult=glm(chd69~age+chol+sbp+bmi+smoke, data=wcgs, family=binomial, 

subset=(chol<600))
summary(wcgs.mult)

Consider the WCGS study with CHD as outcome and age, 
cholesterol (mg/dL), systolic blood pressure (mmHg), body mass 
index (kg/m2), and smoking (yes, no)  as predictors (as on page 152 in 
the text book we omit an individual with an unusually high cholesterol value)

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -12.3110   0.9773 -12.598  < 2e-16 
age           0.0644   0.0119   5.412 6.22e-08
chol          0.0107   0.0015   7.079 1.45e-12
sbp           0.0193   0.0041   4.716 2.40e-06
bmi           0.0574   0.0264   2.179   0.0293 
smoke         0.6345   0.1401   4.526 6.01e-06



16

R command (using the function from slide 10): 
expcoef(wcgs.mult)

Odds ratios with confidence intervals 

R output  (edited):
expcoef       lower        upper

(Intercept) 4.50e-06 6.63e-07 3.06e-05
age         1.067 1.042 1.092
chol        1.011 1.008 1.014
sbp         1.019 1.011 1.028
bmi         1.059 1.006 1.115
smoke       1.886 1.433 2.482
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For a numerical covariate it may be more meaningful to present an  odds 
ratio corresponding to a larger increase than one unit (cf. slide 13)

This is easily achieved by refitting the model with a rescaled covariate

If you (e.g) want to study the effect of a ten-years increase in age, you fit 
the model with the covariate  age_10=age/10

R commands: 
wcgs.resc=glm(chd69~age_10+chol_50+sbp_50+bmi_10+smoke, data=wcgs, 

family=binomial, subset=(chol<600))
summary(wcgs.resc)

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -3.006 0.116 -12.598  < 2e-16 
age_10           0.644   0.119   5.412 6.22e-08
chol_50          0.537   0.076   7.079 1.45e-12
sbp_50           0.965   0.205   4.716 2.40e-06
bmi_10           0.574   0.264   2.179   0.0293 
smoke         0.634   0.140   4.526 6.01e-06

Note that values of the Wald test statistic are not changed (cf. slide 15)
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R command (using the function from slide 10): 
expcoef(wcgs.resc)

Odds ratios with confidence intervals: 

R output  (edited):
expcoef       lower        upper

(Intercept) 0.0494 0.0394 0.0621
age_10      1.9050 1.5085 2.4057
chol_50     1.7110 1.4746 1.9853
sbp_50      2.6240 1.7573 3.9180
bmi_10      1.7760 1.0595 2.9770
smoke       1.8860 1.4329 2.4824
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An aim of the WCGS study was to study the effect on CHD of 
certain behavioral patterns, denoted A1, A2, B3 and B4

Behavioral pattern is a categorical covariate with four levels, and 
must be fitted as a factor in R

R commands: 
wcgs$behcat=factor(wcgs$behpat)
wcgs.beh=glm(chd69~age_10+chol_50+sbp_50+bmi_10+smoke+behcat, 

data=wcgs, family=binomial, subset=(chol<600))
summary(wcgs.beh)

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -2.7527    0.2259 -12.19  < 2e-16 
age_10       0.6064    0.1199 5.057 4.25e-07
chol_50      0.5330    0.0764 6.980 2.96e-12
sbp_50       0.9016    0.2065 4.367 1.26e-05
bmi_10       0.5536    0.2656 2.084  0.0372  
smoke        0.6047    0.1411 4.285 1.82e-05
behcat2      0.0660    0.2212 0.298  0.7654   
behcat3     -0.6652    0.2423 -2.746  0.0060 
behcat4     -0.5585    0.3192 -1.750  0.0802 

http://en.wikipedia.org/wiki/Type_A_and_Type_B_personality_theory
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Here we may be interested in :  

• Testing if behavioral patterns have an effect on CHD risk 

• Testing if it is sufficient to use two categories for behavioral 
pattern  (A and B)

In general we consider a logistic regression model:

0 1 1 2 2
1 2

0 1 1 2 2

exp( .... )
( , ,..., )

1 exp( .... )
p p

p
p p

x x x
p x x x

x x x
b b b b
b b b b
+ + + +

=
+ + + + +

Here we want to test the null hypothesis that  q of the           are equal to 
zero, or equivalently that there are q linear restrictions among the 

'sjb
'sjb

Examples:

0 1 2 3 4: 0 ( 4)H qb b b b= = = = =

0 1 2 3 4: and ( 2)H qb b b b= = =
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Deviance and sum of squares
For the linear regression model the sum of squares was a key 
quantity in connection with testing and for assessing the fit of a model

We want to define a quantity for logistic regression that 
corresponds to the sum of squares 

To this end we start out by considering the relation between 
the log-likelihood and the sum of squares for the linear 
regression model

For the linear regression model  l=log L  takes the form (cf. slide 6):

The log-likelihood obtains its  largest  value for the  saturated model,                
i.e. the model where there are no restrictions on the  μi
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For the saturated model  the  μi are estimated by              ,  and the 
log-likelihood becomes

The deviance for the model is defined as                         and it becomes 

For the linear regression model the deviance is just the sum of 
squares for the fitted model divided by  σ2 

( )22
1

1 ˆ
n

i i
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= -å

For a given specification of the linear regression model the  μi are 
estimated  by the fitted values, i.e.             ,  with corresponding 
log-likelihood

ˆ ˆi iyµ =

( )22
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1ˆ ˆlog(2 )
2 2

n

i i
i

nl yps µ
s =

= - - -å
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Deviance for binary data

We then consider logistic regression with data

where       is binary response  and the         are predictors iy

We introduce                                                    and note that the 
log-likelihood                               is   a function of                             
(cf. slide 8)  

1 2( 1 | , ,...., )i i i i pip P y x x x= =

1( ,...., )nl l p p= 1,...., np p

For the saturated model, i.e. the model where there are no 

restrictions on the  pi , the  pi are estimated by                 and 
the  log-likelihood takes the value

1 2( , , ,...., ) 1,2,....,i i i piy x x x i n=

jix
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For a fitted logistic regression model we obtain the estimated 
probabilities

0 1 1
1 2

0 1 1

ˆ ˆ ˆexp( ... )
ˆ ˆ( , ,...., ) ˆ ˆ ˆ1 exp( ... )

i p pi
i i i pi

i p pi

x x
p p x x x

x x
b b b
b b b
+ + +

= =
+ + + +

and the corresponding value                              of the log-likelihood1
ˆ ˆ ˆ( ,...., )nl l p p=

The deviance for the model is defined as

The deviance itself is not of much use for binary data

But by comparing the deviances of two models, we may check if one 
gives a better fit than the other.
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Consider the WCGS study with age, cholesterol, systolic blood pressure, 
body mass index, smoking and behavioral  pattern as predictors (cf slide 19)

The deviance of the fitted model is denoted "residual deviance" in 
the  output 

The "null deviance" is the deviance for the model with no covariates, 
i.e. for the model where all the  pi are assumed to be equal

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -2.7527    0.2259 -12.19  < 2e-16 
age_10       0.6064    0.1199 5.057 4.25e-07
chol_50      0.5330    0.0764 6.980 2.96e-12
sbp_50       0.9016    0.2065 4.367 1.26e-05
bmi_10       0.5536    0.2656 2.084  0.0372  
smoke        0.6047    0.1411 4.285 1.82e-05
behcat2      0.0660    0.2212 0.298  0.7654   
behcat3     -0.6652    0.2423 -2.746  0.0060 
behcat4     -0.5585    0.3192 -1.750  0.0802

Null deviance: 1774.2  on 3140  degrees of freedom
Residual deviance: 1589.6  on 3132  degrees of freedom



Deviance and likelihood ratio tests

To test the null hypothesis, we use the test statistic

0G D D= -

26

where D0 is the deviance under the null hypothesis and D is the 
deviance for the fitted model (not assuming H0 ) 

We reject  H0 for large values of  G

To compute P-values, we use that the test statistic G is chi-square 
distributed (c2 ) with  q degrees of freedom  under H0

We want to test the null hypothesis H0 that  q of the           are equal to 
zero, or equivalently that there are q linear restrictions among the 

'sjb
'sjb



We will show how we  may rewrite G  in terms of the likelihood ratio
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Thus

We have  

0G D D= -

Here 

0 0
ˆ ˆˆ ˆlog and logl L l L= =

where 

0
0

ˆ ˆmax and max
model H

L L L L= =

0̂
ˆ2( )l l= - - ( )0

ˆ ˆ2 log L L= -

Thus large values of G corresponds to small values of the 
likelihood ratio and the test based on G is equivalent to 
the likelihood ratio test               

0
ˆ ˆL L
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R commands: 
anova(wcgs.resc,wcgs.beh,test="Chisq")

R output  (edited):
Analysis of Deviance Table

Model 1: chd69 ~ age_10 + chol_50 + sbp_50 + bmi_10 + smoke
Model 2: chd69 ~ age_10 + chol_50 + sbp_50 + bmi_10 + smoke + behcat

Resid.Df  Resid.Dev Df Deviance       P(>|Chi|)    
1      3135     1614.4                          
2      3132     1589.6  3   24.765 1.729e-05

For the model with age, cholesterol, systolic blood pressure, body mass 
index, smoking, and behavioral pattern  as predictors (cf slide 25) the 
deviance becomes

0 1614.4D =

0 1614.4 1589.6 24.8G D D= - = - =

1589.6D =
For the model without behavioral pattern (cf slide 17) the deviance 
takes the value 

The test statistic takes the value:
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1. Linearity

2. Constant variance

3. Independent responses

4. Normally distributed error terms and no outliers

Model fit for linear regression (review)

Model fit for logistic regression
1. Linearity: Still relevant, see following slides

2. Heteroscedastic model,                                        , i.e. depends on    
. 

However this non-constant variance is taken care of by the
maximum likelihood estimation.

3.    Independent responses: See Lecture 10 on Friday.

4. Not relevant, data are binary, no outliers in responses (but there 
could well be extreme covariates, influential observations).

( | ) (1 )i i i iVar y x p p= -
( | )i i iE y x p=
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Checking linearity for logistic regression

1 2
0 1 1 2 2
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p x x x
b b b b

æ ö
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We want to check if the probabilities can be adequately described by the 
linear expression

We will discuss 3 approaches:

1. Grouping the covariates

2. Adding square terms or logarithmic terms to the model

3.    Extending the model to generalized additive models (GAM)   

1 2
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For a simple illustration we consider the situation where age is the 
only covariate in the model for CHD, and we want to check if the 
effect of age is linear (on the log-odds scale)

The procedure will be similar if there are other covariates in 
addition to age

We may here fit a model considering the age group as a factor
(age groups: 35-40, 41-45, 46-50, 51-55, 56-60)

Or we may fit a model where the mean age in each age group is 
used as numerical covariate (means: 39.5, 42.9, 47.9, 52.8, 57.3)

1. Grouping the variables

We may then use a deviance test to check if flexible a categorical
model gives a better fit than the linear numerical.   

Here we find no improvement, p=0.269
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R commands: 
fit.catage=glm(chd69~factor(agec), data=wcgs,family=binomial)
summary(fit.catage)

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept)   -2.8043        0.1850        -15.162  < 2e-16
factor(agec)1  -0.1315         0.2310  -0.569 0.569    
factor(agec)2   0.5307         0.2235   2.374 0.018  
factor(agec)3   0.8410         0.2275   3.697    0.0002
factor(agec)4   1.0600         0.2585   4.100 4.13e-05

wcgs$agem=39.5*(wcgs$agec==0)+42.9*(wcgs$agec==1)+47.9*(wcgs$agec==2)+
52.8*(wcgs$agec==3)+57.3*(wcgs$agec==4)

fit.linage=glm(chd69~agem, data=wcgs,family=binomial)
summary(fit.linage)
anova(fit.linage, fit.catage,test="Chisq")

Estimate Std. Error z value Pr(>|z|)    
(Intercept) -5.9466         0.5616             -10.588                    < 2e-16 
agem 0.0747         0.0116                 6.445                     1.15e-10

Model 1: chd69 ~ agem
Model 2: chd69 ~ factor(agec)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1      3152     1740.2                      
2      3149     1736.3  3   3.928    0.269
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The simple model 

can be extended to more flexible models such as

or

2. Adding square terms or log-terms

0 1
( )log
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p x

b b b
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= + +ê ú-ë û

We may then use a deviance test to check if the flexible models 
give a better fit than the original.   

Here we neither find any improvement, p=0.79 and p=0.89
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R commands: 
fit=glm(chd69~age, data=wcgs,family=binomial)
fita2=glm(chd69~age+I(age^2), data=wcgs,family=binomial)
anova(fit,fita2,test="Chisq")

R output  (edited):
> anova(fit,fita2,test="Chisq")
Model 1: chd69 ~ age
Model 2: chd69 ~ age + I(age^2)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1      3152     1738.4                     
2      3151     1738.3  1 0.069473   0.7921

fitlog=glm(chd69~age+log(age), data=wcgs,family=binomial)
anova(fit,fitlog,test="Chisq")

> anova(fit,fitlog,test="Chisq")
Model 1: chd69 ~ age
Model 2: chd69 ~ age + log(age)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1      3152     1738.4                     
2      3151     1738.3  1 0.019058   0.8902
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3. Generalized additive model

1
0 1 1

1

( )log ( )
1 ( )
p x f x
p x

b
æ ö

= +ç ÷-è ø
In this example just with one covariate:

where            is a smooth function estimated by the program. 

The approach can easily be extended to several covariates.

We can then 

(a) Plot the estimated function with confidence intervals. Will a 
straight line fit within the confidence limits?

(a) Compare the simple and flexible model by a deviance test.

1 1( )f x
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R output  (edited):
> library(gam)
Øfitgam=gam(chd69~s(age), data=wcgs,

family=binomial)
> plot(fitgam,se=T)
> anova(fit,fitgam,test="Chisq")
Analysis of Deviance Table

Model 1: chd69 ~ age
Model 2: chd69 ~ s(age)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
1      3152     1738.4                       
2      3149     1729.6  3   8.7622  0.03263 *

For these data

(a) The informal graphical check just allows a straight line within 
confidence limits.

(a) However, the deviance test gives a weakly significant deviation 
from linearity (p=0.032)

There may thus be some unimportant deviation from linearity.
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Deviance and grouped data
On slides 26-29 in Lecture 6 we saw that we got the same estimates and 
standard errors when we fitted the model with mean age in each age 
group as numerical covariate using binary data and grouped data

R output  (edited):
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -5.9466         0.5616             -10.588                    < 2e-16 
agem 0.0747         0.0116                 6.445                     1.15e-10

Null deviance: 1781.2  on 3153  degrees of freedom
Residual deviance: 1740.2  on 3152  degrees of freedom

R commands: 
summary(fit.linage)

chd.grouped=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v16/chd_grouped.txt ",   
header=T)
fit.grouped=glm(cbind(chd,no-chd)~agem, data=chd.grouped, family=binomial)
summary(fit.grouped)

Estimate Std. Error z value Pr(>|z|)    
(Intercept) -5.9466         0.5616             -10.588                    < 2e-16 
agem 0.0747         0.0116                 6.445                     1.15e-10

Null deviance:  44.95  on 4  degrees of freedom
Residual deviance:  3.928  on 3  degrees of freedom



38

We see that the "residual deviance" and the "null deviance" are not 
the same when we use binary data and when we use grouped data

However, the difference between the two is the same in both cases

As long as we look at differences between deviances, it does not 
matter whether we used binary or grouped data


