STK4900/9900 - Lecture 7

Program

— 1. Logistic regression with one predictor
(2> _Maximum likelihood estimation
3. Logistic regression with several predictors
4. Deviance and likelihood ratio tests
5. A comment on model fit

Sections 5.1, 5.2 (except 5.2.6), and 5.6
Supplementary material on likelihood and deviance



Logistic regression with one predictor ‘A 3® / 4‘39‘)

We have data (x,,y,), ..., (x,.,7,) ppy

Here ), is a binary outcome (0 or 1) for subject 7 and Xx; is
. “~ i-"'—_—“
a predictor for the subject

We let
;) 3 PO=EQ[x)=Py=1]x)

The logistic regression models take the form:

I+exp(f, + £, x)

This gives a "S-shaped" relation
between p(x) and x and ensures
that p(x) stays between 0 and 1




The logistic model may alternatively be given in terms of the odds:
———

=exp(f, + f, x) (*)

If we consider two subjects with covariate values x+ A and X,
respectively, their odds ratio becomes

—\ P A1 pGe+ D] _exp(fy +5,(x+4))
pO[-p®] expBtpa) P
In particula(_ is the odds ratio corresponding to one unit's

e —

increase in the value of the covariate

—

By (*) the logistic regression model may also be given as:

(*%)

Thus the logistic regression model is linear in th& log-odds g




Consider the WCGS study with CHD as outcome and‘ie as predictor
(individual age, not grouped age as we considered in Lecture 6)

R commands:
wcgs=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/wcgs.txt",

sep="\t",header=T,na.strings=".") Jezbive fach
R 24" p
fit (chdg9~age, data=wcgs, famllx—bmomlall
sury(flt) = R=A st oj;?
‘L oR >4 YT
R output (edited):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.9395 0.5493 -10.813 < 2e-16
age ) 0.0113 (_6.585 5 4.56e-11
g ?.b .

e . . . . 0.0744 e awe 20 Fi

The odds ratio for one year increase in age is - =1.077 g oR. =o e
T 0.0744-17

=2.10 245%>°“é~

(The numbers deviate slightly from those on slide 25 from Lecture 6, since there
we used mean age for each age group while here we use the individual ages)

while the odds ratio for a ten-year increase is e

=

How is the estimation performed for the logistic regression model?



Maximum likelihood estimation
N —

Estimation in the logistic model is performed using maX|mum
likelihood estimation —

—— =

We first describe maximum likelihood estimation for the linear

pam=——

_regression model: ZZ},M') _ Ig ~f3 x
2
o yi~ NQuo?) with j; = Go+ fra; Y X (#7)

e the y,; are independent

For ease of presentation, we assume that IS known

The density of y; takes the form (cf slide 12 from Lecture 1):

2 1 i
f(%7 i) = eXD{—— (yi — 1i)} %-J,Q QOO0 N,

5




The likelihood is the simultaneous density Bo+ b
1 n /
_ﬁ f(is i) = (—> eXD{—F Z(yz’ — i)}
o 1=1

conS|dered as a function of the parameters /Bo and ,Bl for the
observed values of the y;

We estimate the parameters by max:m/zmg the likelihood.

This corresponds to finding the parameters that make the observed
s _
Y, as likely as possible

Maximizing the likelihood L is the same as maximizing

= —g IOQ(QWJE‘))— S Z (y; — fﬁ>2’ m/i)? (\taz’(%:/&‘)ﬁ

$

which is the same as minimizing >, (yi— 1;)? %
2
/e (ZL G- /«)) —_— ;

— —

For the linear regression model, maximum likelihood estimation I
coincides with least squares estimation i g

—



We then consider the situation for logistic regression L
We have data (x;,y,), ..., (x,,y,), Where y. is a binary

o 4
outcome (0 or 1) for subject i and x, is a predictor

Here we have

P(yi:1|xi)i‘£1i
P(yi:0|xi):1_pi
—_—

where

D, = exp(f, + fi X;)
" L+exp(B, + B x;)

P(y,|x)=p ) (1-p)™

— Lo




The likelihood becomes
L= HP()/~ xi) = Hpiyi (1- pi)l_yi
- i=1
i(e. ,0:)
_ eXp(IBO + 1 xl
1+eXp(IBO +IBI xz)

the likelihood is, for g| ons, a function of the
e ——

unknown parameters !

We estimate S, and [, by the values of these parameters
that maximize the likelihood

—

Since

Pi =

ﬁ.

These estimates are caIIe e maximum likelihood estimates (MLE)

and are denoted@and(ﬂj
8




Confidence interval for 4, and odds ratio

95% confidence interval for(based on the normal approximation):

—
/’%i 1.96-se(B) =~

-
{ :Q: exp(f) is the odds ratio for one unit's increase in x

We obtain a 95% confidence interval for OR by transforming the

lower and upper limits of the confidence interval for /,

=N

In the CHD example we have ﬁl =0.0744 and Se(,é'l) =0.0113

@confidence interval for 3, :

0.0744+1.96-0.0113 ie. from0.052 to 0.096 CI(#)

R N —_ 9.55
Estimate of odds ratio OR =exp(0.0744) =1.077
95% confidence interval for OR : B o

from exp(0.052) =1.053 to exp(0.096) =1.101
( 1.05‘3/ 7 /'()/) |




R function for computing odds ratio with 95% confidence limits
/—

expcoef=function(gimobj)

{

regtab=summary(glmobj)$coef
— e

“expcoef=exp(regtabl,
lower=expcoef*exp(-1.96*regtabl[,2])

upper=expcoef exp(1.96"regtab[,2])
cbind(expcoef,lower, upper)

}

expcoef(fit)

R output (edited):

expcoef lower
(Intercept) 0.0026 0.0009
age 1.077 1.054
c——— —

g /36'

]

upper
0.0077

1.101

10



Wald test for H,: 5 =0 g =4

To test the null hypothesis H : 3 =0 versus the two-sided
alternative H ,: [, #0 we often use the Wald tesi statistic:

—_— ——

/V(o;y

A
_'__‘___-—-——i ) ) )
3y L 5( o 15‘ o>¥

We reject H, for large values of .

Under H, the test statistic is approximately standard normal

P-value (two-sided): P =2 P(Z >|z|) where Z is standard normal
= ?‘

In the CHD example we have ,@1 =0.0744 and S@(ﬁl) =0.0113

Wald test statistic
z=0.0744/0.0113=6.58

%

which is highly significant (cf. slide 4)

==

11




o, lf.ple by fre foges o
[

Multiple logistic regression
IR

Assume now that we for each subject have molfarec2ble /f‘SA (® (fessew

° b1
M mul\(i(béi_r/ﬁ&{-c (;cSreSSz‘on

e predictors x,,x,,.....,x

RS —

We let
P(x, Xy, x ) = E(Y [ X, X,55.0x)) = P(y =1 x,%,,...,X )
‘_______—————___ﬁ' - —
Logistic regression model: ~__— 7
eXx +0x+0,x,+..+) X
P(X, %5500, X ) P +Ax+/5x Byx,)

J— 1+exp(,80+,81x1+,82x2+....+,€£x )

Alternatively the model may be written:

log(

p(x,%y,..0,X )

1= p(x;,%5,..,X)




The logistic model may also be given in terms of the odds:

—

XiyXyernn X
P, %, ) =exp(fy+ B x,+ B x, +...+ B, x,)
1= p(x,%,,...,X))

If we consider two subjects with values x, +A and X, , for the first
g\gﬂate and the same values for all the others, their odds ratio becomes
plx, + ,F)ﬁz,....,_yfp)/[l—p(xl +A,x2,....,xp)]

p(/xl,_)_cl,....,)ff)/[l—p(),cl,xz,....,xp)]

_ exp(f, + b (x, + D)+ S, x, +....+ B, X))
exp(fy + X+, %, +...+ B, x,

=exp(fA)

In particular( e’ )is the odds ratio corresponding to one unit's increase
e first covariate holding all other covariates constant

in the value o
\f .y %

A similar interpretation holds for the other regression coefficients

13



Wald tests and confidence intervals

J @:_MLE for 5,

o se ,3 ) = standard error for ﬁj

To test the null hypothesis H,, ;,Bj = O we use the Wald test statistic:

N

which is approximately N(0,1)-distributed under HO].

onfidence interval for f,: ,@il.%-se!é.z

s

—

OR; = exp(p,) is the odds ratio for one unit's increase in the
—value of the j-th covariate holding all other covariates constant

We obtain a 95% confidence interval for OR; by transforming the
lower and upper limits of the confidence Interval for ,B]. 14




yot =°
Consider the WCGS study with CHD as outcome and age,
—_— =
cholesterol (mg/dL), systolic blood pressure (mmHg), body mass
M/mz), and smoking (yes, no) as predictors (as on page 152 in
the text book we omit an individual with an unusually high cholesterol value)

R commands:
wcgs.mult=glm(chd69~age+chol+sbp+bmi+smoke, data=wcgs, family=binomial,
subset=(chol<600))

summary(wcgs.mult)

R output (edited):

Estimate Std. Error z value Pr(>|z|)

(Intercept) - 0.9773 -12.598 < 2e-16
" age 0 0.0119 5.412 6.22e-08
~ chol 0.0107 0.0015 7.079 1.45e-12
~ sbp 0.0193 0.0041 4.716 2.40e-06

~ bmi 0.0574 0.0264 2.179 0.0293
v smoke 0.1401 4.526 6.01e-06

A

!

f

15



Odds ratios with confidence intervals

—— ——

R command (using the function from slide 10):
expcoef(wcgs.mult)

R output (edited):

expcoef lower upper
(Intercept) 4.50e-06 6.63e-07 3.06e-05
age 1.067 1.042 1.092
chol 1.011 1.008 1.014
sbp 1.019 1.011 1.028
bmi 1.059 1.006 1.115
smoke 1.886 1.433 2.482

A=1



For a numerical covariate it may be more meaningful to present an odds
ratio corresponding to a larger increase than one unit (cf. slide 13)

This is easily achieved by refitting the model with a rescaled covariate

If you (e.g) want to study the effect of a ten-years increase in age, you fit
the model with the covariate age 10=age/10 %g A e je +4o
(=

R commands:
wcgs.resc=glm(chd69~age 10+chol _50+sbp 50+bmi_10+smoke, data=wcgs,
family=binomial, subset=(chol<600))

summary(wcgs.resc) m
R output (edited):

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.006 0.116 -12.598 < 2e-16
age 10 c0.644° 0.119 5.412 6.22e-08
chol_50 0.537 0.076 7.079 1.45e-12
sbp_50_ 0.965 0.205 4.716 2.40e-06
bmi_10 0.574 0.264 2179 0.0293

smoke 0.140 4.526 6.01e-06

Note that values of the Wald test statistic are not changed (cf. slide 15)

17



Odds ratios with confidence intervals:
#-

R command (using the function from slide 10):

expcoef(wcgs.resc)
‘—

N

R output (edited):

expcoef lower upper
(Intercept) 0.0494 0.0394 0.0621
age 10 Z1.9050 > 1.5085 2.4057
chol_50 1.7110° 1.4746 1.9853
sbp_50 262400 1.7573 3.9180
bmi_10 1.7760 1.0595 2.9770
smoke 1.8860 1.4329 2.4824

18



An aim of t tudy was to study the effect on CHD of
certaipdbehavioral patt s note aﬁ" A2, B3 and B4

< ——

Behavioral pattern is a cateqorlcal cova_rlate with four levels, and
must be fitted as a factor in R

R commands:

wcgs$behcatefactor(wegs$behpat
wcgs.beh= glm(chdﬁg’age 10+chol_50+sbp_50+bmi_10+smoke+behcat,
data= wcgs family= binomial, subset= (chol<600))

summary(wcgs.beh)

R output (edited):

Estimate Std. Error z value

~ (Intercept) -2.7527 0.2259 -12.19
age 10 0.6064 0.1199 5.057
chol 50 0.5330 0.0764 6.980
sbp_50 0.9016 0.2065 4.367
bmi_10 0.5536 0.2656 2.084
smoke 6047 0.1411 4.285
AL behcat2 0.0660=, 0.2212 0.298
%fbehcat3 —= -0.6652 0.2423 -2.746
() ¢{behcatd —= -0.5585 0.3192 -1.750

f



http://en.wikipedia.org/wiki/Type_A_and_Type_B_personality_theory

Here we may be interested in :

» Testing if behavioral patterns have an effect on CHD risk

———

—

. Testing if it is sufficient to use two categories for behavioral
pattern (A and B)
Z‘C

In general we consider a logistic regression model:

_ exp(fy + b X+ B, %, +.o+ X))
l+exp(fy+ X+ 6, % +...+ f,x,)

P(X), X500, X )

Here we want to test the null hypothesis that g of the ,Bj's are equal to
—

zero, or equivalently that there are g linear restrictions among the ['s

Examples:
Ho:ﬂ1:ﬂ2:ﬂ3248420 (g=4)
H,:p =p, and p;=p, (g=2)

20



e linear regression model the sum of squares was a key
quantity in connection with testing and for assessing the fit of a model

We want to define a quantity for logistic regression that

corresponds to the sum of squares
=

To this end we start out by considering the relation between

the log-likelihood and the sum of squares for the Iinear7\r\l\/L
.___:—._-——E' ==
regression

| _
For the linear regression model l=log_ L takes the form (cf. slide 6):

| = _§|og(2m2>_ Z@Z gi— )2
z—l 1-
% —0 —

The log-likelihood obtains its /argest value for the saturated model,
I.e. the model where there are no restrictions on the y; (

21



For the saturated model the p; are estimated by /. = y,, and the
log-likelihood becomes - —_

For a given specification of the linear regression model the p; are
estimated by the fitted values, i.e. [ = y,, With corresponding
log-likelihood

A n I & 2
[ =——log(27mo?) - — [ | ——
= 2 g( ) 202 lzl(yl \Lluz) “4
The deviance for the model is defined as D = 2(7 — f) and it becomes
———— —_ —
1 & 0 < g
D = _22(yi - :ui)
O o
-_— _  _ —
For the linear regression model the deviance is just the sum of
squares for the fitted model divided by o~ -

/




Deviance for binary data

We then consider logistic regression with data

————

(yiaxliale’p-"-axpi l :1,2,....,71
——

where y, is binary response and the x, are predictors
,:________,_._=-

We introduce p, = P(y, =1|x,,%,,,....,X,;) and note that the

—

log-likelihood [=I(p,,....,p, ) is afunctionof p,...,p

(cf.slide8) ~——— -

ﬁ'

For the saturated model, i.e. the model where there are no

—_—

restrictions on the p;, the p; are estimated b
the log-likelihood takes the valuﬁ I(Pys-.s

—

and

23



For a fitted logistic regression model we obtain the estimated
Cvedn F"
probabilities
« . =/
eXp(IBO_*_ﬁl 'xlz T .. +ﬁpxpl
1+6Xp(180+181x11+ +18pxpl)

N

pi — ﬁ(xliﬂx%’”"’xpz)

and the corresponding value [ = [(p,,...., p,) of the log-likelihood

TR e

Thor the model is defined as

———t

The deviance itself is not of much use for blnary data
— N

——

But by comparing the deviances of two models, we may check if one

gives a better fit than the other.

24



Consider the WCGS study with age. cholesterol, systolic blood pressure,

body mass index, smoking and behavioral pattern as predictors (cf slide 19)

—_—
W

- (Intercept)
age 10
chol_50
sbp 50
bmi_10
smoke

behcat?2
i behcat3

behcat4

R output (edited):
Estimate

-2.7527
0.6064
0.5330
0.9016
0.5536
0.6047
0.0660

-0.6652

-0.5585

Std. Error

0.2259
0.1199
0.0764
0.2065
0.2656
0.1411
0.2212
0.2423
0.3192

z value

-12.19
5.057
6.980
4.367
2.084
4.285
0.298

-2.746
-1.750

Null deviancen 3140 degrees of freedom

Residual deviance: 1589.6 on 3132 degrees of freedom
i

——

Pr(>|z[)
< 2e-16
4.25e-07
2.96e-12
1.26e-05
0.0372
1.82e-05
0.7654
0.0060
0.0802

The deviance of the fitted model is denoted "residual deviance" in

the output

_—

The "null deviance" is the deviance for the model with no covariates,

i.e. for the model where all the p,; are assumed to be equal

25




eviance and likelihood ratio tests

B —_———
_

|

We want to test the null hypothesis H, thég q )\Efthe [.'s are equal to

zero, or equwalently that there are g linear restrictions amqug the ,B S
7 df,

To test the null hypothesis, we use the test statistic
e —

DD

..:( -

wher the deviance under the null hypothesis an‘s the //Vﬁ;
geV|ance for the fitted model (not assuming Hy )

. 2

We reject H, for large values of G z = 7(4
-

—_—

To compute P-values, we use that the test statistic G is chi-square

R

distributed (y? ) with g degrees of freedom under H,
=

=S— -

26



We will show how we may rewrit@ in terms of the likelihood ratio

We have J J
D=2(-1) and D,=2(-1)
Here ' i
=logl and io =log 1,
— L
where
L =maxL and L, =maxL
ThUS m
G=D,~D :?(7‘@{@;’}): -2(l, 1) =-2log(L,/ L)

Thus large values of@:orresponds to small values of the
likelihood ratio [, {i and the test based on G is equivalent to
— e —

~ the likelihood ratio test

27



For the model with age, cholesterol systolic blood pressure, body mass
‘Index, smoKing, redictors (Cf slide 25) the

devrance becom —

For the model withQu avioral pattern (cf slide 17) the deviance
takes the value D =1614.4
f———’;?_-

The test statistic takes the value:
ot slavst

4
G:DO—D:1614.4—1589.6 g
R commands: 5 /7>
anova(wcgs.resc,wcgs.beh,test="Chisq") l/\

R output (edited): =~ T D
Analysis of Deviance Table

Model 1: chd69 ~ age 10 + chol 50 + sbp 50 + bmi_10 + smoke @
Model 2: CQQQQ ~age 10 + chol 50 + sbp 50 + bmi_10 + smoke + behcat

— _?"
Resid.Df Resid.Dev Df Deviance P(>|Chi|)
1 3135 1614.4
2 3132 1589.6 3 24.765 1.729e-05

X .

A



Model fit for linear regression (review)

Linearity
———

Constant variance

@ Independent responses

(o distributed error terms and no outliers

odel fit for logistic regression
Linearity:ﬂl relevant, see following slides

—

2. Heteroscedastic model, Zar(y,. X)= pﬁ— p;), i.e. depends on
rE(yi |xi):pi' -
However this non-constant variance is taken care of by the
maximum likelihood estimation.

3. Independent responses: See Lecture 10 on Friday.
_’F

4. Not relevant, data are binary, no outliers in responses (but there
could well be extreme c%o rates, influential observations).

29




Checking linearity for logistic regression

We want to check if the probabilities can be adequately described by the
linear expression

log| LX) | g i
/ l_p(xlaxza ) X ) O 1 RELAE ——
—_— —L 2 T
We will discuss 3 approaches: @ L 5’<

Grouping the covariatesv f (,/

e Adding square terms or logarithmic terms to the model

P

3. Extending the model neralized additive models (GAM)

IOgL P(X;,%5,...,X,,) j:ﬁ0+ﬁ(xl)+f2(x2)+....+f (x)
1—p(x1,x2,...,xp) 7) JANAS”

30



AdB~ 25¢

1. Grouping the variables

For a simple illustration we consider the situation wher's the
_only covariate in the model for CHD, and we want to check |

effect of age is lingar (on the Iog-gggg gcale) 7#(\"7@ ?47

The procedure will be similar if there are other covariates in
addition to age

]
>
We may here fit a model considering the age group as a factor ™ =~ ~ '8
(age groups: 35-40 35-40, 41-45, 46-50, 51 -55, 56-60) '

-—e—

Or we may fit a model where the mean age in each age group is
used as numerical covariate (means: 39.5, 42.9, 47.9, 52.8, 57.3)

We may then use a deviance test to check if flexible a categorical
model gives a better fit than the linear numerical. ’

31



R commands:

__f_ii___.cz;]_t_ctl_ge=glm(chd69”factor(agec), data=wcgs,family=binomial)
summary(fit.catage) -
wcgsSagem=39.5*(wcgsSagec==0)+42.9*(wcgsSagec==1)+47.9*(wcgsSagec==2)+

— 52. 52.8*(wegs$agec==3)+57.3*(wcgsSagec==4)
fit.linage= glm(chd69”agem data=wcgs, fam|Iy binomial)
summary(fit.linage)

anova(fit.linage, fit.catage,test="Chisq")

R output (edited):

Estimate  Std. Error z value Pr(>|z|)
(Intercept) -2.8043 0.1850 -15.162 < 2e-16
— ¢ factor(agec)1 -0.1315 0.2310 -0.569 0.569
—/( factor(agec)2 0.5307 0.2235 2.374 0.018
— 1 factor(agec)3 0.8410 0.2275 3.697 0.0002
factor(agec)4 1.0600 0.2585 4.100 4.13e-05
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.9466 0.5616 -10.588 < 2e-16
—7 agem 0.0747 0.0116 6.445 1.15e-10

Model 1: chd69 ~ agem
Model 2: chd69 ~ factor(agec)
Resid. Df Resid. Dev Df Deviance P(>|Chil)

1 3152
—— 32

2 3149




2. Adding square terms or log-terms

~—

. _
The simple model log Ll ) =P+ P x

o 1= p(X)
can be extended to more flexible models such\as>
X
10;{ p) } B+ x ﬁz
1-p(x)
or ‘Y
1og{ p(x) }

- p(x) Do + P x + Pflog(x)

We may then use a deviance test to check if the flexible models
give a better fit than the original.

Here we neither find any improvement, p=0.79 and p=0.89
_ ——— g-%
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R commands:

fit=glm(chd69~age, data=wcgs,family=binomial)
'T'i'fa2=glm(chd69~age+|(a§e"2), data=wcgs,family=binomial)
anova(fit,fita2,test="Chisq")

fitlog=glm(chd69~age+log(age), data=wcgs,family=binomial)
anova(fit,fitlog,test="Chisq")

R output (edited):

> anova(fit,fita2,test="Chisq") ,‘9

Model 1: chd69 ~ age

Model 2: chd69 ~ age + l(age”2)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 3152 1738.41

2 3151 1738.3°'10.069473 0.7921
v ——

= 9

> anova(fit,fitlog,test="Chisq")
Model 1: chd69 ~ age
Model 2: chd69 ~ age + log(age)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 3152 1738.4
2 3151 1738.3 @0.019058 0.8902
—F e——
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¢/ Fx

3. Generalized additive model

m——

In this example just with one covariate: log( p(x) j: B, +
1-p(x,)

where f (x,) is a smooth function estimated by the program.

The approach can easily be extended to several covariates.

We can then

Plot the estimated function with confidence intervals. Will a

straight line fit within the confidence Timits?

—

(a) Compare the simple and flexible model by a deviance test.
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R output (edited):

> library(gam)

>fitgam=gam(chd69~s(age), data=wcgs,
- - family=binomial)

> plot(fitgas
> anova(fit,fitgam,test="Chisq")
Analysis of Deviance Table

Model 1: chd69 ~ age
Model 2: chd69 ~ s(age)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 3152 1738.4

2 3149 1729.6 3 8.7622 0.03263 *
g

For these data

/-

5”9"-M{P = %/"/‘1 0

o

—

e O

40 45 50

55

\%\

60

(a) The informal graphical check just allows a straight line within

(a) However, the deviance test gives a weakly significant deviation

from linearity (p=0.032)

—

There may thus be some unimportant deviation from linearity.

%
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}

b

Deviance and grouped data

On slides 26-29 in Lecture 6 we saw that we got the same estimates and
standard errors when we fitted the model with mean age in each age

——

group as numerical covariate using Wata and grouped data

R commands: ¢, I ,19 éf

summary(fit.inage)  }

header=T)
fit.grouped=gim(cbind(chd,no-chd)~agem, data=chd.grouped, family=binomial)

summary(fit.grouped)

R output (edited):

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.9466 0.5616 -10.588 < 2e-16
agem 0.0747 0.0116 6.445 1.15e-10 (§£
Null deviance: 1781.2 on 3153 degrees of freedom ) ~ 41 03 4
Residual deviance: 1740.2 on 3152 degrees of freedom .
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.9466 0.5616 -10.588 < 2e-16
agem 0.0747 0.0116 6.445 1.15e-10
Null deviance: 44.95 on 4 degrees of freedom J —_

Residual deviance: 3.928 on 3 degrees of freedom



We see that the "residual deviance" and the "null deviance" are not
the same when we use binary data and when we use grouped data

However, the difference between the two is the same irl)oth cases

—

As long as we look at differences between deviances, it does not
-—

matter whether we usedbmary or grouped data
e e _

———

-
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