
STK4900/9900  - Lecture 8

Program
1. Poisson distribution
2. Poisson regression
3. Generalized linear models

• Chapter 8 (except 8.2 and 8.4)
• Supplementary material on Poisson distribution 
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Example: Emission of alpha particles

In an experiment from 1910 Ernest Rutherford and Hans Geiger 
recorded the number of alpha-particles emitted from a polonium 
source in each of 2608 eighth-minute intervals  

We need a distribution that describes such counts

Example: Occurrence of anencephaly in Edinburgh 1956-66 
Anencephaly is a serious disorder which causes the brain of a fetus not 
to develop properly. The number of children born with anencephaly in 
Edinburgh in the 132 months from 1955 to 1966 were:
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Poisson distribution
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A random variable Y is Poisson distributed with parameter  λ if

Short we may write:

We have that:

The Poisson distribution arises as:



4



5

Poisson approximation to the binomial distribution

When  n is large and  p is small,  we have with λ = np

Illustration:
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The Poisson distribution is often an appropriate model for 
"rare events"
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Poisson process
We are observing events (marked by x) happening over time:

Assume that:
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• the rate of events  λ is constant over time
(rate = expected number of events per unit of time)

• the number of events in disjoint time-intervals are independent  

• events do not occur together  

Let Y be the number of events in an interval of length  t

Then: ~ Po( )Y tl

Then we have a Poisson process 

The Poisson process is an appropriate  model for events that are 
happening "randomly over time"
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In a similar manner we may have a Poisson process in the plane:

0 2 4 6 8 10

0
2

4
6

8
10

sample(cumsum(rexp(100, l)))

sa
m

pl
e(

cu
m

su
m

(r
ex

p(
10

0,
 l)

))

Assume that:

• the rate of points  λ is constant over 
the region (rate = expected number of       
points in an area of size one)

• the number of points in disjoint areas     
are independent  

• points do not coincide   

Then we have a Poisson process in the plane (spatial process)

Let Y be the number of events in an area of size  a

Then: ~ Po( )Y al

This is a model for "randomly occurring" points



One way of checking whether the Poisson distribution is 
appropriate for a sample                        is to compare                    
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For a Poisson distribution, the expected value and the 
variance are equal

Overdispersion
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For a Poisson distribution both         and          are estimates 
of  λ ,  so they should not differ too much  

y 2s

We may compute the coefficient of dispersion: 
2sCD
y
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If  CD  is (substantially) larger than 1, it is a sign of overdispersion
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For the alpha particles  we have

and

which gives

3.88y = 2 3.70s =

3.70 0.95
3.88

CD = =

For the anencephaly data we have

and

which gives

1.97y = 2 2.41s =

2.41 1.22
1.97

CD = =

The two examples do not show signs of overdispersion



Null hypothesis H0:  data are Poisson distributed
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Data: 

Test of Poisson distribution

1 2, ,...., ny y y

Procedure:

• Estimate (MLE): ˆ yl =

• Compute expected frequencies under H0 : ( ) ˆˆ !j
jE n j e ll -= ×

• Compute observed frequencies: number of  equal to  j iO y j=

• Aggregate groups with small expected numbers, so that  all Ej's are
at least five. Let K be the number of groups thus obtained

• Under H0 the Pearson  statistic is approximately chi-squared
distributed  with  K – 2 degrees of freedom

• Compute Pearson chi-squared statistic: 
( )22c

-
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Example: Emission of alpha particles

There is a good agreement between observed and expected frequencies: 

We aggregate  the three last groups, leaving us with K = 12 groups  

Pearson chi-squared statistic: 2 10.42 ( 10)dfc = =

P-value:  40.4% 

The Poisson distribution fits nicely to the data



Example: Occurrence of anencephaly in Edinburgh 1956-66 
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Here as well there  is a good agreement between observed and 
expected frequencies: 

# expected 18.4 36.3 35.7 23.5 11.5 4.5 1.5 0.4 0.1 0.03
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We aggregate  the five last groups, leaving us with K = 6 groups  

Pearson chi-squared statistic: 2 3.3 ( 4)dfc = =

P-value:  50.9% 

The Poisson distribution fits nicely to the data



Example: Mite infestations on orange trees
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A mite is capable of damaging the bark of orange trees
An inspection of a sample of 100 orange trees gave the following 
numbers of mite infestations found on the trunk of each tree: 

# expected 44.5 36.0 14.6 3.9 0.8 0.13 0.02 0.00 0.00
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We aggregate  the six last groups, leaving us with K = 4 groups  

Pearson chi-squared statistic: 2 12.6 ( 2)dfc = =

P-value:  0.2% 

The Poisson distribution does not fit the data 



Poisson regression
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So far we have considered the situation where the observations are a 
sample from a Poisson distribution with parameter  λ (which is the 
same for all observations)

We will now consider the situation where the Poisson parameter may 
depend on covariates, and hence is not the same for all observations

We assume that we have independent data for each of  n  subjects: 

a count for subject no.iy i=
predictor  (covariate) no.  for subject no.jix j i=

1 2, , ,..., 1,...,i i i piy x x x i n=

In general we assume that the responses        are realizations of 
independent  Poisson distributed random variables                         
where                                        is a function of the covariates

~ Po( )i iY l
iy

1 2( , ,...., )i i i pix x xl l=
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We will consider regression models for the rates of the form:

( )0 1 1 2 2exp ....i i p pix x xb b b b= + + + +
1 2( , ,...., )i i i pix x xl l=

This ensures that the rates are positive, as they should

If we consider two subjects with values  and  x1 , for 
the first covariate and the same values for all the others,  
their rate ratio (RR) becomes
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In particular          is the rate ratio corresponding to one unit's 
increase in the value of the first covariate holding all other 
covariates constant

1eb

1x +D



16

Example: Insurance claims
We consider data on accidents in a portfolio of private cars in an  
English insurance company during a three months period

The variables in the data set are as follows:
• Age of the driver  (1=less than 30 year, 2= 30 years or more)
• Motor volume of the car  (1=less than 1 litre, 2=1-2 litres, 3=more than 2 litres)
• Number of insured persons in the group (defined by age and  motor volume)
• Number of accidents in the group

age vol   num  acc
1   1   846  137
1   2  2421  444
1   3   207   52
2   1  4101  402
2   2 14412 1869
2   3  1372  247

In many applications we have data on an aggregated form

We then record counts for groups of individuals who share the 
same values of the covariates
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When our observations  are aggregated counts, an observation                      
is a realization of 

where  the weight        is the number of subjects in group i

~ Po( ) (*)i i iY wl

iw

iy

When we combine (*) with the regression model on slide 14,                
we may write:

( ) ii iE Y w l=

( )0 1 1 2 2exp ....i i pi p ix x xw b b b b= + + + +

( )0 1 1 2 2exp .log( ...) i i p pii x xw xb b b b= + + + + +

Formally                 is a  "covariate"  where the regression coefficient is 
known to equal 1. Such a "covariate" is called an offset

log( )iw



• is  expected number of claims for a driver younger 
than 30 years with a small car
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R commands: 
car.claims=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/car-claims.txt", header=T)
fit.claims=glm(acc~offset(log(num))+factor(age)+factor(vol), data=car.claims,family=poisson)
summary(fit.claims)

R output (edited):

Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -1.916 0.055 -34.83  < 2e-16
factor(age)2 -0.376     0.044 -8.45  < 2e-16 
factor(vol)2  0.244 0.048 5.09 3.57e-07 
factor(vol)3  0.570     0.072 7.90 2.85e-15

Example: Insurance claims

1.916 0.147e- =

Note e.g. that

• is  the rate ratio for a driver 30 years or older
compared with a driver younger than 30 years (with same type of car)

0.376 0.687e- =



Maximum likelihood estimation
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We have : 
( )( ) exp( )

!

iy
i i

i i i i
i

wP Y y w
y
l l= = -

The likelihood is the simultaneous distribution

considered as a function of the parameters       for the 
observed values of the  yi
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The maximum likelihood estimates (MLE)                           
maximize the likelihood, or equivalently the log-likelihood 

0 1
ˆ ˆ ˆ, ,...., pb b b

logl L=
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Wald tests and confidence intervals

95%  confidence interval for       : ˆ ˆ1.96 ( )j jseb b± ×jb

is the rate ratio for one unit's increase in the 
value of the j-th covariate holding all other covariates constant

exp( )j jRR b=

We obtain a 95% confidence interval for  RRj by transforming the 
lower and upper limits of the confidence interval for jb

ˆ MLE for j jb b• =

ˆ ˆ( ) standard error for  j jse b b• =

To test the null hypothesis                     we use the Wald test statistic:0 : 0j jH b =
ˆ
ˆ( )
j

j

z
se
b
b

=

0 jHwhich is approximately N(0,1)-distributed under 
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R command (using the function from slide 10 of Lecture 7): 
expcoef(fit.claims)

Rate ratios with confidence intervals for the insurance example 

R output  (edited):

expcoef       lower        upper
(Intercept)  0.15 0.13 0.16
factor(age)2 0.69 0.63 0.75
factor(vol)2 1.28 1.16 1.40
factor(vol)3 1.77 1.53 2.04



• Deviances                         and  

Deviance and likelihood ratio tests

Procedure:
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We want to test the null hypothesis H0 that  q of the           are equal to 
zero, or equivalently that there are q linear restrictions among the 

'sjb
'sjb

ˆ2( )D l l= -

• is the maximum possible value of the log-likelihood, 
obtained  for the saturated model with no  restrictions on the 
l

il

• is the log-likelihood for the full Poisson regression modelˆ ˆlogl L=

• is the log-likelihood under H00 0
ˆ ˆlogl L=

0 0̂2( )D l l= -

• Test statistic                                                                                               0G D D= - ( )0
ˆ ˆ2 log L L= -•

is chi-squared distributed with q df under H0
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R commands: 
fit.null=glm(acc~offset(log(num)), data=car.claims,family=poisson)
fit.age=glm(acc~offset(log(num))+factor(age), data=car.claims,family=poisson)
fit.age.vol=glm(acc~offset(log(num))+factor(age)+factor(vol), data=car.claims,family=poisson)
fit.interaction=glm(acc~offset(log(num))+factor(age)+factor(vol) +factor(age):factor(vol),

data=car.claims,family=poisson)
anova(fit.null,fit.age,fit.age.vol,fit.interaction,test="Chisq")

R output (edited):
Analysis of Deviance Table

Model 1: acc ~ offset(log(num))
Model 2: acc ~ offset(log(num)) + factor(age)
Model 3: acc ~ offset(log(num)) + factor(age) + factor(vol)
Model 4: acc ~ offset(log(num)) + factor(age) + factor(vol) + factor(age):factor(vol)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)    
1         5    126.11                          
2                   4     63.93  1   62.18 3.132e-15
3                   2      1.98  2   61.95 3.534e-14
4                   0      0.00  2    1.98    0.371 

Example: Insurance claims

We end up with model 3 with no interaction (cf slides 17 and 19) 



Generalized linear models 
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The models for
• Multiple linear regression
• Logistic regression
• Poisson regression

are the most common generalized linear models (GLMs) 

A GLM consists of three parts
• A family of distributions

• A linear predictor

• A link function



Example GLM: (standard) Poisson-regression 
The three parts are for Poisson-regression

• Family: The observations       are independent and           
Poisson distributed with means    

( ) log( )i i igh µ µ= =

0 1 1 2 2 ....i i i p pix x xh b b b b= + + + +

iY
( )i iE Yµ =

iµ ih

For the multiple linear regression model the family is normal and
the link function is an identity function ( )i i igh µ µ= =

( ) log
1

i
i i

i

g µh µ
µ

æ ö
= = ç ÷-è ø

• The linear predictor: A linear expression in regression  
parameters and covariates

• The link function: Linking       and 

For logistic regression: binary / binomial family and link function is 
the logit function    
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Other link functions may also be specified:

For binary responses:

• Complementary log-log link:
( ) log( log(1 ))i i igh µ µ= = - -

• Probit link:                                       where             is the 
cumulative N(0,1)-distribution 

1( ) ( )i i igh µ µ-= =F ( )zF

For Poisson responses:

• Identity link: ( )i i igh µ µ= =

• Square root link:                                      ( )i i igh µ µ= =
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Statistical inference  in GLMs is performed as illustrated for logistic 
regression and Poisson regression 

Estimation:

• Maximum likelihood (MLE)

Testing:

• Wald tests

• Deviance/likelihood ratio tests
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A particular feature of the GLMs is the variance function            which 
is specific for each family of distributions. The variance functions 
describe how the variance depends on the mean    . 

• For the Poisson distribution:

( )V µ

µ

( )V µ µ=

( ) (1 )V µ µ µ= -

( ) 1V µ =

2 2Var( ) ( )s s µ= =i iY V

As discussed previously in these slides there may be overdispersion
relative to a Poisson model. This could be allowed for by specifying a 
model  Var( ) ( )f µ=i iY V

• For binary data:

• For normal data we define
since the variance does not depend on the mean
thus  



Example: Number of sexual partners
Study of sexual habits, Norwegian Institute of Public Health, 1988 
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no. sex-partners, 

• Age, being single, having had HIV-test and was higher for men

However, the data was overdispersed.  A “Pearson X2” statistic is

iY = 1,..., 8553i n= =
A Poisson-regression found that the expected value increased with

2
2

1

ˆ( ) 51927
ˆ

n
i i

i i

YX µ
µ=

-
= =å

which is large compared with residual degrees of freedom 8544. 

2

1

ˆ( )1 51927ˆ 6.08
ˆ 8544

n
i i

i i

Y
n p

µf
µ=

-
= = =

- å
and should have been close to 1 if the Poisson model was correct.

An overdispersion term is estimated as

Standard errors and inference needs correction for overdispersion!



Correction for overdispersion
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A overdispersed Poisson model is given by

•

•

0 1 1 2 2log( ) ....i i i p pix x xµ b b b b= + + + +

Var( ) fµ=i iY

This model can be fitted as a standard Poisson-
regression, but the standard errors must be corrected to

* ˆse se f=
where      is the standard error from the Poisson-
regression and the overdispersion       is estimated as on 
the previous slide. Similarly the z-values become 

se
f̂

* ˆ/z z f=
and p-values must be corrected correspondingly



Count data with over-dispersion – Quasi-likelihood 
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Although the corrections for overdispersion shown on the previous  
slide should be simple to carry out it is convenient that it is already 
implemented in R through a so-called   

• Quasi-likelihood

The family-specification in the glm-command is given as “quasi” with 
arguments

• var=“mu”
• link=log

glm(partners~Gender+Married+factor(HIVtest)+factor(agegr),
family=quasi(link=log,var="mu"),data=part)
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(Intercept)          1.82862    0.07665    23.857     < 2e-16 ***
Gender               -0.49038    0.02145   -22.859    < 2e-16 ***
Married              -0.43997    0.02521   -17.449    < 2e-16 ***
factor(HIVtest)2 0.35017    0.03254     10.763    < 2e-16 ***
factor(HIVtest)3 0.14901    0.05657       2.634    0.00845 **
factor(agegr)2    0.57142    0.06721       8.502    < 2e-16 ***
factor(agegr)3    0.90489    0.06767     13.372    < 2e-16 ***
factor(agegr)4    1.04673    0.06550     15.981    < 2e-16 ***
factor(agegr)5    0.84322    0.06806     12.389    < 2e-16 ***
---
(Dispersion parameter for quasi family taken to be 6.07765)
Null deviance:         53136 on 8553 degrees of freedom
Residual deviance: 40002 on 8544 degrees of freedom

Estimate   Std. Error   z value     Pr(>|z|)

Results from over-dispersed Poisson model on 
no. of sexual partner data. 

Although the associations are still all strongly significant they have been 
scaled down a factor  ˆ2.45 6.08 f= =
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Heteroscedastic linear model

Assume that the linear structure 

0 1 1 2 2( ) ....i i i i p piE Y x x xµ b b b b= = + + + +

was found acceptable, but that the variance depended on       as  iµ
Var( ) fµ»i iY

One way to handle the non-constant variance could then be to specify 
a quasi-likelihood model with identity link and variance function “mu” 

R can also handle variance structures        and   3fµ2fµ
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Generalized additive models (GAM) 

We have encountered GAMs for
• Multiple linear regression
• Logistic regression

Any generalized linear model (GLM) can be extended to a GAM 
including Poisson regression models

A GAM consists of three parts
• A family of distributions
• A link function
• An additive predictor
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GAM, continued 

Thus the first two components of a GAM are the same as for a GLM,
but for the last component we replace the linear predictor

0 1 1 2 2 ....i i i p pix x xh b b b b= + + + +

with an additive predictor 

0 1 1 2 2( ) ( ) .... ( )i i i p pif x f x f xh b= + + + +

where the linear terms           are replaced by smooth functions j jixb ( )j jif x

Before fitting and plotting a GAM-model the library gam must be 
invoked (and installed).

Examples of use of GAM is found in Lecture 5, slide 19 and Lecture 7, 
slide 35. 


