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Chapter 8 (except 8.2 and 8.4)
Supplementary material on Poisson distribution



Example: Emission of alpha particles

In an experiment from 1910 Ernest Rutherford and Hans Geiger
recorded the number of alpha-particles emitted from a polonium
eneacho elghth-minute intervals

—

NO. 2 3 4 5 6
Observed [ 5 203) 383 525 532 408 273

NoO. 7 8 O 10 11 12 13+
Observed | 139 49 27 10 4 2 0

Example: Occurrence of anencephaly in Edinburgh 1956-66

Anencephaly is a serious disorder which causes the brain of a fetus not
to develop properly. The number of children born with anencephaly in
Edinburgh in thﬁ@months from 1955 to 1966 were:

# anencephaly 0 @ 2 4 6 7 8 9+

# months 18)@1. 18 0o 2 1 0

We need a distribution that describes such counts 2




Poisson distribution

—

A random variable Y'is Poisson distributed with parameter A if

P(Y =y) =
= -

Short we may write: Y ~ Po()\)

—

We have that: —

E(Y) = Var(Y) = D

The Poisson distribution arises as:

e an approximation to the distribution of

Y ~ bin(n,g_) when p is small and n is large
(A = np) -
————

e from a Poisson process

—
—




Prohahility

0.40¢

0.351

0.301

0.251

0.204

0.151

0.104

0.051

0.00-

0

1

Poisson Distribution

(\

2 3 4 5 b 7 8 9 1011213 14 15 16 17 18 19

Number of Occurances

Bl mean=1 [ mean=5 M mean=10

?9(;\:’) P°(‘1’5) (] = lo)



Poisson approximation to the binomial distribution

When@ is large and@ is small, we have with A = np

n v n—y /1)/ -1
y p (1-p) z;e o
5,-—‘"—'——_—3'4 ne =~ —_
lllustration:
N
Poisson inomi Binomial Binomial

0.3033 - 0.3035 0.3056 0.3280

0.0758 == 0.0758 0.0756 0.0729
0.0126 = 0.0126 0.0122 0.0081
0.0016 =~ 0.0016 0.0015 0.0005

O The Poisson distribution is often an appropriate model for

"rare events" :




Poisson process

We are observing events (marked by x) happening over time:

K)‘&) \Ix_'/>< L<,.X/T\_/x‘lxx/l I>< >T I>< >I< [ I’n
?o 0 1 2 3 4 5 6 7 8 9 10 —t
O e o 22 —_ ~ —~
Assume that:;

« the rate of eventgg :Sis constant over time
(rate = expected number of events per unit of time)

* the number of events in disjoint time-intervals are independent

* events do not occur together

Then we have { Poisson process )

The Poisson process is an appropriate model for events that are
happening "randomly over time"

~

Let Y be the number of events in an interval of length ¢

Then: Y~ Po( /It!



10

In a similar manner we may have a Poisson process in the plane:

X

X

Then:

10

Assume that:

* the rate of poj A _is constant over
the region (rate = expected nu
oints in an area of size ane)
Pf L—-—-""""__'y

 the number Ints in disjoint areas
are independent _

» points do not coincide
j—

Then we have a Poisson process in the plane (spatial process)
This is a model for "randomly occurring” points

Let Y be the number of events in an area of size a

Y~ Po(ii_c‘z_)



Overdispersion

For a Poisson distribution, the expected value and the /7
varian‘cﬁéﬁﬁl—“ ‘ '

— 65/7 \ =l

One way of checking whether the Poisson distribution is

appropriate for a sample y,,»,,...., ), isto compare _ !
— — S
T T %
J’Zzzyi with 52:n—2(yi—y)2
i=1 L=l

For a Poisson distribution both y and s> are estimates
/o@ so they should not differ too much™

2
We may compute the@t of dispe@ CD = ST o+
e - )
If CD is (substantially) larger than 1, it is a sign O@D
e

8




For the alpha particles we have

y =3.88 and s =3.70

e ——

whicrrgives

For the anencephaly data we have

$=197 and s°=241

—— e
which gives

@ 24y
197 ==

The two examples do not show signs of overdispersion

——




: o : i
Test of Poisson distribution ) \M/J] ot
Data: y,y,,....,», 7/ )4 ¢ l3‘ ng‘j"

. _ , L _ )
Null hypothesis H,: data are Poisson dlstrlf)ut_eij _a cob. ll':zzzz 247_ ERa s

Procedure: ’

A
S 78 o
. Estlmatg(l\/ILE): I~

‘—

« Compute expected frequencies under Hy [ E |=n -(ij/j!)e@
— —_— J

* Compute observed frequencies: O, = number of y, equal to j
9:’:’__}‘_ —_—

* Aggregate groups with small expected numbers, so that all E/'s are

at least five. Let K be the number of groups thus obtained ke<g

g——-. Ly -

(0,-5)

+ Compute Pearson chi-squared statistic: Z
E.
f e .- j

. Under.the Pearson statistic is approximately chi-squared 10
distributed wﬂ@grees of freedom

—



Example: Emission of alpha particles

There is a good agreement between observed and expected frequencies:
z

, - g - \ \

No. 0) 1 2 3 4 5 6

Observed 203 383) b25 532 408 273
—~ EXxpected | 54 210 407 525 | 30E

NoO. N4 8 -0 10
Observed | 139 49 27 10
Expected | 141 68 30 11

We aggregate the three last groups, leaving us with K= 12 groups

Pearson chi-squared statistic: ¥* =10.42 df =10
q > 7 =104 (Jj,/?l dof < lo

P-value: 40.4%
HYa

The Poisson distribution fits nicely to the data




Example: Occurrence of anencephaly in Edinburgh 1956-66

Here as well there is a good agreement between observed and
expected frequencies:

=4
# anencephaly 0 1 2 3 4 5 6 7 8 O+
# observed 18 42 34 18 11 6 0 2 1 0
# expected 184 36.3 35.7 235 11.5 ‘4;5 1.5 04 0.1 0.03
— 1

We aggregate the five last groups, leaving us with K = 6 groups

Pearson chi-squared statistic: ~ y* =3.3

P-value: 50.9%
ﬁ

—_—
—




Example: Mite infestations on orange trees

A mite is capable of damaging the bark of orange trees

——

An inspection @ranqe trees gave the following
numbers of mite infestations)found on the trunk of each tree-
g

# infestations 0 1 2 (m
# observed @@@ @ W) o (D o
# expected 445 36.0 146(’08 0.13 0.02 0.00 0.00

Zﬁ&‘"‘w 4 o3

We aggregate the six last groups, leaving us with K = 4 groups

Pearson chi-squared statistic: y° =12.6  (df =2) Yefo,d J
-— . Y /
P-value: 0.2% j ¢

The Poisson distribution does not fit the data

88 20 21 ¢ —
2 s X Lg 488 ) 535 Ble




= fe gK
Poisson regression /( ) /A\ gx;ﬂ(ﬁwm)
B: A, r) 0= R

So far we have considered the situation where the observations are a

sample from a Poisson distribution with paramet@(which isthe
same for all observations)

We will now consider the situation where the Poisson parameter may

depend on covariates, and hence is notTﬁ/ejﬂne for all observations

We assume that we have independent data for each of@ubjects:

J’,-axl,-,le-,---,xpi l=1,...,n
Fi=

¥, = a count for subject no. i

x ; = predictor (covariate) no. j for subject no. i

A
— —

In general we assume that the responseg g\are realizations of

independent Poisson distributed random variables Y ~Po(4)

where A, = A(x;,X,;,....,X,;) is a function of the covariates ¥

14



We will consider regression models for the rates of the form:

A= AX Xgyenes X, /’“"W(rg""ﬂ/)
_oxp(f+ B+ Byt Bx,) oy e R

This ensures that the rates are positive, as they should
7

If we consider two subjects with values x, +A and X , for
the first covariate and the same values tor all the others

——

their rate ratio (RR) becomes S
e — ~
-5 A(x +A Xy, X)) _ exp(fy + B (x, + M)+ B x, +..+ B,.X,) @
—  AlX, Xy, X)) exp(fy+ Bix + fox,+...+ B, x,

In particularis the rate ratio correspgnding to one unit's
increase in the value of the first covariate holding all other

covariates constant
. T 15




In many applications we have data on an aggregated form

—__—h—ﬁ
N

We then record counts for groups of individuals who share the

same values of the jates

Ea———

Example: Insurance claims

We consider data on accidents in a portfolio of private cars in an
EnWe company during a three months period

The variables in the data set are as follows:

 Age of the driver (1=less than 30 year, 2= 30 years or more)

+ Motor volume of the car (1=Ies;than 1 litre, 2=1-2 litres, 3=more th itres)
« Number of insured persons in the group (defined by age and motor volume)

* Number of accidents in the group

(B o (D @@

1« 846 137 <
K?{‘ 2 T 2421 444 -
3 F 207 52 -
2 1< 4101 402 —~

g ) 2 2 14412 1869 - y
7 5 2 3 1372 247 ~



When our observations are aggregated counts, an observation Y,
IS a realization of - -
@j (")

~Po(wA,) (*) £@,9(.» ) . -

where the weight w; is the number of subjects in group i

—

When we combine (*) with the regression model on slide 14,

we may write: g[‘{; £)=A;
Ny ”@\m R

EO54m e (By+ By + B+t By, ) ;

=exp(log(w)+ G, + B x,; + B, % + .+ D, xpl.)
A=2 7 0 rT

Formally log(w,) is a "covariate" where the regression coefficient is

known to e-qual 1. Such a "covariate" is called an offset
¢—7—§- C;

17

b



Example: Insurance claims

—

R commands:
car.claims=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/car-claims.txt", header=T)

fit.claims=gIm(acc~offset(log(num))+factor(age)+factor(vol), data=car.claims,family=poisson)
summary(fit.claims) e —

R output (edited):

Std. Error z value Pr(>|z|)
2~ (Intercept) 0.055 -34.83 < 2e-16
~* factor(age)2 0.044 -8.45 < 2e-16

factor(vol)2 0.048 5.09 3.57e-07
factor(vol)3 0.072? 7.90 2.85e-15
@
Note e.g. that A=C 6?’)4
c e e ”1°=0.147 is expected number of claims for a driver younger
than 30 years \ years with a small car
e ’?’° =0.687 is the rate ratio for a driver 30 years or older

compared with a driver younger than 30 years (with same type of car)

18



Maximum likelihood estimation

—

We have :

The likelihood is the simultaneous distribution

e.x
L — ﬁ (Wiﬂ’i)yi ex (—Wl )/— /p(ﬁ %/6;//- )/ !
=L Ty oPwA )

considered as a function of the parameters [, 3,,...., §, for the
observed values of the y; -

Z- (?‘/ {3,/ T Ff)

The maximum likelihood estimates (MLE) f3,, ;5. 3,
maximize the likelihood, or equivalently the log-likelihood \ / =logL

19



Wald tests and confidence intervals

o ﬁj = MLE for f,

o _S;( ,3 ) = standard error for ﬁj

To test the null hypothesis H . : §, = (0 we use the Wald test statistic:

IB]' - 0
z ~
se(f3))
which is approximately N(0,1)-distributed under HO].
—

o

confidence interval for /3. : ,3]. Se(ﬁ.)

exp(/f,) is the rate ratio for one unit's i in the

value of the j-th covariate holding all other covariates constant

—

We obtain a 95% confidence interval m@u transforming the
e inter

lower and upper limits of the confidenc alfor g 20

A




Rate ratios with confidence intervals for the insurance example

R command (using the function from slide 10 of Lecture 7):
expcoef(fit.claims)
R output (edited):

expcoef lower upper
(Intercept) 0.15 0.13 0.16
factor(age)2 0.69 0.63 0.75
factor(val)2 1.28 1.16 1.40 P
factor(vol)3 1.77 1.53 2.04 P‘, -

1%




Deviance and likelihood ratio tests

=

—

We want to test the null hypothesis H, thaofthe ,Bj's are equal to

zero, or equivalently that there are g linear restrictions among the [5's
=

[ —

Procedure:

7 is the maximum possible value of the log-likelihood,
obtained for the saturated model with no restrictions on the 4,

- ~ ﬂ
« [ =logL is the log-likelihood for thw
P e
. ZO = 10gi0 is the log-likelihood under H, T
- ~ ~
* Deviances D=2(/-1) and D,=2(l -1))
— [ ) —~—— S Z
- Test statistic D,—D :—zlog(ﬁo/ﬁ) 6/!/9(
T - 7

is chi-squared distributed with g df under H,

22



Example: Insurance claims

R commands:

fit.null=glm(acc~offset(log(num)), data=car.claims,family=poisson)

“fit.age= glm(acc~offset(log(num))+factor(age), data=car.claims,family=poisson)

'Tf'a—'ge vol= gIm(acc~offset(|og(num))+factor(aqe)+factor(vol) data=car.claims,family=poisson)

fit.interaction=glm(acc~offset(log(num))+factor(age)+factor(vol) +factor(age):factor(vol)
gim( (log(num))+factor(age)+factor(vol) +fagtor(age)factor(vol),

data=car.claims,family=poisson)

anova(fit.null,fit.age,fit.age.vol fit.interaction,test="Chisq")
R output (edited): Vo / f 9(

Analysis of Deviance Table

Model 1: acc ~ offset(log(hum)) =
Model 2: acc ~ offset(log(num)) + factor(age)

Model 3: acc ~ offset(log(num)) + factor(age) + factor(vol)
I\Zl_p_g__efl_4: acc ~ offset(log(num)) + factor(age) + factor(vol) + factor(age):factor(vol

Resid. Df Resid. Dev Df Deviance P(>|Chil)
1 5
2 4 G | — D 62.18 [ 3.132e-15 |
3 2 108y —o 61 95 3534614
4 0 {900 —0.371
—_a—
We end up with model 3 with no interaction (cf slides 17 and 19) 53

=




Generalized linear models

The models for
« Multiple linear regression

* Logistic regression
« Poisson regression

are the most common generalized linear models (GLMs)

) / Vol A
A GLM consists of three parts é'o’m?w ne2r @4
/ B|}7.,Ma/ —_— / ‘S/(C (7_'.9.(-
—v * Afamily of distributions \} @ devr . 2 Ser o

~ - s G FGimpne o
__ * Alinear predictor e voen S

__—— < Alink function

e ————

24



Example G”LM: (standard) Poisson-regression

—

The three parts are for Poisson-regression _

e

« Family: The observations Y, are independent and
Poisson distributed with means . = E(Y)) =

P—— _
* The linear predictar: A linear expression in regression
parameters and covariates

@ﬁ0+ﬂ1x "‘ﬁz '+’IB_1.).xpi

————

 The link function: Linking yzs and n,
o e

_ n. :g(ﬂ,-)=lodg—(;l.) 0@&) —x
= ————— /q://{'

For the multiple linear regression model the family is normal and
the link function is an identity function 17&.: g(u)=u

L

—

For logistic regression: binary / binomial famil link function is

the logit function U -
- 1, = g(u) =\log ﬁ ~




Other link functions may also be specified: —_—

For binary responses:

e

« Complementary log-log link: -
1, = 8g(1;) = log(—log(l— 1))
/

« Probitlink: 7, =g(u)=®'(u.) where ®(z) isthe

cumulative N(0,1)-distribution

—

For Poisson responses:

* Identity link: 7. =g(u)= 1

 Square root link: 7. = g(u) = \/;l

p—

26



Statistical inference\{n G /:) performed as illustrated for logistic
regression and Poisson regression " —

o YRR G

Estimation: L
- — \ap(B+6x)

— ﬁe’i’(f” bﬁ'@

* Maximum likelihood (MLE)
}‘
| 1 (54 =@
Testing: AN

+ Wald tests 25~%—} Gy

* Deviance/likelihood ratio tests

5T~

27



A particular feature of the GLMs is the variance funct" which
is specific for each family of distributions. The variance functions

describe how the variance depends on the mean /.

* For the Poisson distributign; V()= u = ) /[,u
2

/

— N\« ) _
» For binary daE\: V(p) = p(-p) V;r:([}’)zggr- f)

» For normal data we define V(1) =1 2

since th ' nof depend on the mean v 1
thus Var(Y,)=ol=0cV(u)
-——

— - =

As discussed previously in these slides there may be overdispersion
relative to a Poisson model. This could be allowed for by specifying a

model Var(Y)) =@V (1) et
——.—? ; —— °1'




Example: Number of sexual partners
Study of sexual habits, Norwegian Institute of Public Health, 1988

-~

no. sex-partners, i = 1,...,n=8553

A Poisson-regression found that the expected value increased with
« Age, being single, having had HIV-test and was higher for men
———— —

However, the data was overdispersed. A “Pearson X2” statistic is

(X)= Z(—*_fﬁ) 51927

which is large compared with residual degrees of freedom\8544
An overdispersion term is estimaTed as

1 Z”:(K—,[zl.)z 51927 _
n-po LU 8544 -
—————"

and should have been close to 1 if the Poisson model was correct.

——

Standard errors and inference needs correction for overdispersion!
- — 29




Correction for overdispersion

A overdispersed Poisson model is given by

——

T

Clog(u,) = LBO +O X+ Prxy e+ B X

+ Var(Y))

This model can be fitted as a standard Poisson-
regressmn but the standard errors must be corrected to

A ~

where se is the standard error from the Poisson-

regression and the overdispersio is estimated as on
the previous slide. Similarly the z-values become

A\
2 =210 2 g
and p-values must be corrected correspondingly & 2
P f 1 ==

(? ?b 30(7?



Count data with over-dispersion — Quasi-likelihood

Although the corrections for overdispersion shown on the previous
slide should be simple to carry out it is convenient that it is already
implemented in R through a so-called -

e Quasi-likelinood

The family-specification in the gim-command is given as “quasi” with
arguments ——

s

e var="mu’
o Iink=|og

’g_m(partners”@nder+Married+factor(HIVtest)+factor(agegr),
family=quasi(link=log,var="mu"),data=part)
e

31



Results from over-dispersed Poisson model on
no. of sexual partner data.

Estimate Std. Error zvalue Pr(>|z])

(Intercept) 1.82862 0.07665 23.857 < 2e-16 ***
Gender -0.49038 0.02145 -22.859 < 2e-16 ***

@’ -0.43997 0.02521 -17.449 < 2e-16 ***
0 est)2 0.35017  0.03254 10.763 <2e-16 *** _ 5

factor(HIVtest)3 0.14901 0.05657 2.634 (.00845 **
factor(agegr)2 0.57142 0.06721  8.502 <2e-16***
factor(agegr)3 0.90489 0.06767 13.372 <2e-16 ***
__factor(agegr)4 1.04673 0.06550 15.981 < 2e-16 ***
factorfagegr)5 0.84322 0.06806 12.32}9\< 2e-16 *** { g"‘—-’&
(Dispersion parameter for quasi family taken to be 6.07765)
Null deviance: 53136 on 8553 degrees of freedom
Residual deviance: 40002 on 8544 degrees of freedom

Although the associations are still all strongly significant they have been
scaled down a factor 2.45=1/6.08 = \/; s

_gl’ﬁ- 32




Heteroscedastic linear model 5
Assume that the linear structure v

EY)=u =pB,+ 0, x,+ 5, x,, +....+,Bp X,

was found acceptable, but that the variance depended on 4¢; as
o e ————
Var(Y,) ~ g

One way to handle the non-constant variance could then be to specify

a quasi-likelihoodmodel with identity link and variance function “mu”
_——— e © | c————— —

R can also handle variance structures @u” and @’

—

33



Generalized

We hal\\//le Iet.nclzmljlntered GAMS. for _ @1’02 E,+ g&) iﬁ(fa £ .
« Multiple linear regression
ple | g o0 Z) (,_L> ? \-Oet(g)iﬁ@z)v,”

* Logistic regression

Any generalized linear model (GLM) can be extended to a GAM
including Poisson regression models >

2
onS|sts of three parts M o

» Afamily of distributions 4 /S (¢ L/
- Alink functio \—\\ /o ((])
 An additive prrvm
\ 1;5, K
G 34




GAM, continued

Thus the first two components of a GAM are the same as for a GLM,
but for the last component we replace the linear predictor

| tne=r
@l.;a(vd-w-’—ﬁ‘- 1= Po + B x,; + P x2i+”"+ﬁp X pi '5(7(')
with an additive predictor A =
: e X
& |
&U b s 1, =p, -|-fl(xh.)-|—f2(x2i)+....-|—fp(xp,-)
m‘-‘c}pf et
where the linear terms ,Bj X ; are replaced by smooth functions f,(x )

—

Before fitting and plotting a GAM-model the Iibraust be

invoked (and installed).

Examples of use of GAM is found in Lecture 5, slide 19 and Lecture 7,

TR M )b (5 2’“) B
-




