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STK4900/9900 - Lecture 9

Program

1
1. Survival data gnc@
2. Survival function an az@

3. Kaplan-Meier estimator

4. Logrank test
5. Proportional hazards and Cox regression
« Section 3.5 \

e Sections 6.1 and 6.2



Survival data and censoring

The data in this lecture have a different form from what we

have see er -

/
The response is t @’ rom a well defined starting point) until
a specific event (end point) occurs, or until observation of the

—— e —————

subject stops—

Examples:

* Time from birth to the onset of a disease
e e Ao

—p « Time from onset of a disease to death =y

e

- Duration of unemployment
——————

* Time from starting a PhD-study to graduation

e——

We will often call the time until the even

when the end point of interest IS something else than death
—_— eee—




A new aspect for survival data

The event of interest does not necessaril¥ occur in the

——— e
observation period.

—_—

Then we only know that the survival time is longer than the

observation period, but not exactly how long.
I ——————

This is referred to

Also these censored survival times contain important information

he—— ~—
—_—

and must be included in the anaIyS|s

e L ——




Example: clinical trial

———

—

Assume that we want to study the time from disease onset
———,—————————————l
until death

—————

* New patients are diagnosed and included in the study

-

« The patients are then followed until:

!
- —> D - -~ >
(&-_death> ~ L

=

- they no longer want to participate

- the study is concluded . /..ty L.Vf
d&/l;a/i‘a)

In the second and third case the survival times are censored. g




lllustration for a hypothetical clinical trial with 10 patients:

Follow-up of patients on Follow-up of patients on
the calendar time scale: the study time scale:

W Observations reorganised

10 Q o ’ 3 — . g
9 P /"J < 6 o ﬁ
8 /— " O 2 f—— —_.
7 D PR :
c 6 g - ° 39 °
$5 > T 1 .
o o
4 ‘—@ < 10 O
3 - O 5 )
2 S — [4 ——
10 - , — S , 70 , , ‘
0 5 10 15 0 5 10 15
Time (months) . Survival times (months)
e 7

Death: e and censoring: o {(f4+ CWS"/WJ
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Notation for censored survival times

= survival time for individual no i — -~

censoring time for individual no i -8

—

We do not observe all Tl.0 (or C.), but only:

7
min (7;0, C.) = censored survival time

(@ RO TI”<C, sothe survival time is observed

The response for subject 7 is (7,D,), i.e. a combination of

if 7" >C, so the censoring time is observed %

a numerical response 7, anda binary response D,

———

=t

Using @as response without takininto account does not
hods t

make sense. We need statistical met hat use data on all
- e — ———
lects, whether their survival times are observed or we only

observe time until censorij




Concepts describing the distribution of survival times

—

The following concepts may all be used to describe the distribution of A
a survival time 7 :

N
e Density @ P<T’<t+A)= f(t)A
e =
e Cumulative distribution function: = P(T° <¥%)

e Survival function: S(¢)=1-F(t)=P(T’ > 1)

j - - — =
T
e Cumulative hazard function: H (t) h(S)dS H S




ft

S

. « F(t)=1-¢™" . S()=e”

€
Example: exponential distribution ‘F(é): f f@)ﬁ(j‘
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patients with chronic

Control survival times Prednisolane survival times

active hepatitis were
randomized either to
treatment with
ednisolong or to
an untreated control

group
il

The table shows the
censored survival
times and whether a

patient died SD) or
were still alive (A)

Lontrol ;
b (mpnths) _e~ (months)
2D~ ~ _~C2ID
< 2D 6D
4D 12D
7D T 54D
10 D e OPA -
22 D 68 D
28 D 89 D
29 D 96 D
32 D 96 D
37 D g 125 A. &~
40 D 1298 A- g
41D ’ 131 A -
54 D 140 A .
61 D 141 A .
63 D / 143 D
71D 145 A . Sg
A (27)A < 146 D
140 A 148 A -
M6 A A 162 A
158 A N~ 168 D
167 A 173 A

TEDA (TSDA -




Estimation of the survival function

We want to estimate the survival functio without assumin
that it belongs to a sg_ecific parametric class-of distributions (like

—_— .
exponential or gamma).

—

A For illustration we look at the pr?fllisolone group. L
19 of the 22 patients live more than 50 months.
Therefore: 5@ So> =5 T Og(f
S(50) = D _.864 / /

22
o tte)-

But how do we find 3’(1 00) ?
—

This can not be found as a simEIe grogortion, since we d NnOwW

whether the patient censored at 56 months would live longer than

_/

@onths or not
— 10




pIan-Meie estimator

Introduce:
S

e Distinct times of events: 1 <ty < ---

® m; = number of events observed a
—

e Y (t;) = number “at risk” at t;

= —

——

For z@g t <trp41 the survival function is estimated by the product

£t
sy = (1 D). _"”2)...( _@>
= _<1, van) ' van) T Ve

This is the Kaplan-Meier estimator

More compactly we may write:

S(t) = (1— i )
T tjl-;[t Y(t))

-p r -y

11




Example: prednisolone group

ti  Y(t;) m; Y(t) Y(t.)

)
2200

L m 16
17 1
~\ 89 2 12.0.770 =0.722
15 @@ 2 15:0.722=0.626
143 L L £.0.626 = 0.547
146 }\6 1 2 2 2.0.547 = 0.456
168 3 1 % < 2.0.456 = 0.304 12




lgL(ng (SLJW'Ua‘])

R commands:
time=c(2,§\,12, YA ,89,96,96,125,128,131,140,141,143,145,146,148,162,168,173,181)
cens=c(1,1,1 1,1,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0,0)

Tbrary(survivall) —

survpred=gqunfit(Surv(time,cens)~1, conf.type="none")

summary(survpred)
Pk Al
R output :
time n.risk  n.event survival std.err
2 22 1 0.955 0.0444
6 21 K1 TI09  0.0613
12 20 1 0.864 0.0732
o/ ( 54 19 1 0.818 0.0822
68 17 1 0.770 0.0904
89 16 1 0.722 0.0967
9% 15 C2> 0626  0.1051
143 8 1 0.547 0.1175
146 6 1 0.456 0.1285
168 3 1 0.304 0.1509

\



Plot of Kaplan-Meier estimate

P

1.0

s

0.8

0.6

0.4

0.2
I

0.0

0 50 100 150

R command: plot(survpred)

e




Standard error and confidence intervals

The standard error of the Kaplan-Meier estimator is estimated by

e—

Greenwood's formula:

P

(S — g =
se(S(t)) (t>thZ<tf£i)(Y(tj)mj)

—

e

A confidence interval for S(f) is given by:

S(t) £ 1.96 x se(5(t))

—————

Other gptions for confidence intervals_are available
(but note that R use a silly default)

— 2

Z N,

15



1.0

0.8

04 ¥ 06

0.2

_______

0.0

R commands:
survpred2=survfit(Surv(time,cens)~1, conf.type="plain")
p|ot(survpred2) TeE——

16



—

Median@

is defined as the time when the Kaplan-Meier estimator S‘St! =0.5

(or crosses the value 0.5). <
oL
This time can be read of graphically from a Kaplan-Meier plot (see

next slide).

Other percentiles are defined similarly, for instance the lower and

Vo

upper quartiles are defined as solving S(t) =0.75 and_S() = 0.25

Furthermore confidence intervals for the median and_percentiles

are also found graphically fromﬁ_@an;mmm confidence
limits included. —

— ——

17



0.5

Median survival time:

@ ; — f /
S A IN '
: 1\ —
3 A )
| N
g N /‘I) N C
[ \ VA [
0 50 100 150
R commands:
print(survpred?2)
R output: »(
records n.max n.start events 0.95LCL 0.95UCL
22 22 22 11 96 NA

ImEEEE—

18



Comparing two groups

-

We want to compare the survival in two groups (e.g. treatment

"F—
and control):
(ﬂ

e Group I: 1,,D,) m
o Growp2: (T,,D,) @

Kaplan-Meier in group@(k =1,2)

Comparison:

-

e Graphically : Plot S1(¢) and S5(%)

———,

e [esting : Log rank-test
r -

19



Graphical comparison:

Survival

0.2

—— ~onteal

---- treatment.

0.0

Time (months)

commands:

Jime=c(2,3.4,7,10,22,28,29,32,37,40,41,54,61,63,71,127,140,146,158,167,182,2,
£.12.54,56,68,89,96,96,125,128,131,140,141,143,145,146,148,162,168,173,181)

cens=c(141111141141.11,11,1,1,0,0,0,0,0,0, >~
- 11,1,1,01,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0,0)
group= =c(rep(1,22),rep(2,22))
Mg_th_ survfit(Surv( tlme ,cens)~group, conf.type="plain")
plat(survboth |ty=1:2,xlab="Time (months)",ylab="Survival")
legend(5,0.2,c("Control","treatment"),lty=1:2)




Median survival times: e

<
<

0.8

Survival
0.4 0.6

0.2

0.0

Time (months)

R commands:
print(survpred2)

R output:
records n.max n.start events median 0.95LCL 0.95UCL

group=1 22 22 22 16 (40) 28 71
group=2 22 22 22 11 (T46> 96 NA

21



Logrank test

T —

I

We will test the null hypothesis that the survival function is the same
in both groups:

@: S,(t)=S8,(t) forall ¢
AT — o

The test is based on a comparison of the observed and expected
. ——e——————— — e
number of events (under HQ) in the two groups:

i

7@ number of events in group 1 = «e— S({)
N ~ e
number of events in group 2 = 5;@,9(

éf/ﬂ
“expected” number of events in the two groups

——— e
if the survival functions are the same

e

—————

22



Define for both groups combined:

e

Times of observed events: &1 <ty <--- <ty

m; number of events at t;

Y (t;) . number "at risk” at t]

>

Define also: \¢ [¢.
60 1) K¢
t-) number " at risk” in group k at t.2 4¢
) O e ' 42 §2| §j
Then:

/\

23



is approximately N(0,1)-distributed under the null hypothesis that
the survival functions are the same in the two groups (Hy)

%Z 5‘/1‘%5()

Equivalently: P
(0;2 EQQ \ ;\ ¢
se(Og Eg,)(Z> b
is approximately chi-squared distributed with 1 df under H, _}(
=<
The test is called the logrank test 4 P




R commands:

survdiff(Surv(time,cens)~group)

___,_—-——-—‘_‘

R output : /

N Observed Expected (O-E)*2/E

group=1 22 16 10.6 2.73
group=2 22 " 16.4_

Chisq= 4.7 on 1 degrees of freedom, pf 0.0309 )

The logrank test may be extended to more than two groups 280 ..

!
When we compar@roups, we get a test statistic with K- 1 df

—_—

2 Za
A /

25



Introducing covariates to explain time to event )(: jd

— ———

We have compared survival curves for two (or m

Often, we have several org_a_(m_ln_djmduaLwhlch could
influence the time to event.

—

This is modeled through the hazard function h(t ), which with covariates
Xy, Xz ..., X, IS expressed T —

o>

This means that the hazard for each individual is modeled according to
the individual’s covariates. o

—_—

Example: Time from start of PhD to graduation — suggestions for possible

C—

g—

—=="+  covariates?
- 7DD

26



Proportional hazards

Consider first the situation with only one covariate

——%

Hazard function for an individual with covariate x

e 9= hofep )
The baseline haza is the hazard for a subject with x=0

If we consider two subjects with covariate values x+ A and x,
respectively, their hazard ratio (HR) becomes

h(t|x+A) _ ho(t)exp(,ﬁ(x+A)) /’«

h(t ) hOeppr) P

In particular is the hazard ratio corresponding to one unit's
increase in the value of the covariate

T 27




g
)

Example: Mortality rates for men and women (from SSB)
—

Binary covariate x (0O=female, 1=male)

=
) <

\ .

g A o

8 ?

< " g

o) e NI«

2 \ ~ o g

J\[ —
0 20 40 60 80 100 0 20 40 60 80 100
Age Age
o5

A proportional hazards model is not valid for 0-100 years
e —— ——— ——

N
1

= o

§ ¥ T oo

2o 5 \

o) N o

S o g

{ ]

40 50 60 70 80 40 50 60 70 80
Age Age

Proportional hazards is a reasonable model for 40-85 ¥ears




Examplata
atlents with malignant melanoma were operated durlng@ﬁ

~period. A number of covariates were recorded at operafion
The patients were followed until death or censorlng
=

—_————

One covariate of interest was sex (x= 0 for females; x=1 for males)
—r

We fit a proportional hazards model:
h(t | x) = hy(2) exp( fx)

Estimate f

e

The hazard ratio for males vs females becomes

—

HR =¢e" =1.94
—— T g 29



Proportional hazards with several predictors
! Horidl Nazart

Consider the situation with several predictors, and assume that the

hazard rate for an individual with covariates ,...@takes the form:
———"_4: -
h(t | x), %550, X,) = ho()exp(f, x, + B, x, +....+ B, X))
R —— ] | }p

The baseline hazard /(¢) is the hazard for a subject with all
covariates equal to zero

—

If we consider two subjects with values (x, * A and “x, , for the fi
covariate and The same values for all the others, theiphazard ratio (HR
becomes — ﬂ

h(t|x +A,x,,..0x,) M{_I’Q“Aﬂ %)
:eXP(IB1A) - / S o= Ve
,—hw — h({‘\’\%"z&> @*‘)47/5"3
{

—

In particular is the hazard ratio corresponding to one unit's increase

in the value of the first covariate holding all othe ]

30




Example: Melanoma data

————

Consider the covariates:

T
. @ or femal‘:QDfor males
. = tumor thickness (mm)

g \
We fit a
h(t | x,,x,) = hy(t)exp(Bx, +/_Brzﬁ)

Estimates:

0.574 and .i 0.159

Hazard ratios:

HR, = "™ and HR, =" =1.17

h———

31



Cox regression mnie\

For Cox's regression model the baseline hazarq /,(?) )is an arbitrary

non-negative function

-

Estimation in Cox's mode] is based on a partial likelihood of the form

— [ ‘r e ——
E—— J=1 —_5 /

where t, <t, <....<t; are the times when events are observed, and the

factors L;(3) only dependon the regression parameters (and not on the

. e ———  — —
baseline hazar
___455:-

The partial likelihood has similar properties as an ordinary likelihood, and
similar methods as for logistic regression and PoiSSoOn regression

may be used. E.g. confidence intervals, Wald tests and tests based on the
difference in deviance (i.e. twice the difference in log likelihoods)

32



R commands: |iL"él}/ (Su(‘viva{)

melanom=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/data/melanoma-dat-header=T)
fit.sex.thickn=coxph(Surv(lifetime,status= 1)'“factor(sex)+th|ckn data=melanom)

summary(fit.sex.thickn) T ’T_ ( ’\ 4005
S [ (> \JF )
Pr(>[z)

R output (:W &
%5"( pef exp(coef) se(coef)

 factor(sex)2  (0.574) 1.776 02685 (_2464) _0.0304
¢ thickn (0159 1172 0.0327— 1.12e-06
Lon
?{kv exp(coef) exp(-coef) lower .95 upper .95
factor(sex)2 1.776 0.5632 _1.056 2.986__
thickn % 0.8529 1.100 1.250

Wald test =28.77 on 2 df, p=5.662e-07 —

~ Likelihood ratio test = 23.82 on(3)df, p=6.711e-06 Feﬂh
Score (logrank) test =32.2 on 2 df, p=1.020e-07 sC_
/_'/?—E

(Here the "likelihood ratio test" corresponds to a G-statistic, i.e. the
difference between the null and residual deviances in n generalized
linear madels)

33




J

thickn sex age grthick logthick

status @etg?ulcer
1 4 0.02739726 1
2 4 0.08219178 2
3 2 0.09589041 2
4 4 027123290 2
5 1 0.50684930 1
6 1 0.55890410 1
7 1 0.57534250 1
8 4 0.63561640 1
9 1 0.63561640 1
10 1 0.76438360 1
11 1 0.80821920 1
12 4 0.97260270 1
13 1 1.05753400 1
14 1 1.16712300 1
15 1 1.28493200 1
16 4 1.35068500 1
17 1 1.44931500 1
18 1 1.70137000 1
19 1 1.72328800 1

6.76 2 76 3 1.91102300

0.65 2 56 1 -0.43078290
1.34 2 41 1 0.29266960
2.90 1 71 2 1.06471100
12.08 2 52 3 2.49155100
4.84 2 28 2 1.57691500
5.16 2 77 3 1.64093700
3.22 1 60 2 1.16938100
12.88 2 49 3 2.55567600
7.41 1 68 3 2.00283000
4.19 1 53 2 1.43270100
0.16 1 64 1 -1.83258100
3.87 1 68 2 1.35325500
4.84 2 63 2 1.57691500
2.42 1 14 2 0.88376750
12.56 2 72 3 2.53051700
5.80 2 46 3 1.75785800
7.06 2 72 3 1.95444500
5.48 2 95 3 1.70110500



The anova-command may be used for Cox re jon in the
same way as for generalized linear models

R commands:
fit.sex=coxph(Surv(lifetime,status==1)~factor(sex) ,data=melanom)

anova(fit.sex,fit.sex.thickn,test="Chisq™J

Padtie
7D

R output (edited):

Analysis of Deviance Table 3Z J

Cox model: response is Surv(lifetime, status == 1)
Model 1: ~ factor(sex) -

Model 2: ~ factor(sex) + thickn ¥ & /)
——
loglik Chisq Df P(>|Chil|) \
1 C -280.12
2 -271.29 17.673 2.623e-05
/

35



Model fit
D)

regression model one should (as for all models!)
Its reasonably well

Checking th:e__fi-tr of a Cox model is, however, somewhat involved and

time does not allow us to address this here
——

A discussion of model fit is g en 2 the text book g

7\\\/ I
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