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This is the exam project set for STK 4190/9190, autumn semester 2019. It is made available

on the course website as of Wednesday 4 December 10:01, and candidates must submit

their written reports by Monday 16 December 10:59 (or earlier), to the reception office

at the Department of Mathematics, in duplicate. The supplementary oral examination

part takes place Thursday December 19 (practical details concerning this are provided

elsewhere). Reports may be written in nynorsk, bokmål, riksmål, English or Latin, and

should preferably be text-processed (TeX, LaTeX). Give your name (and your student-

web identification number) on the first page; the markers need to couple project reports

with the oral examinations. Write concisely (in der Beschränkung zeigt sich erst der

Meister; brevity is the soul of wit; kratkostь – sestra talanta). Relevant figures need

to be included in the report. Copies of relevant parts of machine programmes used (in

R, or matlab, or similar) are also to be included, perhaps as an appendix to the report.

Candidates are required to work on their own (i.e. without cooperation with any others).

They are graciously allowed not to despair should they not manage to answer all questions

well.

Importantly, each student needs to submit two special extra pages with her or his report.

The first (page A) is the ‘erklæring’ (self-declaration form), properly signed; it is available

at the webpage as ‘Exam Project, page A, self-declaration form’. The second (page B) is

the student’s one-page summary of the exam project report, which should also contain a

brief self-assessment of its quality.

This exam set contains four exercises and comprises nine pages.

Exercise 1

Norsk bistandspolitikk er som en betasuppe som har st̊att og kokt i lengre tid

(says a certain professor of economics from the University of Bergen). Here we shall

employ Beta processes from a different soup, for analysing two groups of Australian drug

users, associated with two different clinics. The question is how long time a drug user

spends with the clinic, before he or she leaves. There’s an appropriate technical definition

of ‘leaving the clinic’, involving transition back to normal society, etc., but which does not

need to concern us here.

The data are available at the course website, as heroin2-data, with six columns, say

id, tt, delta, x1, x2, x3, with tt the time spent in the clinic, in years; delta is 1 if
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that time is observed and 0 if it is censored; x1 is methadone dose; x2 is an indicator for

the user to have spent time in prison or not; and x3 is 1 for clinic 1 and 2 for clinic 2. Here

we shall ignore covariates x1 and x2. You may access the data in R using

heroin <- matrix(scan("heroin2-data",skip=7),byrow=T,ncol=6)

after which you may set up data (ti, δi) for clinics 1 and 2 using

heroin1 <- heroin[x3 == 1, c(2,3)]

heroin2 <- heroin[x3 == 2, c(2,3)]

Consider the cumulative hazard functions A1(t) and A2(t), for the processes involved

in getting users of clinics 1 and 2 to leave. The interpretation is that

dAj(s) = Pr{leaves in [s, s+ ds] | still there at time s}, for j = 1, 2.

These are associated with survival curves

Sj(t) = Pr{Tj ≥ t} =
∏

[0,t]

{1− dAj(s)} for j = 1, 2,

where ‘survival’ here means ‘have not yet left the clinics’. The usual nonparametric estima-

tors for the Aj and the Sj are the Nelson–Aalen and Kaplan–Meier estimators. Figure A

shows such Kaplan–Meier estimates, for clinic 1 (black) and clinic 2 (red), along with

parametrically fitted curves, where I have used the gamma distribution. The point of the

present exercise is to use Beta processes for carrying out Bayesian analysis.
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Figure A: Estimated survival curves for Australian drug users in clinics 1 (black)
and 2 (red), where survival means not yet having left the clinic. The rugged
full curves are Kaplan–Meier estimates and the smooth dashed curves are fitted
gamma distributions.
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(a) Since part of the motivation for analysing the leaving-the-clinic data is to give weight

to claims of their being different, it makes sense to use the same prior for the two

Aj ; in case one finds differences one can then not be criticised for having started out

with a bias. Let therefore both A1 and A2 have Beta process priors, with independent

increments

dAj(s) ≈d Beta(c(s) dA0(s), c(s) {1− dA0(s)}).

For A0, take A0(t) = λ0t, with λ0 = 0.462; show that this entails that the prior

median is 1.50 years. For c(s), take the constant 3.333. Simulate 25 realisations of

Aj = {Aj(t): t ∈ [0, 2.50]}, and transform these to 25 realisations of Sj = {Sj(t): t ∈

[0, 2.50]}.

(b) The Beta process was introduced in Hjort (1990, Annals of Statistics), and among the

central results, covered in class, is that the Aj given the data is still a Beta process.

Specifically,

dAj(s) | data ≈d Beta(c(s) dA0(s) + dNj(s), c(s){1− dA0(s)}+ Yj(s)− dNj(s)},

where Yj(t) is the at-risk process, counting the number of individuals still present

at time t, and Nj(t) the counting process, counting individuals observed to make

the transition from ‘in clinic’ to ‘leaving the clinic’ in [0, t]. In particular, dNj(s) is

counting the number of individuals observed to leave clinic j in the small time interval

[s, s+ ds]. Simulate say 25 realisations of the A1 process and equally many from the

A2 process, given data (perhaps in the same diagram, with two different colours, or if

you judge it better in two different diagrams).

(c) Give formulae for the Bayes estimators Âj(t) = E {Aj(t) | data} and also for the

conditional variances. Give a plot with the two Bayes estimators, along with pointwise

approximate 90% credibility bands.

(d) Let pj = Pr{Tj ≥ 1.50 |Tj ≥ 1.00} for the two clinics, the probability that a drug user

still in the clinic system after one year will also be there half a year later. Simulate

perhaps 1000 realisations of p1 and p2, from the appropriate distributions given data,

and give point estimates and 90% credibility intervals for p1, p2, and the ratio ρ =

p2/p1.

(e) Find an explicit formula for the Bayes estimate ρ̂ = E(ρ | data), and compute it.

Exercise 2

There are two types of people in the world: those who can extrapolate from

incomplete data. This exercise concerns estimating the values of a prior Gaußian process,

along with uncertainty assessment, based on the process having been observed in a small

number of locations.

(a) Assume Z = {Z(x): 0 ≤ x ≤ 10.00} is a Gaußian process, with

EZ(x) = m(x) = a+ bx and cov{Z(x), Z(x′)} = σ2K0(|x− x′|),
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where K0(u) = exp(−λ|u|q), for suitable λ > 0 and q ∈ (0, 2). In particular, the

variance function is a constant, equal to σ2. Suppose that this Z process has been

observed in locations x1 < · · · < xn, say Z(xi) = zobs.i for i = 1, . . . , n. Show that

with x any value in [0, 10.00],
(
Z(x)
zobs

)
∼ Nn+1(

(
m(x)
mobs

)
, σ2

(
1 k(x)t

k(x) Σ

)
),

in which mobs is the n× 1 vector of m(xi), k(x) is the n× 1 vector of K0(x−xi), and

Σ the n× n matrix of K0(|xi − xj |).

(b) Use properties of conditional distributions for multinormals to put up clear formulae

for Ẑ(x) = E {Z(x) | data} and κ̂(x)2 = Var {Z(x) | data}.
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Figure B: The values of Z(x) at the observed positions x1, . . . , xn, along with the
prior mean function a + bx. The task is to estimate the full Z(x) curves, along
with assessment of precision.

(c) Suppose now that the prior process parameters are specified as (a, b) = (2.00, 0.20),

σ = 0.50, λ = 0.66, q = 1.25. What is the probability that Z(x) and Z(x′) shall be

closer to each other than 0.50, if |x−x′| = 1.00? Assume that the Z process has been

observed in the eight locations xi, with values of Z(xi), as follows:

xobs: 0.44 1.11 2.34 3.14 5.55 6.66 7.77 9.87

zobs: 2.92 3.41 2.98 2.20 2.19 4.07 4.51 4.08

Compute and display the Bayes estimate Ẑ(x), with a 90 percent pointwise credibility

band.

(d) Generate and display say 25 realisations, in a suitable figure, from the Z process given

the data.
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(e) The analysis above relies on the assumption that at positions xi, one really observes the

underlying Z(xi). In many cases, when applying this type of modelling and methodol-

ogy for spatial and temporal interpolation and extrapolation, one only observes Z(xi)

with an extra measurement error, say Z∗(xi) = Z(xi) + εi for i = 1, . . . , n, where

the εi are independent and N(0, τ2). Explain how this ‘changes the game’. Use the

data above, take τ = 0.20, and for this new situation compute and display the Bayes

estimate function E {Z(x) | data}, along with a 90 percent pointwise credibility band.

Exercise 3

The luscious clusters of the vine / Upon my mouth do crush their wine, and

in this exercise we exploit the discreteness of the Dirichlet process to create clusters and

mixtures. For the questions below you’re free to use the following formulae. First, if X is

a Beta(ap, a(1− p)), for some positive a and p ∈ (0, 1), then

EX = p, EX2 = p
ap+ 1

a+ 1
, VarX =

p(1− p)

a+ 1
.

Second, if (X1, . . . , Xk) ∼ Dir(ap1, . . . , apk), with (p1, . . . , pk) a probability vector, then

EXi = pi, VarXi =
pi(1− pi)

a+ 1
, cov(Xi, Xj) = −

pipj
a+ 1

for i 6= j.

(a) Let G0 be any continuous distribution on the real line, like the standard normal, and

let G ∼ Dir(aG0), a Dirichlet process with basis measure aG0, for some fixed and

positive a. Show that

EG(A) = G0(A), EG(A)G(B) =
a

a+ 1
G0(A)G0(B) +

1

a+ 1
G0(A ∩B).

(b) Consider first a single θ drawn from this random distribution G, i.e. Pr{θ ∈ A |G} =

G(A) for each A. Show that Pr{θ ∈ A} = G0(A), so the random θ from the random

G has distribution equal to that of the prior mean, i.e. G0.

(c) Consider next the case of θ1, θ2 drawn i.i.d. from the random G, i.e.

Pr{θ1 ∈ A1, θ2 ∈ A2 |G} = G(A1)G(A2) for all A1, A2.

Show that the marginal distribution of these two may be expressed as

Q2 =
a

a+ 1
G0 ×G0 +

1

a+ 1
G0,12,

where (G0 × G0)(A1 × A2) = G0(A1)G0(A2) corresponds to two independent draws

from G0 and G0,12(A1×A2) = G0(A1∩A2) corresponds to enforcing θ1 = θ2, a single

value, drawn from G0. In other words, with probability a/(a+1) the two are different

and independent, both from G0, and with probability 1/(a+1) they are equal, a single

value drawn from G0.
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(d) One may similarly show, with further efforts, that the marginal distribution of a triple

(θ1, θ2, θ3) drawn i.i.d. from the random G, has a marginal distribution which can be

expressed as

Q3 =
a2

(a+ 1)(a+ 2)
G0 ×G0 ×G0

+
a

(a+ 1)(a+ 2)
(G0,12 ×G0,3 +G0,13 ×G0,2 +G0,23 ×G0,1)

+
2

(a+ 1)(a+ 2)
G0,123,

necessitating a bit of work to get the notation right etc. Here

G0,13 ×G0,2(A1 ×A2 ×A3) = G0(A1 ∩A3)G0(A2),

which means that θ1 = θ3 is from G0, independent of θ2 from G0, etc. With D3 the

number of distinct values of θ1, θ2, θ3, write down the probabilities of having D3 = 3,

D3 = 2, D3 = 1. Comment briefly on the cases a very large and a very small.

(e) Assume that θ1, . . . , θi have been drawn from the random G. What is the posterior

distribution of G, given these first i draws? And what is the distribution of the

next θi+1, given θ1, . . . , θi? Find the probability that θi+1 is a new value, i.e. not in

{θ1, . . . , θi}.

(f) With Dn the number of distinct values among θ1, . . . , θn, from the random G ∼

Dir(aG0), one may demonstrate, via arguments used above, that Dn = R1+ · · ·+Rn,

where the Ri are independent 0-1 variables, and with Pr{Ri = 1} = a/(a + i − 1).

Show that Dn/ log n converges in probability to a.

– And now, finally, for the cluster modelling. The general idea is to take

(i) G ∼ Dir(aG0);

(ii) parameters θ1, . . . , θn as i.i.d. from that random G, and these underlying param-

eters are not visible to the statistician;

(iii) observed data points y1, . . . , yn conditional on θ1, . . . , θn as independent from

densities f(y1 | θ1), . . . , f(yn | θn).

Thus there are approximately a log n different parameter values. By proper simulation

from (θ1, . . . , θn) given data (y1, . . . , yn) we hope to learn both about the number of

clusters and where these are in the parameter space.

– The setup and methodology can be worked with using different techniques, and can

also be extended in several directions. Here we shall however be content to illustrate

the general principles in a kindergarten setup with only n = 3 data points, and

with simple models for both G0 and f(yi |xi). Indeed we take G0 = N(0, 1) and

yi |xi ∼ N(θi, 1). Write g0(y) = φ(y) for the N(0, 1) density and φ(yi − θi) for the

N(θi, 1) density of yi | θi. For the following you may use the fact that

g0(θ)

m∏

i=1

φ(yi − θ) = gm(θ | y1, . . . , ym)f̄m(y1, . . . , ym),
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where

gm(θ | y1, . . . , ym) =
1

(2π)1/2
(m+ 1)1/2 exp

{
− 1

2 (m+ 1)
(
θ −

m

m+ 1
ȳm

)2}
,

f̄m(y1, . . . , ym) =
1

(2π)m/2

1

(m+ 1)1/2
exp

(
− 1

2zm − 1
2

m

m+ 1
ȳ2m

)
,

in terms of ȳm = (1/m)
∑m

i=1 yi and zm =
∑m

i=1(yi − ȳm)2. In particular,

g0(θ)φ(y − θ) = N
(1
2
y,

1

2

)
(θ)

1

(2π)1/2
1

21/2
exp

(
−
1

2

1

2
y2
)
,

g0(θ)

2∏

i=1

φ(yi − θ) = N
(2
3
ȳ2,

1

3

)
(θ)

1

(2π)2/2
1

31/2
exp

(
−
1

2
z2 −

1

2

2

3
ȳ22

)
,

g0(θ)

3∏

i=1

φ(yi − θ) = N
(3
4
ȳ3,

1

4

)
(θ)

1

(2π)3/2
1

41/2
exp

(
−
1

2
z3 −

1

2

3

4
ȳ23

)
.

You don’t need to show these particular identities here, for the exam; they are essen-

tially algebraic and I’m just being helpful having done it for you. The gm part is the

usual posterior given the data, but on this occasion we need the marginal densities

f̄m too.

(g) Show from the above efforts that the joint density of parameters and data points, say

π(θ, y) = π(θ1, θ2, θ3, y1, y2, y3), can be expressed as follows:

. with probability a2/{(a+ 1)(a+ 2)}, the three θi are different, and

π(θ, y) = g0(θ1)g0(θ2)g0(θ3)φ(y1 − θ1)φ(y2 − θ2)φ(y3 − θ3)

= g1(θ1 | y1)g1(θ2 | y2)g1(θ3 | y3)f̄1(y1)f̄1(y2)f̄1(y3);

. with probability a/{(a+1)(a+2)}, nos. 1 and 2 are equal, say θ12, different from

θ3, and
π(θ, y) = g0(θ12)φ(y1 − θ12)φ(y2 − θ12)g0(θ3)φ(y3 − θ3)

= g2(θ12 | y1, y2)g1(θ3 | y3)f̄2(y1, y2)f̄1(y3);

. with probability a/{(a+1)(a+2)}, nos. 1 and 3 are equal, say θ13, different from

θ2, and
π(θ, y) = g0(θ13)φ(y1 − θ13)φ(y3 − θ12)g0(θ2)φ(y2 − θ2)

= g2(θ13 | y1, y3)g1(θ2 | y2)f̄2(y1, y3)f̄1(y2);

. with probability a/{(a+1)(a+2)}, nos. 2 and 3 are equal, say θ23, different from

θ1, and
π(θ, y) = g0(θ23)φ(y2 − θ23)φ(y3 − θ23)g0(θ1)φ(y1 − θ1)

= g2(θ23 | y2, y3)g1(θ1 | y1)f̄2(y2, y3)f̄1(y1);

. with probability 2/{(a+ 1)(a+ 2)}, the three θi are equal, say θ123, and

π(θ, y) = g0(θ123)φ(y1 − θ123)φ(y2 − θ123)φ(y3 − θ123)

= g3(θ123 | y1, y2, y3)f̄3(y1, y2, y3).
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(h) To illustrate the above calculations and results, take a = 2.00. First, what are the prior

chances of having 1, 2, 3 clusters (i.e. the number of distinct values among θ1, θ2, θ3)?

Now study two cases of data outcomes for y1, y2, y3. Case A has 1.50, 1.55, 1.60; Case

B has −2.75, 0.03, 2.78. For these cases, compute the posterior probabilities of there

being 1, 2, 3 clusters.

(i) Again, use a = 2.00. Describe the posterior densities for the three mean parameters,

say π(θi | data) for i = 1, 2, 3. Display these, in one diagram for Case A and another

diagram for Case B. You may use simulation if you find that more convenient.

(j) Regardless of how successful you might have been for tackling the questions of (g), (h),

(i), write up a paragraph or two regarding what you see as the potential fruitfulness

of the general approach taking in this exam Exercise 3.

Exercise 4

I Egypten bodde egypterne / for lenge, lenge siden. Here we shall revisit our

distantly admired n = 141 acquaintances, from Roman era Egypt, about a century b.C.

Lifelengths for 82 men and 59 women from that population have been recorded and are

available at the course website, as egypt data. Earlier in the course we’ve analysed the

two distributions nonparametrically, via Beta processes, but presently we shall use our

Bayesian Nonparametrics toolkit in the modus of ‘from Processes to Models’. In the

following, let H(x, b1, b2) be the cumulative distribution function for a Beta(b1, b2); it is

available in R as pbeta(x,b1,b2).

(a) Let G ∼ Dir(aG0), a Dirichlet process on [0, 100] with an appropriate prior mean

cumulative distribution function G0 and a positive strength parameter a. Consider

the survival model where death occurs as soon as the random G(t) crosses threshold

c. Show that the consequent survival curve can be written

S(t) = Pr{T ≥ t} = H(c, aG0(t), aḠ0(t)) for t ≥ 0,

where Ḡ0(t) = 1−G0(t).

(b) We now fit such Dirichlet process threshold crossing models, one for the men and one

for the women. Here we take G0(t) = t/100 on [0, 100], i.e. the simple uniform on that

interval. Explain how you can compute and programme log-likelihood functions, say

ℓm(am, cm) and ℓw(aw, cw) for the men and for the women, via numerical derivation.

(c) You are not required to do such programming and numerical optimisation here, but

I have carried out such efforts and find that the maximum likelihood estimates are

(1.629, 0.216) for the men and (3.681, 0.184) for the women. With this information,

reconstruct a version of Figure C. Make also a figure featuring the estimated hazard

rates, say α̂m(t) and α̂w(t), with α(t) = f(t)/S(t) in terms of density and survival.

(d) Construct a figure, or if you prefer two, showing ten realisations of the Dirichlet process

Gm for men, and ten for the Gw for women, and where you also draw horizontal lines

for the thresholds ĉm and ĉw.
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Figure C: Estimated survival curves for the men (black curves) and women (red
curves) of Roman era ancient Egypt; the ragged full curves are Kaplan–Meier
curves whereas the smoothed dashed curves are from the Dirichlet process thresh-
old crossing model.

(e) The two-parameter Dirichlet threshold crossing models fit the data decently well, with

G0 taken as the uniform, as seen in Figure C. There might be better versions, however,

in particular to reflect what has been discussed in the course via Beta process models,

that young women might have had a harder time surviving than young men (for this

period of relative peace in Roman era Egypt). Indicate how better models could

perhaps be constructed, and try them out, if you have time.
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