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Abstract

Exercises and Lecture Notes collected here are indeed for the Bayesian Nonparametrics course

STK 9190, given for the first time in the spring semester 2018 and then for the second time in

the autumn semester of 2019. It is still useful to go through some prototype lower-dimensional

Bayesian work, however, so a few exercises of that type are also included. This relates to

clarifying concepts and principles, and also to Bayesian Nonparametrics constructions that

use lower-dimensional pieces – as the famous interlocking versatile Lego bricks pieces.

1. Prior to posterior updating with Poisson data

This exercise illustrates the basic prior to posterior updating mechanism for Poisson data.

(a) First make sure that you are reasonably acquainted with the Gamma distribution. We say

that Z ∼ Gamma(a, b) if its density is

g(z) =
ba

Γ(a)
za−1 exp(−bz) on (0,∞).

Here a and b are positive parameters. Show that

EZ =
a

b
and VarZ =

a

b2
=

EZ

b
.

In particular, low and high values of b signify high and low variability, respectively.

(b) Now suppose y | θ is a Poisson with parameter θ, and that θ has the prior distribution

Gamma(a, b). Show that θ | y ∼ Gamma(a+ y, b+ 1).

(c) Then suppose there are repeated Poisson observations y1, . . . , yn, being i.i.d. ∼ Pois(θ) for

given θ. Use the above result repeatedly, e.g. interpreting p(θ | y1) as the new prior before

observing y2, etc., to show that

θ | y1, . . . , yn ∼ Gamma(a+ y1 + · · ·+ yn, b+ n).

Also derive this result directly, i.e. without necessarily thinking about the data having

emerged sequentially.
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(d) Suppose the prior used is a rather flat Gamma(0.1, 0.1) and that the Poisson data are 6, 8,

7, 6, 7, 4, 11, 8, 6, 3. Reconstruct a version of Figure 0.1 in your computer, plotting the ten

curves p(θ |dataj), where dataj is y1, . . . , yj , along with the prior density. Also compute the

ten Bayes estimates θ̂j = E(θ |dataj) and the posterior standard deviations, for j = 0, . . . , 10.

(e) The mathematics turned out to be rather uncomplicated in this situation, since the Gamma

continuous density matches the Poisson discrete density so nicely. Suppose instead that the

initial prior for θ is a uniform over [0.5, 50]. Try to compute posterior distributions, Bayes

estimates and posterior standard deviations also in this case, and compare with what you

found above.

Figure 0.1: Eleven curves are displayed, corresponding to the Gamma(0.1, 0.1) intial prior density for the Poisson

parameter θ along with the ten updates following each of the observations 6, 8, 7, 6, 7, 4, 11, 8, 6, 3.

2. The Master Recipe for finding the Bayes solution

I decide to copy in this particular exercise from the lower-dimensional lower-ambition Bayes course,

without changing the terms or the notation. The meta-exercise, however, is to understand that

all of this still applies in the higher-level world of Bayesian Nonparametrics, partly at the price

of the required higher-level mathematical abstraction level. Basically, where one for Bayesian

Parametrics writes model likelihoods in terms of the famous generic θ, below, one needs for Bayesian

Nonparametrics to think and write and work in terms of a very-high-dimensional or even infinite-

dimensional parameter vector. This could be an unknown cumulative distribution function F ,

an unknown median regression function m(x), an intensity function λ(t), etc., rather than the

prototypical θ. Often enough there are no clear-and-simple likelihood functions coming out of such

2



constructions, however, as we shall see during the course. This does not stop us from trying to

crunch our way from priors to posteriors.

Crucially and amazingly, the basic concepts of decision functions, prior and posterior, loss

functions and risk functions, and the optimal Bayesian strategy, carry over. As long as the statis-

tician has data y, a model in terms of some distribution P (i.e. rather than the ubiquitous θ), a

clear (nonparametric) prior for this P , and a loss function L(P, a) encountered for decision a if

the truth is P – then there will be (a) a posterior π(P |data); (b) a clear strategy for reaching the

Bayes solution âB ; and (c) this strategy is unbeatable, the sole gold medal winner, in the Olympic

competition against other strategies.

Consider a general framework with data y, in a suitable sample space Y; having likelihood

p(y | θ) for given parameter θ (stemming from an appropriate parametric model), with θ being

inside a parameter space Ω; and with loss function L(θ, a) associate with decision or action a if

the true parameter value is θ, with a belonging to a suitable action space A. This could be the

real line, if a parameter space is called for; or a two-valued set {reject, accept} if a hypothesis test

is being carried out; or the set of all intervals, if the statistician needs a confidence interval.

A statistical decision function, or procedure, is a function â : Y → A, getting from data y the

decision â(y). Its risk function is the expected loss, as a function of the parameter:

R(â, θ) = EθL(θ, â) =

∫
L(θ, â(y))p(y | θ) dy.

(In particular, in this expectation operation the random element is y, having its p(y | θ) distribution

for given parameter, and the integration range is that of the sample space Y.)

So far the framework does not include Bayesian components per se, and is indeed a useful one

for frequentist statistics, where risk functions for different decision functions (be they estimators,

or tests, or confidence intervals, depending on the action space and the loss function) may be

compared.

We are now adding one more component to the framework, however, which is that of a prior

distribution p(θ) for the parameter. The overall risk, or Bayes risk, associated with a decision

function â, is then the overall expected loss, i.e.

BR(â, p) = ER(â, θ) =

∫
R(â, θ)p(θ) dθ.

(Here θ is the random quantity, having its prior distribution, making also the risk function R(â, θ)

random.) The minimum Bayes risk is the smallest possible Bayes risk, i.e.

MBR(p) = min{BR(â, p) : all decision functions â}.

The Bayes solution for the problem is the strategy or decision function âB that succeeds in min-

imising the Bayes risk, with the given prior, i.e.

MBR(p) = BR(âB , p).

The Master Theorem about Bayes procedures is that there is actually a recipe for finding the

optimal Bayes solution âB(y), for the given data y (even without taking into account other values

y′ that could have been observed).

(a) Show that the posterior density of θ, i.e. the distribution of the parameter given the data,

takes the form

p(θ | y) = k(y)−1p(θ)p(y | θ),

where k(y) is the required integration constant
∫
p(θ)p(y | θ) dθ. This is the Bayes theorem.
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(b) Show also that the marginal distribution of y becomes

p(y) =

∫
p(y | θ)p(θ) dθ.

(I follow a certain semi-classical convention here, regarding using the ‘p’ multipurposedly,

and with each ‘p’ to be understood by the reader from the context.)

(c) Show that the overall risk may be expressed as

BR(â, p) = EL(θ, â(Y ))

= E E {L(θ, â(Y )) |Y }

=

∫ {∫
L(θ, â(y))p(θ | y) dθ

}
p(y) dy.

The inner integral, or ‘inner expectation’, is E{L(θ, â(y)) | y}, the expected loss given data.

(d) Show then that the optimal Bayes strategy, i.e. minimising the Bayes risk, is achieved by

using

âB(y) = argmin g = the value a0 minimising the function g,

where g = g(a) is the expected posterior loss,

g(a) = E{L(θ, a) | y}.

The g function is evaluated and mininised over all a, for the given data y. This is the Bayes

recipe. – For examples and illustrations, with different loss functions, see the Nils 2008

Exercises.

3. The Dirichlet-multinomial model

The Beta-binomial model, with a Beta distribution for the binomial probability parameter, is on

the ‘Nice List’ where the Bayesian machinery works particularly well: Prior elicitation is easy, as

is the updating mechanism. This exercise concerns the generalisation to the Dirichlet-multinomial

model, which is certainly also on the Nice List and indeed in broad and frequent use for a number

of statistical analyses.

(a) Let (y1, . . . , ym) be the count vector associated with n independent experiments having m

different outcomes A1, . . . , Am. In other words, yj is the number of events of type Aj , for

j = 1, . . . ,m. Show that if the vector of Pr(Aj) = pj is constant across the n independent

experiments, then the probability distribution governing the count data is

f(y1, . . . , ym) =
n!

y1! · · · ym!
py11 · · · pymm

for y1 ≥ 0, . . . , ym ≥ 0, y1 + · · · + ym = n. This is the multinomial model. Explain how it

generalises the binomial model.

(b) Show that

EYj = npj , VarYj = npj(1− pj), cov(Yj , Yk) = −npjpk for j 6= k.
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(c) Now define the Dirichlet distribution over m cells with parameters (a1, . . . , am) as having

probability density

π(p1, . . . , pm−1) =
Γ(a1 + · · ·+ am)

Γ(a1) · · ·Γ(am)
pa1−1

1 · · · pam−1−1
m−1 (1− p1 − · · · − pm−1)am−1,

over the simplex where each pj ≥ 0 and p1 + · · · + pm−1 ≤ 1. Of course we may choose to

write this as

π(p1, . . . , pm−1) ∝ pa1−1
1 · · · pam−1−1

m−1 pam−1
m ,

with pm = 1 − p1 − · · · − pm−1; the point is however that there are only m − 1 unknown

parameters in the model as one knows the mth once one learns the values of the other m−1.

Show that the marginals are Beta distributed,

pj ∼ Beta(aj , a− aj) where a = a1 + · · ·+ am.

(d) Infer from this that

E pj = p0,j and Var pj =
1

a+ 1
p0,j(1− p0,j),

in terms of aj = ap0,j . Show also that

cov(pj , pk) = − 1

a+ 1
p0,jp0,k for j 6= k.

For the ‘flat Dirichlet’, with parameters (1, . . . , 1) and prior density (m−1)! over the simplex,

find the means, variances, covariances.

(e) Now for the basic Bayesian updating result. When (p1, . . . , pm) has a Dir(a1, . . . , am) prior,

then, given the multinomial data, show that

(p1, . . . , pm) |data ∼ Dir(a1 + y1, . . . , am + ym).

Give formulae for the posterior means, variances, and covariances. In particular, explain why

p̂j =
aj + yj
a+ n

is a natural Bayes estimate of the unknown pj . Also find an expression for the posterior

standard deviation of the pj .

(f) In order to carry out easy and flexible Bayesian inference for p1, . . . , pm given observed counts

y1, . . . , ym, one needs a recipe for simulating from the Dirichlet distribution. One such is as

follows: Let X1, . . . , Xm be independent with Xj ∼ Gamma(aj , 1) for j = 1, . . . ,m. Then

the ratios

Z1 =
X1

X1 + · · ·+Xm
, . . . , Zm =

X1

X1 + · · ·+Xm

are in fact Dir(a1, . . . , am). Try to show this from the transformation law for probability

distributions: If X has density f(x), and Z = h(X) is a one-to-one transformation with

inverse X = h−1(Z), then the density of Z is

g(z) = f(h−1(z))
∣∣∣∂h−1(z)

∂z

∣∣∣
(featuring the determinant of the Jacobian of the transformation). Use in fact this theorem

to find the joint distribution of (Z1, . . . , Zm−1, S), where S = Z1 + · · · + Zm (one discovers

that the Dirichlet vector of Zj is independent of their sum S).
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(g) The Dirichlet distribution has a nice ‘collapsibility’ property: If say (p1, . . . , p8) is Dir(a1, . . . , a8),

show that then the collapsed vector (p1 +p2, p3 +p4 +p5, p6, p7 +p8) is Dir(a1 +a2, a3 +a4 +

a5, a6, a7 + a8).

4. Gott würfelt nicht

... but I do so, on demand. I throw a certain moderately strange-looking die 30 times and have

counts (2, 5, 3, 7, 5, 8) of outcomes 1, 2, 3, 4, 5, 6.

(a) Use either of the priors (i) ‘flat’, Dir(1, 1, 1, 1, 1, 1); (ii) ‘symmetric but more confident’,

Dir(3, 3, 3, 3, 3, 3); (iii) ‘unwilling to guess’, Dir(0.1, 0.1, 0.1, 0.1, 0.1, 0.1)

for the probabilities (p1, . . . , p6) to assess the posterior distribution of each of the following

quantities:

ρ = p6/p1,

α = (1/6)

6∑
j=1

(pj − 1/6)2,

β = (1/6)

6∑
j=1

|pj − 1/6|,

γ = (p4p5p6)1/3/(p1p2p3)1/3.

(b) The above priors are slightly artificial in this context, since they do not allow the explicit

possibility that the die in question is plain boring utterly simply a correct one, i.e. that

p = p0 = (1/6, . . . , 1/6). The priors used hence do not give us the possibility to admit that

ok, then, perhaps ρ = 1, α = 0, β = 0, γ = 1, after all. This motivates using a mixture prior

which allows a positive chance for p = p0. Please therefore redo the Bayesian analysis above,

with the same (2, 5, 3, 7, 5, 8) data, for the prior 1
2 δ(p0) + 1

2 Dir(1, 1, 1, 1, 1, 1). Here δ(p0) is

the ‘degenerate prior’ that puts unit point mass at position p0. Compute in particular the

posterior probability that p = p0, and display the posterior distributions of ρ, α, β, γ.

(c) [xx something re the same ideas being generalisable to the fuller Dirichlet process case. xx]

5. The Dirichlet Process: definition, existence, constructions

Let X be some sample space, like the real line, with subsets A belonging to an appropriate sigma-

algebra A. Let P0 be a fixed probability distribution on X , and a a positive scalar. We say that

P is a Dirichlet process on X , with parameter aP0, and write P ∼ Dir(aP0) to indicate this, if it

is the case for each partition (A1, . . . , Am), we have

(p1, . . . , pm) =
(
P (A1), . . . , P (Am)

)
∼ Dir(aP0(A1), . . . , aP0(Am)).

This is required for any number m of elements in the partition.

(a) Show that the basic ‘logic coherence’ property is satisfied, that we may put some of the

Aj together where the resulting distribution does not clash with the start definition. For

example, with sets A1, . . . , A8 in such a partition, deduce the distribution for

(P (A1) + P (A2), P (A3) + P (A4) + P (A5), P (A6), P (A7) + P (A8)),
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and verify that this is as it should be (i.e. the same distribution as dictated from the start

definition). This is the ‘collapsibility property’ for the Dirichlet distribution, cf. Exercise

3(g). Without this property, the start definition would not make sense, and there would be

no Dirichlet process.

(b) The full existence of the Dir(aP0) is not a trivial matter, however. There are several routes to

proving that yes, lo & behold, it exists. Think a bit about the paths of proofs brief indicated

below. If sufficiently curious (now or later), with enough time, go ad fontem and check the

arguments.

(i) Check the original argument used by Ferguson (1973, Annals), appealing to Kolmogorov’s

consistency (or ‘inherent coherence’) theorem. Under a few natural and clearly necessary

conditions, Kolmogorov proved that these are also sufficient; there will be no cognitive dis-

sonance. Ferguson then verified the Kolmogorov dictated conditions. It is worth noting that

in this fashion he ‘only’ got a random P = {P (A) : A ∈ A}, with a certain well-defined

probability distribution P, in the enormous space [0, 1]A of all function P on the enormous

space A, with values P (A) in [0, 1] for every A. He could then could go on to prove that

P(M) = 1, where M is the space of all probability measures on X . This is still not the

same as having created a P working directly on M. Several of the other Dirichlet process

constructions are more direct than this, however.

(ii) Check also Ferguson (1974, Annals), where a representation in the form of P = Z/Z(X ) is

worked through, with Z(·) a Gamma process.

(iii) Hjort (1976, last chapter) showed that the distribution P of a P ∼ Dir(aP0) can be reached

as the well-defined limit in distribution of say Pm, where Pm is an easier finite-dimensional

construction, basically a Dirichlet process aP0,m for a simpler discrete P0,m concentrated in

only finitely many positions (for which the Dirichlet process existence is immediate). With

the P0,m sequence constructed to tend in distribution to the perhaps continuous P0, Hjort

showed that Pm is tight; that its finite-dimensional distributions converge; that it must have

a unique limit; and this limit is identical to Ferguson’s Dir(aP0). Care needs to be exercised

regarding the convergence of probability measures on a space of probability measures (yes,

you heard that right). In other words, the complicatedness of the statement Pm →d P needs

to be examined carefully, as part of the construction.

‘Det er å h̊ape at denne alternative konstruksjonen av en Dirichlet-prosess ikke bare er av

teoretisk verdi. Konstruksjonen gir informasjon utover det tre år gamle faktum at Dirichlet-

prosessen eksisterer.’ (Hjort, 1976, last chapter.) Hjort’s 1976 construction takes place

directly on the subspace M0 of all discrete probability measures on (X ,A), so Ferguson’s

non-trivial 1973 theorem that P with probability 1 selects a discrete probability measure is

here automatic.

(iv) Tiwari and Sethuranam (1982, Purdue Symposium), and later Sethuraman (1994, Statistica

Sinica), have given an intriguing explicit representation of a Dirichlet process, in the form of

P =
∞∑
h=1

whδ(ξh),
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where the ξh are i.i.d. from P0, and the random probability weights wh constructed in a

certain way, discussed in Exercise [xx ... xx] below. Here, δ(ξh) means the degenerate point-

mass measure with value 1 at position ξh.

(v) Hjort (1990, Annals). [xx via the Beta process. xx]

(vi) Hjort (2003, HSSS book). [xx via the symmetric representation and then the limit. xx]

6. Some properties for the Dirichlet process

Let P ∼ Dir(aP0) on some space X . Here are a few properties to go through, shedding light on

the behaviour of the random P . Note that the Dirichlet process provides a model for random

probability measures (hence also for random distribution functions, etc.), with independent or

separate interest. The broader appeal lies however in its use as a prior for an unknown distribution,

from which we then have observations, say X1, . . . , Xn. See exercises and notes below.

(a) With A a given set, show that

P (A) ∼ Beta(aP0(A), aP0(Ac)),

with mean and variance

EP (A) = P0(A) and VarP (A) =
P0(A){1− P0(A)}

a+ 1
.

Thus P0 is the mean of P , hence often called simply the prior mean. The a parameter

indicates strength of belief in the prior guess; a large a means a tight distribution around P0,

and vice versa for a smaller a.

(b) Find the covariance and then correlation between P (A) and P (B), first for A and B disjoint,

then with potential overlap.

(c) With g : X → R a function, consider the random mean

θ =

∫
g dP =

∫
g(x) dP (x).

Show that

E θ = θ0 =

∫
g dP0,

so the mean of the random mean is the prior mean. Show also that

Var θ =
σ2

0

a+ 1
,

with σ2
0 =

∫
(g − θ0)2 dP0 the prior variance.

(d) For two functions g1, g2, consider the two random means θ1 =
∫
g1 dP and θ2 =

∫
g2 dP .

Find expressions for the covariance and correlation between these two random means.

7. The basic updating theorem for the Dirichlet process

Suppose P ∼ Dir(aP0), and that X |P follows the P distribution:

P{X ∈ A |P} = P (A) for all A.

In yet other words, X is a sample of size n = 1 from the given P , where P is selected randomly

from the Dir(aP0) machine first.
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(a) Show that X has distribution P0. Start from

E {I(X ∈ A) |P} = P (A)

and use double expectation.

(b) The task is then to deduce the distribution of P given X = x. Attempt to show that if

A1, . . . , Am is a partition, where x happens to lie in say the first of these, then

(P (A1), . . . , P (Am)) | (X = x) ∼ Dir(aP0(A1) + 1, aP0(A2), . . . , aP0(Am)).

(c) This is an indication that P given x is actually itself a Dirichlet process, with updated

parameter aP0 + δ(x). This also fits nicely with the finite-dimensional situation, see Exercise

3(f). You may attempt to give a formal proof of this basic updating statement for the

Dirichlet process. See Ferguson (1973, Annals) or Ghosal and van der Vaart (2017, CUP

book, Ch. 4).

(d) Then consider a random sample X1, . . . , Xn from the randomly selected P , with the defining

property that

P{X1 ∈ A1, . . . , Xn ∈ An |P} = P (A1) · · ·P (An)

for all A1, . . . , An. With P from the Dirichlet aP0, this defines a joint probability measure

for (P,X1, . . . , Xn). Show, perhaps by induction, that

P |x1, . . . , xn ∼ Dir
(
aP0 +

n∑
i=1

δ(xi)
)
.

This is really a wondrously and convenient convincing result, which matches the classical

Dirichlet-multinomial situation examined in Exercise 3. Note that the parameter of the

posterior Dirichlet process can be written

aP0 +

n∑
i=1

δ(xi) = aP0 + nPn,

with Pn =
∑n
i=1(1/n)δ(xi) the empirical distribution for the n data points.

8. Simulating from the prior and posterior, for a Dirichlet process

We need to be able to simulate realisations from the prior and the posterior, and here, specifically,

from a given Dirichlet process. There are indeed several recipes for accomplishing this, but the

simplest and most direct is to cut the space into a high number of smaller boxes, and then use

the ensuing finite-dimensional Dirichlet as a fully adequate approximation. To carry out such

finite-dimensional simulation we may use the recipe implicit in Exercise 3(g), which here means

simulating a long list of small Gamma pieces and then normalising in the end.

Suppose you observe the following data points on the unit interval:

0.103, 0.110, 0.140, 0.175, 0.186, 0.205, 0.219, 0.348, 0.511, 0.592.

I have actually generated these from another distribution, namely the Beta(1, 2), but the statistician

seeing and about to analyse the data does not know this. For the prior for the unknown cumulative

distribution function (cdf) F , take F ∼ Dir(aF0), with F0 the Beta(2, 1).
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Figure 0.2: 100 simulations of F from the Dir(aF0) prior (left); then 100 simulations of F from the Dir(aF0 +nFn)

posterior (right), with the n = 10 data points of Exercise 8. The fat black curves are the prior mean

and posterior mean, respectively.

(a) Simulate say 100 realisations F = {F (x) : x ∈ [0, 1]} from the prior, using the ‘lots of tiny

boxes’ scheme of things. See the left panel of Figure 0.2, where I’ve used a = 3.333.

(b) Then simulate say 100 realisations F from the posterior, where

F |data ∼ Dir(aF0 + nFn),

with nFn =
∑n
i=1 δ(xi). See the right panel of Figure 0.2.

(c) Show that the Bayes estimator, under quadratic loss, is

F̂B(x) = E {F (x) |data} =
aF0(x) + nFn(x)

a+ n
=

a

a+ n
F0(x) +

n

a+ n
Fn(x),

with Fn the empirical distribution function, i.e. the one having point-mass 1/n at each data

point. Show furthermore that the posterior variance is

τ̂2(x) = Var {F (x) |data} =
1

n+ a+ 1
F̂B(x){1− F̂B(x)}.

(d) Given realisations from F , these may be used to read off outcomes for parameters of interest,

like F (0.70)− F (0.60), the mean
∫ 1

0
x dF (x), or the median

µ = min{x : F (x) ≥ 1
2}.
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Carry out analysis for this random median, by computing the µ = µ(F ) for each realisation

of F , for the prior and the posterior. This leads to Figure 0.3, where I used 104 simulations.

(e) Play with your code a bit, to see the influence of a small a or a large a, and of the choice

of the prior mean cdf F0. You should also monitor what happens if you have say n = 40

data points from the underlying data generating mechanism, not only n = 10. You should

get something similar to the right panel of Figure 0.2, but now with a slimmer and tighter

spread around the Bayes estimator F̂B .

(f) Then try a = 0.0001, a very tiny value, to see that happens with the posterior distribution of

the median µ. You should learn that it has a distribution concentrated in the n data points.

Try to find explicit formulae for these point masses,

P(µ = xi |data), for i = 1, . . . , 10.
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Figure 0.3: For the random median µ = min{x : F (x) ≥ 1
2
}, I give histograms of its distribution, for the prior (left)

and the posterior (right), based on 104 simulations, for each case.

9. War and peace, before and after Vietnam

Access the Tolstoyean krigogfred-data dataset on the course website and download it to your

computer. It provides

(xi, zi) for i = 1, . . . , 95,
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the 95 inter-state wars from 1823 to 2003 with at least 1000 battle deaths; here xi is time of onset

and zi the number of battle deaths, for war i. Look through Hjort’s FocuStat Blog Post (which

apparently impressed Steven Pinker enough to cause an admiring tweet about it, to his 368,001

followers), and also the Cunen, Hjort, Nyg̊ard (2018) paper, to get a sense of the themes, the

questions, the predictions for our common future, and the controversies.
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Figure 0.4: 100 simulated realisations of FL, representing the past up to Vietnam (left), and 100 realisations of FR,

representing post-Vietnam period (right). The scale here is that of y = log(z/7061), for all wars with

battle death counts at least 7061.

From these data, carry out the following two follow-up operations. First, limit attention to

the 51 wars where zi ≥ z0, with z0 = 7061, a certain threshold value selected by A. Clauset,

with the statistical intention that above this threshold, the density if proportional to 1/zα, for

an appropriate α. This is related to power laws and fat tails etc.; see again the Hjort blog post.

Second, divide the remaining 51 value of (xi, zi) into a Left part, those 37 wars where xi ≤ 1965.103

(the onset-time for the Vietnam War), and a Right part, those 14 wars where xi > 1965.103.

The statistical task is now to model and analyse the distributions of

yi = log(zi/z0) = log zi − log 7061, for i = 1, . . . , 51,

divided into

y1, . . . , y37, with xi before and up to Vietnam,

y38, . . . , y51, with xi after Vietnam.

Specifically, we take the 37 before and including Vietnam to be i.i.d. from some FL, and the 14

after Vietnam to be i.i.d. from some FR.
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(a) Suppose Z has a density with the power law tail property that f(z) is proportional to 1/zα

for all z above some threshold z0. Show that this is equivalent to saying that Y = log(Z/z0)

has an exponential tail, specifically that Pr{Y ≥ y |Y ≥ y0} = exp(−θ(y − y0)) for y ≥ t0,

with θ = α − 1. Power law tail behaviour for the zi, the battle deaths counts, can therefore

be examined and in terms of exponential tails for the log zi.

(b) It makes sense to take the same prior Dir(aF0) for both FL and FR, since there is controversy

in claiming that there is a difference between them at all; see Clauset’s papers (2017, 2018).

Take indeed F0(y) = 1 − exp(−0.5 y), and exponential, and a = 3.333 (later on you may

tinker with that strength parameter). Work out the posterior distributions, and simulate say

100 realisations from each of them, as I have done to create Figure 0.4.

(c) Carry out the consequent Bayesian nonparametric inference for the difference function δ(y) =

FL(y) − FR(y). Plot the Bayes estimate δ̂(y) = E {δ(y) |data}, along with a pointwise

90% credibility interval. The latter can be constructed accurately, via simulations, or via

± 1.645 κ̂(y), where κ̂(y) is the posterior standard deviation. Attempt both methods.

(d) [xx something more. inference for median of FL minus median of FR. xx]

10. The marginal distribution of a Dirichlet process sample

Suppose that P ∼ Dir(aP0), and that data points are subsequently drawn independently from that

P . The defining property for a sample of size n, is again that

P{X1 ∈ A1, . . . , Xn ∈ An |P} = P (A1) · · ·P (An),

for all sets A1, . . . , An. Here we look at a few properties.

(a) Let X be one of these points, say the first point. Show that its distribution is P0; see also

Exercise 7.

(b) Consider next (X1, X2), the two first data points. Show that their distribution can be ex-

pressed as

Q2(A×B) = P{X1 ∈ A,X2 ∈ B} = EP (A)P (B).

Then give formulae for this expression, (i) when A and B are disjoint; (ii) when they are

identical; (iii) in the general case.

(c) Show that

Q2 =
a

a+ 1
P0 × P0 +

1

a+ 1
P0,12,

where P0,12(A × B) = P0(A ∩ B). We may think about this latter probability component

P0,12 as a mechanism that first picks X1 ∼ P0 and then automatically takes the X2 equal to

the first.

(d) Next study the joint distribution of three observations from a Dirichlet process. Note that

X1, X2, X3 are indeed i.i.d. given P , but the randomness in P makes the three dependent.

Start from

Q3(A×B × C) = P3{X1 ∈ A,X2 ∈ B,X3 ∈ X} = EP (A)P (B)P (C),

and give a formula for the case where A,B,C are disjoint.

(e) [xx then finish this, give clear representation of Q3, find Hjort (1976). xx]

13



11. Ties and the steadily slowing stream of new guys from a Dirichlet

[xx about the process of seeing some old guys, occasionally a new guy, for Dirichlet samples. xx]

12. The number of discrete values in a Dirichlet sample

[xx to be written and polished. xx] we have Dn = R1 + · · · + Rn representation. we find

Dn/ log n→pr a, and limiting normality from Nils 1976,

(log n)1/2(Dn/ log n− a)→d N(0, a).

Also, the simple Dn/ log n is large-sample equivalent to the maximum likelihood estimator.

13. A simple models for clusters in data

[xx to be written out and polished. xx] We consider a simple hierarchical model which in a natural

fashion leads to clusters, or groups, in the data, and where the number of such clusters is not

specified in advance. The setup can be described as a three-step machinery, as follows:

(i) A distribution P is taken from Dir(aP0);

(ii) model parameters θ1, . . . , θn are sampled from P (which in particular means various ties);

(iii) observations y1, . . . , yn are independent, given the θ1, . . . , θn, and yi | θi ∼ f(yi | θi).

The Bayesian task is to understand the posterior distribution of P, θ1, . . . , θn given the observations

y1, . . . , yn.

To make this clear and understandable in a simple prototype setup, consider a case where

the parameters θi form a sample from P , where P ∼ Dir(aP0), with P0 = N(0, σ2
0). We also take

yi ∼ N(θi, σ
2), with known σ. [xx more to come here. xx]

14. A clustering illustration

[xx a simple illustration here, with Dirichlet producing the model parameters, with lots of ties, etc.

xx]

15. The Sethuraman stick-breaking representation

A somewhat surprising representation of the Dirichlet process, stemming from Sethuraman and

Tiwari (1982, Purdue Symposium) and written out more fully in Sethuraman (1994, Sinica), is

described here. With P0 a probability measure, and a positive, we start with B1, B2, B3, . . . being

i.i.d. from Beta(1, a). From these we form weights w1, w2, w3, . . ., from

w1 = B1, w2 = (1−B1)B2, w3 = (1−B1)(1−B2)B3, , wh = (1−B1) · · · (1−Bh−1)Bh.

In addition, we draw an infinite i.i.d. sequence ξ1, ξ2, . . . from P0. The stick-breaking representation

is

P =

∞∑
h=1

whδ(ξh),

with δ(ξh) the unit point-mass in position ξh.

(a) Show that

1− w1 − w2 − w3 = (1−B1)(1−B2)(1−B3),

with the immediate generalisation to 1− w1 − · · · − wn. Show from this that
∑∞
h=1 wh = 1,

with probability 1.
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(b) Try to comprehend & then sell the stick-breaking metaphor.

(c) For a fixed set A, consider the random probability p = P (A), using the representation above.

Show that p has mean p0 = P0(A), and that

Var p = E (p− p0)2 = p0(1− p0)/(a+ 1).

(d) Attempt to prove that p = P (A) is a Beta(ap0, a(1− p0)).

(e) For a given bounded function g, consider the random mean

θ =

∫
g dP =

∞∑
h=1

whg(ξh).

Show that it has mean θ0 =
∫
g dP0 and variance σ2

0/(a+ 1), with σ2
0 =

∫
(g − θ0)2 dP0.

(f) Consider disjoint sets A and B, and work with

p = P (A) =
∑
ξh∈A

wh and q = P (B) =
∑
ξh∈B

wh.

Calculate the covariance between p and q, from the stick-breaking representation above, and

verify that you get the correct answer, i.e. what we should have if P indeed is a Dir(aP0).

(g) Then attempt to prove that the Sethuraman–Tiwari representation is correct, i.e. that P

above with probability 1 becomes a Dir(aP0). – You may check the Sethuraman (1994,

Sinica) paper. A more concise proof is given in Ghosal and van der Vaart (2017, Ch. 4),

but this needs certain other properties which must be established separately, including a

distributional equation property that uniquely characterises the Dirichlet process. See also

Hjort and Ongaro (2005, SISP).

16. Dependent Dirichlet processes, using stick-breaking representations

[xx something here. check nils’s discussion contribution to Gelfand and Petrone. xx] the basic

idea, for two Dirichlet processes, which now become dependent: suppose (ξh, ξ
′
h) are i.i.d. pairs,

from some joint distribution, like the standardised binormal with correlation ρ. let P0 and P ′0 be

the marginals of this joint distribution for pairs. then construct

P =

∞∑
h=1

whδ(ξh) and P ′ =

∞∑
h=1

whδ(ξ
′
h),

with the same stick-breaking sequence of probabilities wh as in Exercise [xx 15 xx]. by construction,

P ∼ Dir(aP0) and P ′ ∼ Dir(aP ′0), and they are dependent. a quick illustration.

17. Quantile inference for the Dirichlet process

[xx something here. nils and sonia. cute formula

Q̂0(y) =

n∑
i=1

(
n− 1

i− 1

)
yi−1(1− y)n−ix(i).

start from F ∼ Dir(aF0), and consider the random quantile function

Q(y) = min{x : F (x) ≥ y}.

find a clear expression for the distribution of Q(y). check case of a → 0 separately. also the

resulting cute enough nonparametric automatic bandwidth-free density estimator f̂0(x). xx]
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18. Quantile pyramids

[xx something here. Hjort and Walker (2009, Annals) and their quantile pyramids. first construc-

tion, then MCMC for posterior. xx]

19. Brownian motion via convergence of a partial-sum process

Here I briefly describe the construction of Brownian motion as the proper limit in distribution of

an empirical partial-sum process. This is of interest in its own right, as it also gives a proof of

the existence of the relevant Gaussian process. The point is also that similar constructions (where

‘similar’ could mean ‘very similar’ or ‘somewhat similar’ or ‘long-distance part-time similar’) in

different straits are useful for Bayesian Nonparametrics, such as the Gamma and Beta processes

down the road.

The Brownian motion, or Wiener process, say W = {W (t) : t ≥ 0}, is a Gaussian process

(all finite-dimensional distributions are Gaussian), with mean zero, independent increments, with

W (t) −W (s) ∼ N(0, t − s). The existence of such a process is a non-trivial delicate matter, but

the construction I give below has ‘yes, the Brownian motion process exists’ as a by-product.

We start from an i.i.d. sequence ε1, ε2, . . ., with mean zero and variances one, and then build

the empirical process

Zn(t) = (1/
√
n)
∑
i/n≤t

εi.

(a) Above we define Brownian motion via the property that the independent increments have

N(0, t− s) distributions. Prove that if we somehow had started with N(0, |t− s|γ) distribu-

tions instead, for some γ 6= 1 for the variances, then things would quickly backfire, turning

the universe into massive cognitive dissonance. The Kolmogorov coherence theorem way of

proving existence of Brownian motion indeed starts with checking that coherence matters are

in order.

(b) Verify that Zn = {Zn(t) : t ≥ 0} has independent increments, mean zero, and variance [nt]/n,

where [nt] is the integer part of nt (so [17] = 17, [17.01] = 7, [17.99] = 17, etc.). Show also

that

Var {Zn(t)− Zn(s)} = (1/n) Var
∑

s<i/n≤t

εi = [nt]/n− [ns]/n→ t− s,

for each s < t.

(c) Show that, for each t, we have Zn(t)→d N(0, t). This is essentially the central limit theorem

at work.

(d) For t1 < · · · < tk, show that the vector of random differences

(Zn(t1), Zn(t2)− Zn(t1), . . . , Zn(tk)− Zn(tk−1))

tends to the distribution of (D1, . . . , Dk), where these are independent, with Dj ∼ N(0, tj −
tj−1) (writing also t0 = 0).

(e) Use this to verify that indeed

(Zn(t1), . . . , Zn(tk))→d (W (t1), . . . ,W (tk)),

for any t1 < · · · < tk.
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(f) The theory of convergence of probability measures, see e.g. the classic Billingsley (1968,

Wiley), tells us that (d) is necessary, but sufficient, for properly proving that Zn →d W ,

in the space D[0, τ ] of all right-continuous functions x : [0, τ ] → R with left-hand limits,

and equipped with the Skorokhod topology. We do not go into the details here, but the

added necessity factor is that of tightness, a condition that secures that the Zn does not have

any mass escaping away, or turning itself into too high oscillation with too high probability.

A condition securing tightness, which again secures what we’re after, namely full process

convergence Zn →d W , is

E {Zn(t)− Zn(s)}2 {Zn(u)− Zn(t)}2 ≤ {K(u)−K(s)}2,

for all triples s < t < u, for a suitable monotone, continuous function K. Verify this condition

here.

(g) Note that the above construction and reasoning hold, regardless of the actual distribution

of the building blocks ε1, ε2, . . .. In particular, we may take the two very different start

distributions εi ∼ N(0, 1), or εi equal to 1 or −1 with equal probability 1
2 , and have the

same Brownian limit. Simulate some paths, from these two partial-sum processes, for say

n = 1000, and check if you can tell the difference.

(h) When this cornerstone theorem is in place, there is a long list of implications and corollaries

and new constructions. Let me mention the Brownian bridge, W 0 = {W 0(t) : 0 ≤ t ≤ 1}. It

is Gaussian, zero mean, and covariance function cov{W 0(s),W 0(t)} = s(1 − t) for s ≤ t. It

emerges in several ways, including starting from the Wiener process and then forming

W 0(t) = W (t)− tW (1) for 0 ≤ t ≤ 1.

It is also the limit of the bridged version of the above empirical process,

Z0
n(t) = Zn(t)− tZn(1) for 0 ≤ t ≤ 1.

(i) [xx perhaps a few illustrations of the ‘invariance theorem’ aspect of this Donsker theorem.

xx]

20. A little lemma

We shall encounter situations involving long products of the type an =
∏
i≤n(1+zn,i), where there

for each n is a well-defined sequence of zn,i for i = 1, . . . , n. If these are small and their sum

converges, the sequence of products will converge. Specifically, assume

(i) that
∑
i≤n zn,i → z;

(ii) that δn = maxi≤n |zn,i| → 0;

(iii) that
∑
i≤n |zn,i| remains bounded.

Show that then an =
∏
i≤n(1 + zn,i)→ a = exp(z). It is helpful here to write

log(1 + z) = z − 1
2z

2 + z2K(z),

where |K(z)| ≤ 1
2 for all |z| ≤ 1

2 .
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Similar results also hold when the product is taken over suitable subsets of i/n, like∏
s<i/n≤t

(1 + zn,i)→ exp(zs,t),

if
∑
s<i/n≤t zn,i → zs,t, etc.

21. The Gamma process

For a given monotone function M(t), starting at M(0) = 0, we may define a Gamma process

Z = {Z(t) : t ≥ 0} with the property that it has independent increments with Z(t) − Z(s) ∼
Gamma(M(t)−M(s), 1). Existence of such a process is not entirely obvious, but one is of course

helped by the fact that

Gamma(M(t)−M(s), 1) + Gamma(M(u)−M(t), 1) ∼ Gamma(M(u)−M(s), 1)

for s < t < u, with the two components on the left hand side being independent.

The purpose of this exercise is to work through some of the crucial details for the Gamma

process, which also opens the door for more general constructions later on, like the extended

Gamma process in the next exercise.

(a) Let G ∼ Gamma(a, b), with density proportional to xa−1 exp(−bx). Show that its Laplace

transform may be written as

E exp(−uG) =
ba

Γ(a)

Γ(a)

(b+ u)a
=

1

(1 + u/b)a
= exp{−a log(1 + u/b)}.

(b) Use this to show that if G1, . . . , Gm are independent Gamma distributed variables, with

parameters (a1, b), . . . , (am, b), then their sum is also Gamma distributed, with parameters

(
∑m
i=1 ai, b).

(c) Show that the negative exponent in the Laplace transform can be expressed as

a log(1 + u/b) =

∫ ∞
0

{1− exp(−us)} dL(s),

with

dL(s) = as−1 exp(−bs) ds.

(d) Suppose as above that M(t) is monotone, with M(0) = 0; in various applications, it will

be a cumulative intensity function and of the form M(t) =
∫ t

0
a(s) ds, with an underlying

nonnegative intensity function a(s). Consider the process

Zm(t) =
∑
i/m≤t

Gm,i for t ≥ 0,

where the Gm,i are independent, and Gm,i ∼ Gamma(am,i, b), with am,i = M(i/m)−M((i−
1)/m) for i ≥ 1. For the case of M being the integral of a, it is useful to think of am,i as

a(i/m)(1/m). Show that the mean and variance converge properly,

EZm(t)→M(t)/b and VarZm(t)→M(t)/b2.
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(e) Show that the Laplace transform converges,

E exp{−uZm(t)} =
∏
i/m≤t

exp{−am,i log(1 + u/b)} → exp{−M(t) log(1 + u/b)}.

This establishes existence of the Gamma process with parameter (M(·), b), via process con-

vergence arguments as in Exercise [xx ... xx].

(f) Show that the arguments above also work in the case where the underlying M(·) function

is replaced by a Mm(·) function, which converges to a limit M(·). In particular, things go

through for the case of Mm(t) =
∑
i/m≤t a(i/m)(1/m), tending to

∫ t
0
a(s) ds.

(g) [xx a bit more xx]

22. The Extended Gamma process

In the course of this exercise I build a more general process, which I term an Extended Gamma

process. [xx which has been worked with earlier, actually; find one or two references, from the two

Walker students. xx] We start with independent and inherently small gammas,

Gm,i ∼ Gamma(a(i/m)(1/m), b(i/m)) for i = 1, 2, . . . ,

where a(s) and b(s) are functions, taken positive and continuous, or at least piecewise continuous,

and with b(s) bounded above zero. From these we form the partial sum process

Zm(t) =
∑
i/m≤t

Gm,i for t ≥ 0.

Below we demonstrate that it has a proper limit in distribution, say Z = {Z(t) : t ≥ 0}, which we

term the Extended Gamma process with parameter functions (a(t), b(t)). A special case is of course

that of b(t) = b constant, in which case we have a Gamma process with Z(t) ∼ Gamma(A(t), b),

where A(t) =
∫ t

0
a(s) ds, i.e. as in Exercise 21.

(a) Show that the mean and variance converge,

EZm(t) =
∑
i/m≤t

a(i/m)(1/m)

b(i/m)
→
∫ t

0

a(s)

b(s)
ds,

VarZm(t) =
∑
i/m≤t

a(i/m)(1/m)

b(i/m)2
→ V (t) =

∫ t

0

a(s)

b(s)2
ds.

(b) Show that the Laplace transform converges properly:

E exp{−uZm(t)} =
∏
i/m≤t

E exp(−uGm,i) = exp
[
−
∑
i/m≤t

a(i/m)(1/m) log{1 + u/b(i/m)}
]
,

which indeed tends to

exp
[
−
∫ t

0

a(s) log{1 + u/b(s)} ds
]
.

(c) With V (t) as above, show that

E {Zm(t)− Zm(s)}2{Zm(u)− Zm(t)}2 → {V (t)− V (s)}{V (u)− V (t)} ≤ {V (u)− V (s)}2,
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for s < t < u. Via general arguments and inequalities in Billingsley (1968, Section 15), see

also Exercise [xx 18 xx], this can be seen to imply that the Zm sequence is tight, in the

space of right-continuous functions z : [0, τ ] → R with left-hand limits, equipped with the

Skorokhod metric. This establishes proper existence of the Extended Gamma process.

(d) [xx a bit more. the Lévy representation of things. xx]

E exp{−uZ(t)} = exp
[
−
∫ ∞

0

{1− exp(−us)} dLt(s)
]
.

23. The Extended Gamma process with a Poisson process

[xx part of the nils-emil story. pointer to later exercise with covariates. pointer also to Beta

process version of things. xx] I start with the time-discrete version of things. Consider a sequence

of independent pairs (θm,i, zm,i), to be thought of as evolving over time points i/m, with

θm,i ∼ Gamma(a(i/m)(1/m), b(i/m)) and zm,i | θm,i ∼ Pois(θm,i).

In particular, Gm(t) =
∑
i/m≤t θm,i is the cumulative intensity process, and Zm(t) =

∑
i/m≤t zm,i

the cumulative Poisson count of events.

(a) Show that

θm,i |data ∼ Gamma(a(i/m)(1/m) + zm,i, b(i/m) + 1).

(b) Then consider the time-continuous version of this story, corresponding to letting m → ∞
above. This leads to Gm →d G, an Extended Gamma process, with parameter functions

a(s), b(s). Then, iven G, there is a limit Zm → Z, a nonhomogeneous observed Poisson

process Z = {Z(t) : t ≥ 0}, with cumulative intensity function G. Show that G given data is

another Extended Gamma process, with bnew(s) = b(s) + 1, and Anew(t) =
∫ t

0
a(s) ds+Z(t).

This translates to

dG(s) |data ∼ Gamma(a(s) ds+ dZ(s), b(s) + 1),

with dZ(s) = Z[s, s + ds] the number of Poisson events observed in the small time window

[s, s+ ds].

(c) In particular, writing event times as T1 < T2 < · · · , show that the posterior mean becomes

Ĝ(t) =

∫ t

0

a(s) ds+ dZ(s)

b(s) + 1
=

∫
no jumps

a(s)

b(s) + 1
ds+

∑
jumps ≤t

1

b(Tj) + 1
.

Find also an expression for the posterior variance.

(d) Suppose next that there are several observed nonhomogeneous Poisson processes, say Z1, . . . ,

Zk, with the same underlying G. Show that G given the data is again an Extended Gamma

process, with

dG(s) |data ∼ Gamma
(
a(s) ds+

k∑
j=1

dZj(s), b(s) + k
)
.
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(e) With such observed processes, show that the Bayes estimator for the cumulative intensity

process, i.e. the posterior mean, becomes

Ĝ(t) =

∫ t

0

a(s) ds+
∑k

=1 dZj(s)

b(s) + k
=

∫
between jumps

a(s)

b(s) + k
ds+

∑
jumps ≤t

1

b(Tj) + k
,

now with ‘jumps’ referring to jumps in any of the k observed nonhomogeneous Poisson

processes. Also, give a formula for the posterior variance.

24. The biggest jumps of a Gamma process

[xx to be polished. xx] Consider a Gamma process Z = {Z(t) : t ≥ 0}, at first with plain linear

mean function, so that Z(t) ∼ Gamma(at, 1). It has jumps, in fact infinitely many jumps on each

time interval. Consider J(t), the biggest of these jumps in the course of the time interval [0, t]. We

shall find its distribution.

(a) We start with a little investigation of the size of Xε ∼ Gamma(ε, 1), with ε small. Writing

Γε for its cdf, i.e. Γε(v) = G(v, ε, 1) in terms of the Gamma distribution cdf with parameters

(ε, 1), show that

Γε(v) = 1−
∫ ∞
v

1

Γ(ε)
xε−1 exp(−x) dx

= 1− ε
∫ ∞
v

1

Γ(1 + ε)
xεx−1 exp(−x) dx = 1− εE1(v){1 +O(ε)},

in terms of the exponential integral function

E1(v) =

∫ ∞
v

(1/x) exp(−x) dx.

(b) We know that Z(·) can be seen as the limit in distribution of the process Zm(t) =
∑
i/m≤tGm.i,

with independent components Gm,i ∼ Gamma(a/m, 1). Work with the biggest of these, say

Jm(t), and show

Pr{Jm(t) ≤ v} = Pr{Gm,i ≤ v for all i/m ≤ t} =
∏
i/m≤t

Γa/m(v).

(c) That Jm(t) →d J(t) is intuitively correct; some finer details regarding this are in Hjort

and Ongaro (2006). Hence the distribution of J(t) can be found by taking the limit of the

expression above. Use indeed the above to prove

Pr{Jm(t) ≤ v} → exp{−atE1(v)} for v > 0.

This is the sought-for result for the distribution of J(t).

(d) Next consider a Gamma process with Z(t) ∼ Gamma(aM(t), 1), for a monotone M(·) func-

tion. With J(t) the biggest jump during [0, t], show that

Pr{J(t) ≤ v} = exp{−aM(t)E1(v)} for v > 0.

More generally, with Z and Extended Gamma process with parameter functions (a(t), b(t)),

as in Exercise 22, show that the biggest jump over the time window [t1, t2] has distribution

Pr{J(t1, t2) ≤ v} = exp
{
−
∫ t2

t1

a(s)

b(s)
dsE1(v)

}
.
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(e) A further variation of interest, also for model building aspects (which I intend to come back

to in a later exercise), is as follows. For a Gamma process with Z(t) ∼ Gamma(A(t), 1),

consider sizes of jumps with respect to a boundary, i.e. ∆Z(t)/v(t), with ∆Z(t) the jump

size and v(t) a function. I formalise this via Jm(t) = maxi/m≤tGm,i/v(i/m), and can then

work with

Pr{Jm(t) ≤ 1} =
∏
i/m≤t

Pr{Gm,i ≤ v(i/m)}

=
∏
i/m≤t

[1− a(i/m)(1/m)E1(v(i/m)){1 +O(1/m)}]

which is then seen to converge to

Pr{J(t) ≤ 1} = exp
{
−
∫ t

0

a(s)E1(v(s)) ds
}
.

25. The Beta process

Hjort (1985, SJS, invited discussion contribution to the SJS paper by P.K. Andersen and Ø. Borgan

on counting process models) introduced the Beta process, used as a prior process for cumulative

hazard functions, and gave the crucial conjugacy property when used for survival data. A fuller

account was then given in Hjort (1990, Annals). The present exercise indicates how the Beta

process can be constructed from a limit operation for a partial-sum process involving small Beta

components.

We start with a function a0(s), intended to be like a prior guess hazard function, with cumu-

lative A0(t) =
∫ t

0
a0(s) ds. For given m, let Bm,1, Bm,2, . . . be independent Beta random variables,

with

Bm,i ∼ Beta
(
c
( i
m

)
a0

( i
m

) 1

m
, c
( i
m

)
− c
( i
m

)
a0

( i
m

) 1

m

)
.

Here c(s) is a positive function, with at most finitely many discontinuities; it may e.g. be a constant.

Our process is

Am(t) =
∑
i/m≤t

Bm,i for t ≥ 0.

(a) Show that

EZm(t) =
∑
i/m≤t

a0(i/m)(1/m)→ A0(t).

Show also that

VarAm(t) =
∑
i/m≤t

a0(i/m)(1/m){1− a0(i/m)(1/m)}
c(i/m) + 1

→
∫ t

0

a0(s) ds

c(s) + 1
.

(b) Hjort (1985, 1990) proves that Am really converges to a well-defined limit process A =

{A(t) : t ≥ 0}, with independent increments all inside [0, 1], and calls this the Beta process,

with parameters (c, A0). Proving convergence and existence of this limit process takes some

care and tools from empirical processes. The crucial point here is that the Laplace transform

has a well-defined limit, so let us work with

E exp{−uAm(t)} =
∏
i/m≤t

E exp(−uBm,i) =
∏
i/m≤t

(1 + zm,i),
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say. We must then work hard enough with the zm,i to be able to apply the Little Lemma of

Exercise XX. Show via Beta moments that

E exp(−uBm,i) = 1 + zm,i

= 1 +

∞∑
j=1

(−1)j
uj

j!

Γ(c(i/m))

Γ(c(i/m)a0(i/m)(1/m))

Γ(c(i/m)a0(i/m)(1/m) + j)

Γ(c(i/m) + j)
.

(c) Then use

Γ(ε+ j)/Γ(ε) = ε(ε+ 1) · · · (ε+ j − 1) = (j − 1)! ε+O(ε2)

for small ε to deduce

E exp(−uBm,i) = 1 +

∞∑
j=1

(−1)j
uj

j

Γ(c(i/m))

Γ(c(i/m) + j)
c(i/m)a0(i/m)(1/m) +O(1/m2).

(d) Show that this leads to

E exp{−uAm(t)} → exp
{
−
∫ t

0

∞∑
j=1

(−1)j
uj

j!

Γ(c(z))Γ(j)

Γ(c(z) + j)
a0(z) dz

}
.

(e) [xx more xx] Link to Lévy representation∫ 1

0

{1− exp(−us)}dLt(s).

– The above establishes the existence of a Beta process, with parameters (c, A0); for a fuller

discussion, see Hjort (1990, Annals). It is a independent and nonnegative increments, and

these are all in [0, 1]. The intuitive interpretation for a Beta process is that

dA(s) ≈d Beta{c(s) dA0(s), c(s)− c(s) dA0(s)}.

These tiny increments are not exactly Beta distributed, though; that distribution does not

have any easy convolution properties, unlike e.g. the Gamma.

26. A time-discrete framework for survival analysis

Consider the following framework for life-times, now with time-discrete outcomes in {0, 1, 2, . . .},
rather than the usual time-continuous setup of [0,∞). A random variable T then has probability

masses

fj = Pr{T = j} for j = 0, 1, 2, . . . ,

with cumulative Fj = Pr{T ≤ j} = f0 + f1 + · · · + fj . It is also very fruitful to work with the

hazards

αj = Pr{T = j |T ≥ j} = fj/(fj + fj+1 + · · · ),

along with the cumulative hazards Aj = α0 + α1 + · · ·+ αj .

Part of what I present in this exercise was also included in Hjort (1990, Annals, along with

further results, extensions, and discussion). The framework and methods for the time-discrete

setup have separate interest, and it inspired the invention of the Beta process, as a fine limit of

the time-discrete grid.
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(a) Show that

Fj = 1−
j∏

k=0

(1− αk), for j ≥ 0.

(b) Show then that

fj = (1− α0)(1− α1) · · · (1− αj−1)αj ,

and give an interpretation of this identity.

– Assume now that we have observations (ti, δi) for i = 1, . . . , n, for different individuals, with

δi = 1 if the life-time is observed and δi = 0 if there merely is censored information that the

real life-time is larger than ti. From these, define

Yj =

n∑
i=1

I{ti ≥ j} and Nj =

n∑
i=1

I{ti = j, δi = 1},

the at-risk counter and the counting process of observed life-times. In particular, let ∆Nj be

the jump of N at time point j, the number of the Yj at risk who experience a transition at

time j.

(d) Show, with the necessary efforts of bureaucratic book-keeping, that the likelihood information

from such a dataset can be expressed as

L =
∏

i : δi=1

fi
∏

i : δi=0

(1− Fi) =

∞∏
j=0

(1− αj)Yj−∆Njα
∆Nj

j .

Discuss how or to what extent this can be interpreted as a succession of binomial trials, with

∆Nj |Yj a binomial (Yj , αj).

(e) The representation above invites the idea of independent Beta priors for the hazards. Let in

fact αj ∼ Beta(cjαj,0, cj − cjα,0), for j = 0, 1, 2, . . ., and deduce that these are independent

and Beta distributed also given data, with updated parameters

αj |data ∼ Beta(cjαj,0 + ∆Nj , cj − cjα0,j + Yj −∆Nj).

(f) Show that the Bayes estimator for the cumulative hazard function is

Âj = E (Aj |data) =

j∑
k=0

ckαk,0 + ∆Nk
ck + Yk

.

The noninformative case of the cj becoming small leads to
∑j
k=0 ∆Nk/Yk, a time-discrete

version of the Nelson–Aalen estimator (see Exercise [xx ... xx]).

(g) Then show that the Bayes estimator for the survival function Pr{T > j} =
∏j
k=0(1− αk) is

Ŝj =

j∏
k=0

(
1− ckαk,0 + ∆Nk

ck + Yk

)
.

For the noninformative case of the cj → 0, we find
∏j
k=0(1 − ∆Nk/Yk), a time-discrete

version of the Kaplan–Meier estimator (see again Exercise [xx ... xx]).
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27. The Beta process for survival data

[xx need polish. xx] Suppose a survival dataset of the usual form (ti, δi) is available, to inform

us about an underlying survival distribution F on [0,∞). As per tradition, δi = 1 is an indicator

for non-censoring, and means a fully observed life-time, whereas δi = 0 means that the life-time

involved is censored, but one knows that it is larger than ti. The survival distribution is S(t) =

1− F (t) = Pr{T > t}, and the cumulative hazard rate is

A(t) =

∫ t

0

dA(s), where dA(s) =
dF (s)

F [s,∞)
= Pr{T ∈ [s, s+ ds] |T ≥ s}.

In Aalen–Borgan notation, consider the at-risk counter and the counting process of observed

life-times,

Y (s) =

n∑
i=1

I{ti ≥ t} and N(t) =

n∑
i=1

I{ti ≤ t, δi = 1}.

In particular, dN(s) is 1 if a life-time has been observed in [s, s + ds], and 0 if not. The famous

Nelson–Aalen and perhaps even more famous Kaplan–Meier estimator, for the cumulative hazard

rate and the survival curve, are

Â(t) =

∫ t

0

dN(s)

Y (s)
and Ŝ(t) =

∏
[0,t]

{1− dN(s)/Y (s)}.

(a) Let A ∼ Beta(c, A0), with A0 the prior mean and c the strength function. Try to show,

perhaps using some intuitive arguments, based on the approximate prior distribution of

dA(s), that

dA(s) |data ≈d Beta{c(s) dA0(s) + dN(s), c(s)− c(s) dA0(s) + Y (s)− dN(s)},

and that these increments must be independent.

(b) Try, again perhaps using heuristic arguments, to show that this means that the posterior

distribution of A is an updated Beta process,

A |data ∼ Beta(c+ Y, Â),

with posterior mean function

Â(t) =

∫ t

0

cdA0 + dN

c+ Y
.

This is the basic conjugacy property for the Beta process with survival data, proven in Hjort

(1990, Annals) – involving, he says, ‘heroic integrations’.

(c) Use the product integral representation

F (t) = 1−
∏
[0,t]

{1− dA(s)}

to find the posterior mean of the survival function,

Ŝ(t) =
∏
[0,t]

{
1− dN(s)

Y (s)

}
.

(d) Show that when the c(s) function tends to zero, or if the data volume is relatively large

compared to the c(s), then we’re back to the Nelson–Aalen and Kaplan–Meier estimators.
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(e) Explain how one may simulate realisations of A and then S from the posterior distribution.

This may then be used to read off what we might wish for from these, like the posterior

median

µ = min{t : F (t) ≥ 1
2}.
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Figure 0.5: Roman Era Egypt lifetimes: difference Sm(t)−Sw(t) between men’s and women’s survival curves, with

0.05, 0.50, 0.95 pointwise quantiles from the posterior distribution.

28. Lifelengths in Roman Era Egypt

[xx this to be polished. the exercise is too long and will be broken into two separate ones. xx]

Access the egypt-data dataset from the course website, pertaining to the life-lengths of 82 men

and 59 women from Roman Era Egypt, the 1st century b.C. This was a relatively peaceful society,

without major wars, etc., and the life-lengths can be seen as having been sampled from the upper

classes of that society. I’ve taken the data from the very first issue of Biometrika (1901), where Karl

Pearson briefly discussed aspects of the life-lengths distribution, comparing this to Britain 1900.

I’ve analysed aspects of these data both in Claeskens and Hjort (2008, Ch. 2) and in Schweder and

Hjort (2016, Ch. xx).

Here we are interested in aspects of the underlying distributions Fw and Fm, for women and

men, respectively, and, in particular, aspects where we might identify differences between the two.

Let Aw and Am be the cumulative hazard rate functions, along with survival curves

Sw(t) =
∏
[0,t]

{1− dAw(s)} and Sm(t) =
∏
[0,t]

{1− dAm(s)}. (eg1)
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We use Beta process priors for the cumulative hazard rates, Aw ∼ Beta(cw, A0,w) and Am ∼
Beta(cm, A0,m).

(a) Assume for about two minutes that Aw and Am are continuous functions. Then show from

the product integrals that the familiar formulae

Sw(t) = exp{−Aw(t)} and Sm(t) = exp{−Am(t)} (eg2)

emerge. With the Beta process priors to be used, however, there are discrete components,

and we prefer (eg1) over (eg2), in terms of setup, modelling, prior to posterior, analysis, and

interpretation. See also the general discussion regarding this point in Hjort (1990, Annals).

(b) To make this concrete, choose the same Beta process prior for men and for women, with prior

guess A0(t) =
∫ t

0
α0(s) ds corresponding to a Gamma with mean 30.00 and standard deviation

20.00, and then your own c(s) strength function. Simulate realisations from Aw, Am, and by

implication Sw, Sm, on your screen.

(c) Then update the Beta processes, given the data from the heroic Egyptian women and men,

to say

Aw |data ∼ Beta(cw + Yw, Âw) and Am |data ∼ Beta(cm + Ym, Âm).

In particular, compute and display both

Âw(t) =

∫ t

0

cw dA0(s) + dNw(s)

cw(s) + Yw(s)
and Âm(t) =

∫ t

0

cm dA0(s) + dNm(s)

cm(s) + Ym(s)
,

and the survival curves

Ŝw(t) =
∏
[0,t]

{
1− cw(s) dA0(s) + dNw(s)

cw(s) + Yw(s)

}
and Ŝm(t) =

∏
[0,t]

{
1− cm(s) dA0(s) + dNm(s)

cm(s) + Ym(s)

}
.

(d) Compute and display also the standard deviation curves, say κ̂w(t) and κ̂m(t) for Aw and

Am, and τ̂w(t) and τ̂m(t) for Sw and Sm.

(e) Display the easy and simulation free approximate pointwise 90% confidence bands, of the

type

Âw(t)± 1.645 κ̂w(t) and Âm(t)± 1.645 κ̂m(t),

and similarly for the survival curves. Crucially, in order to check the differences between the

female and male populations, do this also for Aw −Am and Sw − Sm.

(f) Then re-do the above point, without formulae, but via simulations from the posterior Beta

processes.

(g) This thing looks cool and relevant: Consider the survival curve ratio

ρ(t) =
Sm(t)

Sw(t)
=
∏
[0,t]

1− dAm(s)

1− dAw(s)
.

Find formulae for the prior and posterior mean of ρ(t), and display the resulting ρ̂(t). Sup-

plement this with a pointwise 90% credibility band, from simulations, or from conditional

variances.
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(h) Summarise your findings properly. Yes, the women and the men of Roman Era Egypt had

different life-length distributions. For which age interval is this most clear? And what could

be the underlying mechanism or explanations?

(i) [xx nils then includes a couple of Old Egyptian plots here. prior used is a Gamma(a, b)

with (a, b) chosen so that the mean is 30.0 years and the standard deviation is 20.0 years.

investigate this prior mean choice. choose your own c(s), perhaps reflecting less certainty for

higher age values. check Figures 0.5 and 0.7, pertaining to the plain difference Sm(t)−Sw(t)

and the ratio ρ(t) = Sm(t)/Sw(t) over time, with posterior median along with a 90% pointwise

credibility band. the men were better off than women, for the age span 20 to 60. xx]
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Figure 0.6: Roman Era Egypt lifetimes: ratio Sm(t)/Sw(t) between men’s and women’s survival curves, with 0.05,

0.50, 0.95 pointwise quantiles from the posterior distribution.

29. The Bernoulli process and the Poisson process

We learn if not in kindergarten then perhaps in high school that a binomial (n, p) is close to a

Poisson if n is big and p is small. This exercise exhibits generalisations of this basic result, leading

also to a nonhomogeneous Poisson process limit of a suitably defined Bernoulli events process.

(a) For y ∼ Bin(n, p), show that its Laplace transform is

Ln(u) = E exp(−uy) = {exp(−u)p+ 1− p}n.
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Figure 0.7: Roman Era Egypt lifetimes: ratio Am(t)/Aw(t) between men’s and women’s cumulative hazard func-

tions, with 0.05, 0.50, 0.95 pointwise quantiles from the posterior distribution. We learn that the hazard

rates are not proportional.

(b) Show also that when n increases and p decreases in such a way that np→ θ, then

Ln(u) = [1− p{1− exp(−u)}]n → exp[−θ{1− exp(−u)}].

Verify that this limit is the Laplace transform of a Pois(θ).

(c) Now study a Bernoulli event process, of the form

Zm(t) =
∑
i/m≤t

Bm,i for t ≥ 0,

with independent Bernoulli components Bm,i ∼ Bin(1, a(i/m)(1/m)). Here a(s) is some

nonnegative function, perhaps constant, perhaps evolving over time, and with cumulative

intensity function A(t) =
∫ t

0
a(s) ds. Show that Zm has independent increments, and that its

Laplace transform converges,

E exp{−uZm(t)} =
∏
i/n≤t

[1− a(i/m)(1/m){1− exp(−u)}]→ exp[−A(t){1− exp(−u)}].

This means that the fine-grid Bernoulli process has properly converged, in the time-continuous

limit, to a nonhomogeneous Poisson process, with A(t) =
∫ t

0
a(s) ds as cumulative intensity

process.
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30. The jumps of a Gamma process via a Poisson process

In Exercise 24 we worked with the biggest jumps of a Gamma process over a given time window.

Specifically, when Z(t) ∼ Gamma(A(t), 1) is such a process, with J(t) the biggest jump over

[0, t], then Pr{J(t) ≤ v} = exp{−A(t)E1(v)} for v > 0, with E1(v) =
∫∞
v

(1/u) exp(−u) du the

exponential integral function. The present exercise goes into a general Poisson process explanation

for the this result, leading also to more general results concerning the distribution of the 2nd biggest

jump, the 3rd biggest jump, etc. These results again can be used for building survival analysis

models, as in Exercise XX.

(a) Let as in Exercise 24 Zm(t) =
∑
i/m≤tGm,i, wth the Gm,i ∼ Gamma(a(i/m)(1/m), 1) and in-

dependent. Consider the process counting occasions where the components are above thresh-

old v, say

Nm(t) =
∑
i/m≤t

I{Gm,i > v}.

Show that

ENm(t) =
∑
i/m≤t

Pr{Gm,i > v} =
∑
i/m≤t

{a(i/m)(1/m)E1(v) +O(1/m2)} → A(t)E1(v),

with A(t) =
∫ t

0
a(s) ds.

(b) Show also that the variance of Nm(t) has the same limit A(t)E1(v).

(c) Show indeed that Nm(t) converges in distribution to a Poisson process N(t) with independent

increments and N(t) ∼ Pois(Bv(t)), where Bv(t) = A(t)E1(v).

(d) Give another proof, based on this, for the biggest jump J(t) over [0, t] having the distribution

Pr{N(t) = 0} = exp{−Bv(t)}.

(e) Let Jm,3(t) be the 3rd biggest jump experienced by the Zm process over the [0, t] time window.

Show that

Pr{Jm,3(t) ≤ v} → Pr{N(t) ≤ 2} = exp{−Bv(t)}{1 +Bv(t) + 1
2Bv(t)

2}.

Generalise properly.

(f) Let T3 be the first time the 3rd biggest jump of the Gamma process Z exceeds threshold v.

Show that the survival distribution becomes

S(t) = Pr{T3 > t} = Pr{J3(t) ≤ v} = Pr{N(t) ≤ 2},

and that this corresponds to a cumulative hazard rate function

H3(t) = Bv(t)− log{1 +Bv(t) + 1
2Bv(t)

2}.

(g) Show that the hazard rate function can be written

h3(t) = bv(t)
1
2Bv(t)

2

1 +Bv(t) + 1
2Bv(t)

2
= bv(t)Qv(t),

say, where bv(t) = a(t)E1(v) is the basis hazard rate and Qv(t) a frailty correction function,

climbing from zero to one as time increases.
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31. The Beta process with a Bernoulli process

[xx to be written down. part of nils-emil story. xx] prior A ∼ Beta(c, A0) for the cumulative

intensity of a Bernoulli process Z. then

A |data ∼ Beta(c+ 1, Â),

where

Â(t) =

∫ t

0

c(s) dA0(s) + dZ(s)

c(s) + 1
.

with variation: extended Gamma. perhaps with marks or covariates. cross-ref to other exercises

here.

32. The Gamma process, with a Poisson process, with covariates

[xx to be polished. part of the nils-emil story with police tweets, now with covariates. xx] In

Exercise [xx 23 xx] we worked with the extended Gamma process as a prior G for the cumulative

intensity function of nonhomogeneous Poisson processes, say Z1, . . . , Zk. The present exercise takes

us through a certain statistically important generalisation, where covariate information is available

for the Zj event counting processes.

(a) As a start generalisation of the framework of Exercise [xx 23 xx], suppose that there is a

sequence of independent pairs (θm,i, zm,i), where

θm,i ∼ Gamma(a(i/m)(1/m), b(i/m)) and zm,i | θm,i ∼ Pois(w(i/m)θm,i).

At the moment, the w(s) is to be thought of as a given function, producing multiplicative

Poisson intensity factors w(i/m). Show that this leads to

θm,i |data ∼ Gamma(a(i/m)(1/m) + zm,i, b(i/m) + w(i/m)).

(b) In the time-continuous limit, with Gm(t) =
∑
i/m≤t θm,i tending to a cumulative intensity

process G(t), and the nonhomogeneous Poisson counting process Zm(t) =
∑
i/m≤t zm,i to a

proper Z(t), show that

dG(s) |data ∼ Gamma(a(s) ds+ dZ(s), b(s) + w(s)).

(c) Suppose there are several Poisson event processes being observed, say Z1, . . . , Zk, which are

conditionally independent given G, and with

dZj(s) |G ∼ Pois(wj(s)dG(s)) for j = 1, . . . , k,

where the wj(s) are multiplicative Poisson factor functions. Show that G given data again

becomes an Extended Gamma process, with

dG(s) |data ∼ Gamma
(
a(s) ds+

k∑
j=1

dZj(s), b(s) +

k∑
j=1

wj(s)
)
.

(d) Assume there are covariates x1, . . . , xk at work for the Poisson event counting processes

Z1, . . . , Zk; these may also depend on time, say with xj(s) related to the outcome dZj(s). Let

wj = exp(xt
jβ), with a prior π(β) for this regression parameter. The model at work then says
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(i) that β is drawn from the prior π(β); (ii) that G(·) is an Extended Gamma process, with

parameters (a(s), b(s)); (iii) that the Poisson processes Z1, . . . , Zk have intensity functions

exp(xt
jβ) dG(s), hence cumulative intensity functions

∫ t
0

exp(xt
jβ) dG(s). Show that G, given

both the data and β, is another Extended Gamma process, with parameters

(
a(s) +

k∑
j=1

dZj(s), b(s) +

k∑
j=1

exp(xt
jβ)
)
.

(e) Show that

Ĝ(t |β) = E {G(t) |data, β} =

∫ t

0

a(s) ds+
∑k
j=1 dZj(s)

b(s) +
∑k
j=1 exp(xt

jβ)
,

which may also be written out as an integral over intervals with zero jumps plus the compo-

nent summed over the precise jump times.

(f) Then work out an expression for the posterior density of β. It may be required to set up

an MCMC scheme for simulation from this π(β |data). This leads in particular to the Bayes

estimator

Ĝ(t) =

∫
Ĝ(t |β)π(β |data) dβ.

(g) [xx just a little more here. point to similar story for Beta process. also link to Nils Beta

process with Cox regression type data. and then to Nils-Emil Beta- and Gamma-Process

Police Department’s Tweetery. xx]

33. The Gamma process, with a Poisson process, with a marks process

[xx something here. actuarial statistics is fond of compound Poisson processes, with total claim

size

W (t) =
∑
Tj≤t

ξj ,

summed over claim times T1 < T2 < · · · . may here build a Bayesian nonparametrics story, with a

prior for the nonhomogeneous Poisson process etc. xx]

34. The biggest jumps of a Beta process

Consider a Beta process A with parameters (c, A0). It has infinitely many jumps on each interval.

Let J(t) be the biggest jump experienced during the time interval [0, t]. To find its distribution,

it is convenient to go via the time-discrete version, and then take the limit. Thus let Am(t) =∑
i/m≤tBm,i, with independent small Beta components

Bm,i ∼ Beta
(
c
( i
m

)
a0

( i
m

) 1

m
, c
( i
m

)
− c
( i
m

)
a0

( i
m

) 1

m

)
,

as in Exercise 25, and let Jm(t) = max{Bm,i : i/m ≤ t}.

(a) Let Xε ∼ Beta(cε, c(1− ε)). Show that its cumulative distribution function can be approxi-

mated as

Pr{Xε ≤ v} = 1−
∫ 1

v

Γ(c)

Γ(cε)Γ(c(1− ε))
ucε−1(1− u)c−cε−1 ds

= 1− εFc(v){1 +O(ε)},
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with

Fc(v) = Γ(c)

∫ 1

v

u−1c(1− u)c−1 du.

(b) Show from this that

Pr{Jm(t) ≤ v} =
∏
i/m≤t

[1− Γ(c(i/m))a0(i/m)(1/m)Fc(i/m)(v){1 +O(1/m)}]

and that this converges to

Pr{J(t) ≤ v} = exp
{
−
∫ t

0

Γ(c(s))a0(s)Fc(s)(v) ds
}

(c) For the case of c(s) = c, constant over the time window of interest, show that

Pr{J(t) ≤ v} = exp{−A0(t)Fc(v)}.

For the special cases of A ∼ Beta(1, A0), i.e. with concentration function c(s) = 1, show that

the biggest jump over [0, t] has the simpler distribution

Pr{J(t) ≤ v} = vA0(t),

which means J(t) ∼ Beta(A0(t), 1).

35. The jumps of a Beta process via a Poisson process

[xx to be written down cleanly. xx] Consider Am(t) =
∑
i/m≤tBm,i, with independent small Beta

contributions

Bm,i ∼ Beta(c(i/m)a0(i/m)(1/m), c(i/m)(1− a0(i/m)(1/m))),

as in Exercise 34. Then study

Nm(t) =
∑
i/m≤t

I{Bm,i > v},

the number of jumps above level v.

(a) Show that

ENm(t) =
∑
i/m≤t

a0(i/m)(1/m)Fc(i/m)(v){1 +O(1/m)} → K(t) =

∫ t

0

a0(s)Fc(s)(v) ds.

(b) Show that Nm(t) converges to a Poisson process with cumulative intensity function K(t). In

particular, if c(s) = c is constant, the cumulative intensity is K(t) = A0(t)Fc(v).

(c) Suppose an item is born with a Beta process in its rucksack and that it is alive as long as the

jumps do not exceed threshold level v. Derive again the result about its survival distribution

from Exercise 34.

(d) Suppose next that this item is alive until the 4th biggest jump exceeds v. Show that the

survival function becomes

S4(t) = Pr{N(t) ≤ 3} = exp{−K(t)}{1 +K(t) + 1
2K(t)2 + 1

6K(t)3}.

[xx then something more here. xx]
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36. Bernshtĕın–von Mises theorems

[xx to be written down xx] first for Dirichlet, with fairly clear details. but it takes the Donsker

and Kolmogorov thing. then for Beta processes.

37. The Bayesian bootstrap

[xx to be briefly written down. describe Rubin’s (1981) Bayesoian bootstrap. explain that this

actually corresponds to sampling from Dir(nFn), though this is not in Rubin’s paper. indicate the

basics for why this goes well. xx]

38. Hjort’s informative Bayesian bootstrap

[xx to be briefly written down, from Nils Stanford 1985. translate sampling from F |dataDir(aF0 +

nFn) to informative Bayesian bootstrapping. a couple of lemmas spelling out the Bernshtĕın–von

Mises things, with a Brownian bridge. also large-sample equivalent to Efron’s classic nonparametric

bootstrap. xx]

39. Simulating realisations of a Gaussian process

[xx to be written down and polished. xx] We say that Z = {Z(x) : x ∈ [a, b]} is a Gaussian

process if all its finite-dimensional distributions are Gaussian. In particular, Z(x) is normal, say

N(m(x), σ2(x)), and (Z(x), Z(x′)) is binormal, with correlation say ρ(x, x′).

(a) Explain why giving the mean function m(x), the standard deviation function σ(x), and the

correlation function ρ(x, x′), is actually sufficient to determine the full distribution of Z.

– For some Gaussian processes there are specialised techniques making it easier-than-brute-

force to simulate realisations. In general, however, we can’t do much better than brute-force,

which means simulating Z∗ = (Z(x1), . . . , Z(xn)), for a fine enough grid x1, . . . , xn. The

implied distribution is multinormal,

Z∗ ∼ Nn(ξ,Σ),

with ξ having components m(xi) and Σ of size n×n and with components σ(xi)σ(xj)ρ(xi, xj).

Thus simulating from Z becomes practically the same as being able to simulate from a general

multinormal Nn(0,Σ).

(c) The R algorithm rmvnorm may be used, for simulating from a given multinormal, but my

impression is that it might not work well for higher n. A general technique that can be used

here is as follows. First, find a unitary matrix P such that

PΣP t = D = diag(λ1, . . . , λn).

A unitary or orthonormal matrix Q is one having the property that QQt = I = QtQ. Finding

such a P , for given Σ, can be achieved via the eigen algorithm in R. Then define, compute,

and store the root-matrix

Σ1/2 = PD1/2P t, with D1/2 = diag(λ
1/2
1 , . . . , λ1/2

n ).

Verify that Σ1/2Σ1/2 = Σ. Then use

z = Σ1/2ε, where ε = (ε1, . . . , εn)t ∼ Nn(0, In),

i.e. these are independent standard normals. Verify that z then has the desired multinormal

distribution. Check that the following R code works:
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squareroot <- function(Sigma)

{rootL <- 0*Sigma

diag(rootL) <- sqrt(eigen(Sigma, symmetric = T)$values)

P <- eigen(Sigma, symmetric = T)$vectors

P %*% rootL %*% t(P)}

(d) Consider an Ornstein–Uhlenbeck process Z on [0, 10], with mean zero and covariance function

cov{Z(x), Z(x′)} = exp(−a|x − x′|), say with a = 1.3579. Simulate and plot 50 realisations

of the Z process.

40. Bayesian Kriging

[xx to be written out and polished. xx] Suppose there is a continuous process Z(x) on [0, 1], which

we have observed only in a small number of locations. How can we estimate Z(x) where we have

not seen it, along with a measure of precision? This translates to ‘spatial interpolation’ and so on,

and with Kriging one of its names (from the Master Thesis of Danie Gerhardus Krige, 1919–2013,

a South African geostatistician).

Suppose Z(x) is Gaussian, with constant mean function a, and covariance function

cov{Z(x), Z(x′)} = σ2K0(|x− x′|),

where K0(r) is the correlation function. This means a stationary setup, where Z(x) and Z(x+ r)

have a correlation independent of position x.

(a) Use a = 1.3579 and K0(r) = exp(−λr), with λ = 2.222. Simulate realisations of Z(x), for

x ∈ [0, 1]. Take σ = 1 here (but later on we may tinker with this precision parameter).

(b) Assume now that the scientific team has come back from their expedition and report that for

positions 0.11, 0.22, 0.33, 0.77, 0.88, they found that Z(x) is equal to 0.99, 1.33, 1.66, 1.22, 1.11

(yes, I’m inventing this, and will search for a real application later on). Find expressions

giving the posterior distribution of Z = {Z(x) : x ∈ [0, 1]}.

(c) Find in particular an expression for

Ẑ(x) = E {Z(x) |data},

and plot that curve.

(d) Find also a formula for

κ̂(x)2 = Var {Z(x) |data},

and plot the 90% prediction confidence band

Ẑ(x)± 1.645 κ̂(x).

(e) Simulate say 50 realisations from the distribution of Z = {Z(x) : x ∈ [0, 1]} given the data,

and plot them.
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Figure 0.8: The wondrously falling snow flakes [you may sing Sibelius’ Demanten p̊a marssnön here] represent skiing

days per winter season at Bjørnholt, from 1897 to 2012, but with no data for the seasons 1938 to 1954.

41. Skiing days at ♥ Bjørnholt

[xx to be polished with decent care. xx] Figure 0.8 shows the number of skiing days per season at

Bjørnholt, 1897 to 2012. This historical time series process,

Z(t) = number of skiing days for winter season t,

has however a gap, with no data for the seasons 1938 to 1954. Use a couple of Bayesian Kriging

models and methods to ‘fill in’ the skiing days for these years, with a pointwise 90% band.

(a) Use first a simple model with EZ(t) = a, VarZ(t) = σ2,

corr{Z(s), Z(t)} = exp(−λ|s− t|),

and with values for a, σ, λ that you pretend are known, and λ = 1.11.

(b) Then the same with EZ(t) = a + b(t − 1900) with values for (a, b) that you pretend are

known.

(c) Then a somewhat bigger Bayesian Kriging exercise, where you start with priors for (a, b, σ),

but with λ = 1.11 still taken known.

(d) Finally a setup with independent priors for a, b, σ, λ.
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(e) Then exrapolation, from 2013 go 2028.

42. Bayesian nonparametric regression

[xx to be written out and polished. xx] model is

yi = m(xi) + εi for i = 1, . . . , n,

where the εi are i.i.d. from N(0, σ2). Suppose m(x) is Gaussian, with mean function m0(x) and

covariance function for the form σ2
0K0(|x− x′|), with a given correlation function K0(r).

Then find expressions for the conditional mean, the conditional variance, and conditional

covariance, of the process m(x), given the data (xi, yi).

43. Bayes and minimax

[xx to be polished. xx] Consider the general framework with data y from model f(y, θ), with loss

function L(θ, a) associated with action a. An action algorithm â = â(y) then has risk function

R(â, θ) = Eθ L(θ, â(Y )) =

∫
L(θ, â(y))f(y, θ) dy.

Its maximum risk value is

Rmax(â) = supR(â, θ).

For an arbitrary prior π(θ), the Bayes solution is âB , minimising the posterior expected loss

E {L(θ, a) | y} =

∫
L(θ, a)π(θ | y) dθ.

It minimises the Bayes risk BR(â, π) over all procedures â, and achieves the minimum Bayes risk

MBR(π); cf. the general setup described in Exercise 2.

(a) For any prior π and action plan â, show that

MBR(π) ≤ Rmax(â).

(b) Suppose the action method a∗ = a∗(y) is such that there is a prior π for which MBR(π) =

Rmax(a∗). Show that a∗ is then a minimax strategy, i.e. Rmax(a∗) ≤ Rmax(â) for any com-

petitor â.

(c) Suppose somewhat more generally that a∗ is such that there is a sequence of priors πj

with MBR(πj) → Rmax(a∗) (with the convergence in question taking place upwards, not

downwards, in view of point (a)). Show that a∗ is minimax.

44. Some minimax estimators

Here we through a little list of situations where minimax estimators can be identified.

(a) Suppose y | θ is a N(θ, 1), with θ to be estimated with squared error loss. Show that θ∗ = y

itself, the maximum likelihood estimator, has risk function equal to the constant 1. With a

prior N(0, τ2) for θ, find the posterior distribution, the Bayes estimator θ̂τ , its risk function,

and finally the minimum Bayes risk MBR = τ2/(τ2 + 1). Hence show that y is minimax.
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(b) Suppose now that y | θ is a Np(θ,Σ), with a known variance matrix Σ, and with θ to be

estimated with the loss function (θ̂ − θ)tΣ−1(θ̂ − θ). Show that the ML estimator is y itself;

that its risk function is the constant p.

(c) Show that θ̂ = y is minimax, by working with the prior that takes θ ∼ Np(0, τ
2Σ).

(d) Generalise the above to the case where y1, . . . , yn are i.i.d. from Np(θ,Σ), and still with loss

function as in (b). Show that the sample average ȳ = (1/n)
∑n
i=1 yi is minimax for θ.

(e) Consider a nonparametric regression setup with yi = m(xi)+εi for i = 1, . . . , n, where the εi

are i.i.d. error terms from the N(0, σ2). The task is estimation of m at positions x1, . . . , xn,

with loss function
∑n
i=1{m̂(xi)−m(xi)}2. Show that the very simple (and not particularly

clever) estimator m∗(xi) = yi is minimax. It is not admissible, however, cf. the big literature

on Stein estimation. There are competing estimators, which are also minimax and with the

same maximum risk pσ2, but with considerably lower risk in important parts of the parameter

space.

45. Minimax estimators for multiple Poisson means

Here we work with minimax estimators for situations involving multiple Poisson parameters.

(a) Let y | θ come from the Pois(θ) distribution, with θ to be estimated via the weighted quadratic

loss function

L(θ, θ̂) =
(θ̂ − θ)2

θ
.

Show that the ML estimator is y and that its risk function is the constant 1. With the

Gamma(a, b) prior for θ, find the Bayes estimator, its risk function, and the minimum Bayes

risk MBR(a, b). When is this maximal? Show that θ∗ = y indeed is minimax.

(b) Now consider an infinite (or finite) sequence of independent Poisson variables, say yi | θi ∼
Pois(θi), with the long vector of means to be estimated with the loss function

L(θ, θ̂) =

∞∑
i=1

wi
(θ̂i − θi)2

θi
,

where the weights wi are given numbers with a convergent series. Show that the estimator

which uses θ∗i = yi for all i has a constant risk function, and that it is minimax. – It is

however not admissible; see Stoltenberg and Hjort (2019a).

46. Minimax estimators for binomial parameters

Here we work with minimax estimators for situations involving the binomial distribution.

(a) Let y | θ be a simple binomial (n, θ), with θ to be estimated with squared error loss. For

the ML estimator y/n, find the risk function and its maximum value. Then let θ have the

Beta(aθ0, a(1− θ0)) prior. Show that the Bayes estimator becomes

θ̂ =
aθ0 + y

a+ n
= cnθ0 + (1− cn)y/n,

with cn = a/(a+ n). Find its risk function and the associated minimum Bayes risk

MBR(a, θ0) = θ0(1− θ0)
a

(a+ 1)(a+ n)
.

When is this maximised, giving the Nature’s maximin prior?
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(b) Show that the estimator

θ∗ =

√
n√

n+ 1

y

n
+

1√
n+ 1

1
2

has constant risk function, and that it is minimax. Draw the risk functions for θ∗ and the

ML estimator y/n in the same diagram.

(c) [xx To generalise from two to more boxes, consider (x, y, z) having the trinomial (n, p, q, r)

distribution, with p+ q + r = 1 and hence also x+ y + z = n. Suppose the problem is joint

estimation of (p, q), with loss function

L((p, q), (p̂, q̂)) = (p̂− p)2 + (q̂ − q)2.

Find the risk function, along with its maximum, for the ML estimators (x/n, y/n).

(d) Work with the Dirichlet prior (ap0, aq0, ar0) for (p, q, r). Find the Bayes estimator and its

risk function. [xx then attempt to find a minimax estimator. xx]

(e) A sometimes more natural loss function in this trinomial situation is that of

L((p, q, r), (p̂, q̂, r̂)) =
(p̂− p)2

p
+

(q̂ − q)2

q
+

(r̂ − r)2

r
.

Find the risk function for the ML estimator. Show that it is actually minimax, under this

loss function.

47. A nonparametric minimax estimator for an unknown mean

[xx to be polished. xx] Suppose i.i.d. observations X1, . . . , Xn are available from an unknown

distribution P on the unit interval [0, 1]. We only know that P ∈ M, the set of all distribution

functions on [0, 1]. We wish to estimate the mean θ =
∫
x dP (x), with quadratic loss function (θ̂−

θ)2. Below I exhibit a minimax estimator (mm) for this problem. Lehmann (1951, Mimeographed

Lecture Notes on the Theory of Point Estimation from Berkeley) did this, with similar arguments.

Lehmann also claimed in these Lecture Notes that the estimator given in (mm) is admissible

– but his argument was not correct, as it turns out. Nils Lid Hjort’s perhaps First Theorem was

to prove that the (mm) estimator is nonparametrically admissible (in an exam project for Erik

N. Torgersen on decision theory, 1975, which consisted in reading, comprehending, and presenting

the Ferguson 1973 paper for the exam marker).

(a) Work out the risk function for the direct sample average X̄:

R(X̄, P ) = (1/n)σ(P )2, with σ(P )2 =

∫
{x− θ(P )}2 dP (x).

(b) Show that the variance σ(P )2 is maximal, over all distributions on [0, 1], when P is concen-

trated in the end-points 0 and 1, with equal probabilities 1
2 , 1

2 . Hence

max{R(X̄, P ) : P ∈M} = (1/n)(1/4).

(c) Then consider the cool enough estimator

θ̂ =
1√
n+ 1

1
2 +

√
n√

n+ 1
X̄. (mm)
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Show that its risk function can be written

R(θ̂, P ) =
( √

n√
n+ 1

)2σ(P )2

n
+
{ √

n√
n+ 1

θ(P ) +
1√
n+ 1

1
2 − θ(P )

}2

=
1

(
√
n+ 1)2

[
σ(P )2 + { 1

2 − θ(P )}2
]
.

(d) Show that the max risk for the (mm) estimator is

max{R(θ̂, P ) : P ∈ P} =
1/4

(
√
n+ 1)2

.

(e) Start with the prior P ∼ Dir(aP0) for P , with P0 a given distribution on the unit interval,

with mean θ0 = θ(P0) and standard deviation σ0 = σ(P0). Show that the Bayes estimator

becomes

θ̂ = cnθ0 + (1− cn)x̄, with cn = a/(a+ n).

(f) Show that the risk function for this Bayes estimator becomes

R(θ̂, P ) = c2n{θ(P )− θ0}2 + (1− cn)2σ2(P )/n.

(g) Then work out the corresponding minimum Bayes risk, for the Dir(aP0) prior,

MBR(aP0) =

∫
R(θ̂, P ) dP(P ) = σ2

0

a

(a+ 1)(a+ n)
.

Show that this is maximised when a =
√
n and P0 has equal mass 1

2 and 1
2 at the endpoints

0 and 1.

(h) Then show that it is minimax (Lehmann 1951, Berkeley Notes, precursor to the Theory of

Point Estimation 1983 book). [xx fill in, not too hard. xx]

(i) Then show that it is actually also admissible; Lehmann made an error here, in these 1951

Berkeley Notes, but Nils 1976 has several proofs. [xx i fill in one of these, perhaps as a

separate exercise; this is considerably harder than proving minimaxity. xx]

48. A nonparametric minimax estimator for a distribution function

Let X1, . . . , Xn be i.i.d. from some unknown distribution function F on the real line. The standard

empirical distribution function is Fn(t) = (1/n)
∑n
i=1 I{Xi ≤ t}, corresponding to probability

weight 1/n in each observation, and can be computed using the ecdf in R. Here I exhibit a

different estimator, namely

F ∗(t) =

√
n√

n+ 1
Fn(t) +

1√
n+ 1

1
2 .

We shall see that it is minimax, as proven in Hjort (1976), with the loss function

L(F, F̂ ) =

∫
(F̂ − F )2 dW =

∫
{F̂ (t)− F (t)}2 dW (t),

with W some weight measure with finite mass.

(a) Let F have a Dir(aF0) prior. Show that the Bayes estimator becomes

F̂ (t) =
a

a+ n
F0(t) +

n

a+ n
Fn(t) = cnF0(t) + (1− cn)Fn(t).
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(b) Find its risk function and its max-risk. Find also the max-risk for Fn.

(c) Work out that the minimum Bayes risk for the Dirichlet process prior can be expressed as

MBR(Dir(aF0)) =

∫
F0(1− F0) dW

a

(a+ 1)(a+ n)
.

When is this as its biggest, i.e. Nature creating the worst possible situation for the statistician?

(d) Show that F ∗ indeed is minimax.

(e) I recall attempting to prove, back in 1976, that F ∗ is also admissible, without fully succeeding

– so that particular problem is up for grabs, I think.

49. Survival models via Gamma process boundary hitting

Part of the point of this exercise is to show that the tools and machines of Bayesian nonparametrics

may be utilised for different purposes, including model building. Let Z be a Gamma process with

Z(t) ∼ Gamma(aM(t), 1), and suppose an event takes place as soon as Z crosses the threshold c.

The distribution of

T = min{t : Z(t) ≥ c}

can then be worked with, for many purposes.

(a) Show that its survival distribution becomes

S(t) = Pr{Z(t) < c} = G(c, aM(t), 1) =
1

Γ(aM(t))

∫ c

0

xaM(t)−1 exp(−x) dx.

(b) Program such curves S(t) for a few choices of a and c, with M(t) = t, with M(t) = log(1+ t),

and with M(t) = t1/2. For each case, compute and display also the hazard rate h(t) =

f(t)/S(t), where the density f can be computed numerically via

f(t) = −{G(c, aM(t+ ε), 1)−G(c, aM(t− ε), 1)}/(2ε)

for a small ε.

(c) For the Egyptian life times data set, fit the model which takes M(t) = exp(κt)− 1, making

it into a three-parametric model, with parameters (a, κ, c). Do this via the log-likelihood

function

`n(a, κ, c) =

n∑
i=1

log f(ti, a, κ, c).

For numerical simplicity, divide lifelengths with 100, so that these are recorded on a scale

from 0 to 1 (actually from 0.5/100 to 96/100).

(d) Then distinguish the men and the women in that dataset, and fit the model which takes the

same a and the same M(t) = exp(κt)− 1, but two different thresholds cw and cm. Compute

the `n,max value and the AIC, and compare with the best models for these data, used in

Claeskens and Hjort (2008, Ch. 2).
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(e) Then try the Gamma process boundary hitting time model which takes aM(t) for the men,

with M(t) = exp(κt)− 1, and aMw(t) for the women, with

Mw(t) = M(t) + dW (t),

with W (t) the cdf for the uniform distribution of [15/100, 40/100], i.e. for the age window

[15, 40]. Estimate a, κ, d, c, and assess the uncertainty of the the estimates. Compute `max

and show that the AIC value 2`max−2 dim is very high, with dim the length of the parameter

vector. Give an interpretation of the fitted model and spend a minute speculating about lives

lived two thousand years ago. [xx nils put in the figure here. xx]

50. Survival models via biggest Gamma process jumps

In Exercise XX we build survival models from threshold hitting times for Gamma processes. An-

other version is via the sizes of the biggest jumps. Let Z(t) ∼ Gamma(aM(t), 1), and suppose an

event takes place when a jump exceeds a threshold d.

(a) Show that the survival time in question can be characterised as T = min{t : J(t) > d}, where

J(t) is the biggest jump experienced over the time window [0, t]. Hence show that the survival

curve becomes

S(t) = Pr{J(t) < d} = exp{−aM(t)E1(v)} for t > 0,

using results of Exercise 24.

(b) In a Cox type regression situation, with survival data (ti, δi, xi) for individuals i = 1, . . . , n,

suppose individual i has a distribution corresponding to the biggest jump size crossing level

vi. Show that this means hazard rates

hi(s) = am(s)E1(vi) for i = 1, . . . , n.

With model parametrisation E1(vi) = exp(xt
iβ), we have reinvented the Cox regression

model, complete with proportional hazards.

(c) [xx a bit more. frailty. fixed frailty and frailty along the way. competing risks. additive risks

and the Aalen model. xx]

51. Density estimation via log-linear expansions

For 37 Australian rowers (the first 22 girls, the next 15 boys), these are the lean body mass x (in

kg) and the percent body fat y (converted to unit interval scale), respectively:

66.24 57.92 56.52 54.78 56.31 62.96 56.68 62.39 63.05 56.05 53.65 65.45

64.62 60.05 56.48 41.54 52.78 52.72 61.29 59.59 61.70 62.46 78.00 75.00

78.00 87.00 78.00 79.00 79.00 48.00 82.00 82.00 82.00 83.00 88.00 83.00 78.00

and

0.177 0.188 0.198 0.252 0.180 0.218 0.222 0.162 0.164 0.194 0.192 0.179

0.122 0.237 0.247 0.166 0.215 0.201 0.175 0.237 0.224 0.204 0.090 0.126

0.090 0.070 0.100 0.096 0.094 0.108 0.086 0.095 0.074 0.098 0.090 0.075 0.120
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Figure 0.9: For 37 Australian rowers (22 girls and 15 boys), the figure displays x, lean body mass, and y, percent

body fat (converted to the unit scale). The three simple and direct regression lines are for boys and for

girls separately, and for the overall data ignoring gender information.

The data, taken from Australian Institute of Sport, via the wondrous dataset collection ozdasl,

are plotted in Figure 0.9. In this exercise we shall use the data to estimate the density of x, so far

ignoring the gender information, partly since the bimodaliy offers a little challenge; also, the two

very slim rowers, perhaps cox-swains, contribute to a mild statistical confusion. Given the density

estimation method one may of course also estimate the x density for boys and for girls separately,

and similarly for y.

For convenience we divide x by 100, with the resulting 37 data points x1, . . . , xn to be seen as

i.i.d. from a density f(x) on the unit interval. To estimate the density we shall use the log-linear

expansion

f(x, θ) = exp
{ m∑
j=1

θjTj(x)− c(θ1, . . . , θm)
}
,

with basis functions

Tj(x) =
√

2 cos(jπx) for x ∈ [0, 1],

and with

c(θ1, . . . , θm) = c(θ) = log
(∫ 1

0

exp
{ m∑
j=1

θjTj(x)
}

dx
)
.

(a) Show that f(x, θ) indeed defines a density function on the unit interval. Show also that

the basis functions are orthonormal, in the sense that
∫ 1

0
T 2
j dx = 1 and

∫ 1

0
TjTk dx = 0 for
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j 6= k. This helps both numerical accuracy and interpretation, though the model above, and

the methods to follow, make sense and can be made to work also for general sequences of

basic functions, like the polynomial Tj(x) = (x− 1
2 )j .

(b) For θ small, where the model can be seen as leading to small perturbations of the uniform

density, show that

c(θ1, . . . , θm) = 1
2

m∑
j=1

θ2
j +O

( m∑
j=1

|θj |3
)
.

(c) Show that the log-likelihood function for the data becomes

`n(θ) = n

m∑
j=1

θj T̄j − nc(θ1, . . . , θm),

with T̄j = (1/n)
∑n
i=1 Tj(xi). Find the ML estimator θ̂ = (θ̂1, . . . , θm), and plot the asso-

ciated ML estimated density, with length-of-expansion m set equal to m = 2, 3, 4, 5, 6. You

may also compute AIC values 2`n,max− 2m to check which model order it prefers. You need

to compute the c(θ) function via numerical integration, e.g. using integrate in R.

(d) Then to a Bayesian handling of such a model. Place independent normal priors θj ∼
N(0, τ2/j2) on the parameters. Here τ is a fine-tuning parameter; in particular, if τ is

small, the random density is close to a uniform with high probability. Show that

Z(x) =

∞∑
j=1

θjTj(x)

is a well-defined normal process, even with infinitely many basis functions. Find its mean,

variance, and covariance function.

(e) Take initially m = 6 (a rather modest approximation to infinity). Set up an MCMC to

sample from the posterior distribution of (θ1, . . . , θm). Use this to compute and display the

Bayes estimator

f̂(x) = E {f(x, θ) |data},

along with a pointwise 90% credibility interval. Repeat this exercise with a higher number

for m.

(f) Now that you have a Bayesian nonparametric density estimation scheme, apply it to the

boys and the girls separately, and comment. Also use it for estimating the density of y, the

percent body fat.

52. More on density estimation

The method of Exercise 50 starts uses a perturbation model around the uniform density, and can

sometimes perform well, depending on both the underlying correct density and the sample size. It

often pays off to ‘give it a good start’, however, for example as follows. With f0(x) such a start

estimate, perhaps the prior mean, work with the parametric class

f(x, θ) =
f0(x) exp{

∑m
j=1 θjTj(x)}∫ 1

0
f0(x′) exp{

∑m
j=1 θjTj(x

′)} dx′
= f0(x) exp

{ m∑
j=1

θjTj(x)− cm(θ)
}
,
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where

cm(θ) = log
(∫ 1

0

f0(x) exp
{ m∑
j=1

θjTj(x
′)
}

dx′
)
.

Simulate a dataset of size n from a Beta distribution with parameters (4, 1), say, and select a f0(x)

which is not so far away from this, say the Beta with parameters (5, 2). Use independent priors

θj ∼ N(0, τ2/j2) and m equal to perhaps 10 in this construction. Simulate 104 realisations from the

posterior distribution of (θ1, . . . , θm), via MCMC, and plot the 0.05, 0.50, 0.95 pointwise quantiles

of f(x, θ) given data.

53. Regression via linear expansions

[xx to be written and polished. xx] Consider the pairs (xi, yi) of lean body mass (divided by 100,

ranging from 0.415 to 0.880) and percent body fat for the n = 37 Australian rowers above. We are

to carry out nonparametric regression for m(x) = E (Y |x), so far ignoring genders. Consider the

model

yi = m(xi) + εi for i = 1, . . . , n,

with the εi i.i.d. with mean zero and standard deviation σ, and where

m(x) = β0 +

m∑
j=1

βj(x− 1
2 )j .

For simplicity in this exercise take σ = 0.040 known, and use independent priors βj ∼ N(0, τ2/j2)

for j = 1, 2, 3, . . . but β0 ∼ N(0.50, 1). The τ works as a tuning parameter, and you may start by

setting it equal to 1.3579.

Now work out the posterior distribution for β = (β0, β1, . . . , βm). This can be done directly,

via Gaussian calculations, or via MCMC. With m = 10, simulate 104 realisations for β given data.

Compute and display the Bayes estimated curve

m̂(x) = E
{
β0 +

m∑
j=1

βj(x− 1
2 )j |data

}
= β̂0 +

m∑
j=1

β̂j(x− 1
2 )j .

Compare with least squares analysis and AIC.

XX. The Beta- and Gamma-process Police Department Tweetery

A Nils-Emil story will be told here, once we’ve understood things well enough. Data are non-

homogeneous Poisson counts Zi(t) for weekends i = 1, . . . , n, with time t running through [0, 60]

hours. There’s a covariate vector xi available for weekend i, possibly also time-dependent, with

xi(s) previsible at time s. One of the models we’re aiming for takes

(i) β from π(β);

(ii) G is an extended Gamma (dA0(s), b(s)), where dA0(s) = a0(s) ds, i.e. A0(t) is the integral∫ t
0
a0(s) ds;

(iii) event processes Z1, . . . , Zn are independent and Poisson, with

dZi(s) ∼ Pois(exp(xt
iβ) dG(s)) for i = 1, . . . , n.
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We take a0(s) and b(s) known, and wish to carry Bayesian inference for (β,G). The illustration

story will be the Beta- and Gamma-process Police Department’s tweets over a sequene of Oslo

weekends, 2018.
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