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This is the exam project set for STK 4190/9190, spring semester 2018. It is made available

on the course website as of Friday 1 June 10:01, and candidates must submit their written

reports by Tuesday 12 June 11:59 (or earlier), to the reception office at the Department of

Mathematics, in duplicate. The supplementary oral examination part takes place Friday

June 15 (practical details concerning this are provided elsewhere). Reports may be written

in nynorsk, bokmål, riksmål, English or Latin, and should preferably be text-processed

(TeX, LaTeX, Word), but may also be hand-processed. Give your name (and your student-

web identification number) on the first page; the markers need to couple project with the

oral examination. Write concisely (in der Beschränkung zeigt sich erst der Meister; brevity

is the soul of wit; kratkostь – sestra talanta). Relevant figures need to be included

in the report. Copies of relevant parts of machine programmes used (in R, or matlab,

or similar) are also to be included, perhaps as an appendix to the report. Candidates

are required to work on their own (i.e. without cooperation with any others). They are

graciously allowed not to despair should they not manage to answer all questions well.

Importantly, each student needs to submit two special extra pages with her or his report.

The first (page A) is the ‘erklæring’ (self-declaration form), properly signed; it is available

at the webpage as ‘Exam Project, page A, declaration form’. The second (page B) is the

student’s one-page summary of the exam project report, which should also contain a brief

self-assessment of its quality.

This exam set contains four exercises and comprises eight pages.

Exercise 1

The only limits we have are the limits we believe (perhaps). This exercise looks into

a certain construction of the Dirichlet process as a limit of simpler probability measures.

Consider a sample space X , e.g. the real line, with a fixed probability measure P0, like the

standard normal, and a positive strength parameter a. Let now

Pm =

m∑

i=1

Diδ(ξi), (1)

where ξ1, ξ2, . . . are i.i.d. from P0, and where (D1, . . . , Dm), independently, is a Dirichlet

distributed vector with symmetric parameters (a/m, . . . , a/m). Also, δ(ξi) means unit
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point-mass at position ξi, so that, in particular,

Pm(A) =
m∑

i=1

DiI(ξi ∈ A) =
∑

i:ξi∈A

Di, (2)

which is a random sum of random probabilities.

Below you may find use for some or more of the following Dirichlet distribution for-

mulae (and which you do not need to prove here). If (D1, . . . , Dm) ∼ Dir(ap1, . . . , apm),

with the pi positive and summing to one, then

EDi = pi, ED2
i =

api(api + 1)

a(a+ 1)
, VarDi =

pi(1− pi)

a+ 1
,

for each i, and when i 6= j,

EDjDj =
api apj
a(a+ 1)

, cov(Di, Dj) = −
pipj
a+ 1

.

Also, the ‘summing over cells’ property is known, that if (D1, . . . , Dm) ∼ Dir(ap1, . . . , apm),

then a shorter vector formed by summing over cells is another Dirichlet vector, with pa-

rameters obtained by summing over the appropriate cells. In particular, with I a set of

indexes,
∑

i∈I Di ∼ Beta(aq, a(1− q)), where q =
∑

i∈I pi, &c.

(a) For Pm(A), obtained in (2), show that

Pm(A) | (ξ1, . . . , ξm) ∼ Beta
(
aP̂m(A), a{1− P̂m(A)}

)
,

where P̂m(A) = (1/m)
∑m

i=1
I(ξi ∈ A) is the empirical proportion of points in A.

Show from this that with probability 1,

Pm(A) →d Beta(aP0(A), a{1− P0(A)}).

(b) Show more generally that if A1, . . . , Ak is some partition of the sample space X , then

(Pm(A1), . . . , Pm(Ak)) converges in distribution, with probability 1, to the distribution

of (P (A1), . . . , P (Ak)), where P ∼ Dir(aP0). – With a few extra arguments, depending

on the level of mathematical precision, one may demonstrate that Pm of (1) converges

in distribution, with probability 1, to the P ∼ Dir(aP0), in the space of all distributions

on X , with an appropriate topology of convergence.

(c) With P ∼ Dir(aP0), consider the random Dirichlet process mean

θ = θ(P ) =

∫
x dP (x).

With θm = θ(Pm), and with notation as at the start of this exercise, show that

θm =
m∑

i=1

Diξi.

Assuming P0 having finite mean θ0 =
∫
x dP0(x) and variance σ2

0 =
∫
(x−θ0)

2 dP0(x),

show that E θm = θ0, and explain why this implies E θ = θ0.
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(d) Then demonstrate that

Var θm →
σ2
0

a+ 1
,

and explain why this is also a formula for Var θ. (These formulae have also been

demonstrated during Hjort’s lectures, but then using different arguments.)

(e) The distribution of θ =
∫
x dP (x) is typically quite complicated. Consider the case of

P0 ∼ N(0, 1). Show that

θm | (D1, . . . , Dm) ∼ N(0, Vm),

where Vm =
∑m

i=1
D2

i . One may show that Vm converges in distribution to a certain

V , with an appropriate (but complicated) density h(v). Find the mean of V . Use this

to show that the distribution of θ must be a normal mixture, with density

f(θ) =

∫ ∞

0

φ
(θ
v

)1
v
h(v) dv.

As usual, φ is the standard normal density.

(f) Use finally the above to simulate 1000 independent realisations of θ, say with a =

3.14159, and display a histogram of these. Comment briefly on other possible simula-

tion schemes.

Exercise 2

Incidentally, did you know that using non-linear regression is currently out of

line? Consider the data portrayed in Figure 1, consisting of the for a segment of the Oslo

population drastically important number of skiing days per year, at the location Bjørnholt,

an hour’s trasking upwards from Frognerseteren along Historias Kraftlinjer. The dataset,

with such skiing days numbers from 1897 to 2012, but with a hole in the series from 1938

to 1954, is available at the course website (and a skiing day is defined as there being 25

cm or more snow on the ground).

Though various generalisations are relevant and doable, we shall start out considering

the data in the following somewhat simple fashion. At year xi, we observe the number of

skiing days

Z(xi) = m(xi) + εi for i = 1, . . . , n, (3)

for the appropriate years x1, . . . , xn, and with n = 99. Here m(x) is seen as the underlying

trend function, the ‘signal’, and with the εi as ‘noise’, the random variations around the

trend function, and here, for simplicity, taken as i.i.d. from the N(0, σ2).

This becomes a Bayesian nonparametrics model when a prior process is used for the

m(x) function. Here we take it as a Gaussian, with mean and covariance function of the

form

Em(x) = m0(x) and cov{m(x),m(x′)} = σ2
0K0(x− x′),

for a covariance function K0, with K0(0) = 1. In other words, the variance of m(x) is

σ2
0 , and the correlation between two points of m(x) being a distance d from each other is

K0(d).
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Figure 1: The number of skiing days at Bjørnholt per year, from 1897 to 2012 but
with missing data from 1938 to 1954. The red curve is a Bayesian nonparametrics
posterior mean, with a certain Gaussian prior process. See Cunen, Hermansen,
Hjort (JSPI, 2018) or Schweder and Hjort’s CLP book (2016, Cambridge) for
more information and analysis.

(a) Consider first the observed vector Zobs = (Z(x1), . . . , Z(xn))
t. Show that its marginal

distribution is

Zobs ∼ Nn(m0,obs, σ
2
0Σ0 + σ2In),

with m0,obs the vector of m0(xi), where In is the identity matrix of size n × n, and

Σ0 is the matrix consisting of all K0(xi − xj).

(b) In extension of this show that for a given position x0,

(
m(x0)
Zobs

)
∼ Nn+1(

(
m0(x0)
m0,obs

)
,

(
σ2
0 σ2

0k(x0)
t

σ2
0k(x0) σ2

0Σ0 + σ2In

)
).

Here k(x0) is the column vector of K0(x0 − xi).

(c) Deduce that m(x0), given the data, has a mean value which can be expressed as

m̂(x0) = m0(x0) + σ2
0k(x0)

t(σ2
0Σ0 + σ2In)

−1(Zobs −m0,obs).

Find also a formula for the conditional variance of m at position x0.
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(d) Now implement such a concrete scheme, for the Bjørnholt data. For the prior, use

m0(x) = 150−0.20x, on the scale of x = year−1900, and furthermore let σ0 = 12.50,

K0(d) = ρd0 with ρ0 = 0.75. For the data given the trend function m(x), take σ =

33.33. Compute the Bayes estimate curve, and make a figure similar to Figure 1 (it

will not be entirely equal to this figure, though, as I used somewhat different prior

parameters there).

(e) In addition to the posterior mean, compute also the posterior standard deviation

curve, and display a pointwise 90% posterior credibility band.

(f) Simulate and display say 25 curves from m(x) given the data.

(g) The above setup has used the simplifying assumption in (3) that the εi are i.i.d.

Explain how the apparatus and results are changed if we model also the Z(x) given

the trend function m(x) as an autocorrelated time series, with cov(εi, εj) = σ2ρ|xi−xj |,

say with ρ = 0.333.

(h) There are many natural generalisations of the setup above. Briefly consider one of

these, namely the step from taking a known σ (above taken as 33.33) to an unknown

parameter, with say a Gamma distribution prior for 1/σ2. Explain how one may now

compute the posterior mean and posterior standard deviation for m(x).

Exercise 3

“The mystic chords of memory will swell when again touched, as surely they will

be, by the better angels of our nature.” Well, let’s see. Figure 2 below tells a dramatic and

gruesome story for mankind. For the 95 inter-state wars, from 1823 to the present, where

the number of battle deaths has been 1000 or more, the figure displays the log of these

sad numbers, i.e. (xi, log zi) for i = 1, . . . , 95, where (xi, zi) denote the onset time and

number of battle deaths for war i. The lower limit in the figure is hence log 1000 = 6.908.

The red points and black points correspond to before and after time point 1950.83, which

corresponds to the change-point found in Cunen, Hjort, Nyg̊ard’s ‘Statistical Sightings of

Better Angels’ article (May 2018).

The dataset of (xi, zi) is available at the course website. For the purposes of this exam

exercise it is convenient to read the data into your computer as follows. It involves a little

cosmetic trick of setting the nine numbers recorded as ‘1000’ in the pre-Korea list (though

these are clearly meant as rough approximations) to 1002, 1003, . . . , 1010, in order to avoid

certain artificial numerical issues with some of the estimation procedures. The zi = 1001

for the Falklands war is however taken as accurate and kept as it is.

krig <- matrix(scan("krigogfred-data",skip=4),byrow=T,ncol=2)
xx <- krig[ ,1]
zz <- krig[ ,2]
x0 <- 1950.825 # Korea
xxL <- xx[xx <= x0]
xxR <- xx[xx > x0]
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zzL <- zz[xx <= x0]

zzR <- zz[xx > x0]

nnL <- length(zzL) # 60

nnR <- length(zzR) # 35

# pushing nine values of "1000" for zz left to 1002, ..., 1010

where <- (1:nnL)[zzL==1000]

zzL[where] <- 1002:1010

yyL <- log(zzL/1000)

yyR <- log(zzR/1000)
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Figure 2: The log number of battle deaths, for all 95 major wars from 1823 to 2003
where the battle death number is above 1000. Red and black circles correspond
to before and after the Korean War, cf. the breakpoint found in Cunen, Hjort,
Nyg̊ard’s ‘Statistical Sightings of Better Angels’ (2018).

Your task, in this exercise, involves analysing the distribution of yi = log(zi/1000),

with nL = 60 to the left and nR = 35 to the right of the potential regime-shift, that of the

Korean War. It is easier to model and carry out analysis on this log-scale, and then revert

back to the full-drama scale of zi = 1000 exp(yi) afterwars.

(a) For the yi distributions FL and FR to the left and right of Korea, give them Dirichlet

process priors, with parameters aLF0,L and aRF0,R. Since we wish to let data speak

for themselves, regarding any potential differences between before and after 1950, use

the same F0(y) = 1−exp(−θ0y) for both prior mean functions, and the same aL = aR.

For concreteness, take aL = aR = 3.33 and θ0 = 0.50. Simulate a few FL and FR from

these priors, and discuss briefly how ‘reasonable’ they seem to be.
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(b) First compute and display the empirical distribution functions,

F̂L(y) = (1/nL)

nL∑

i=1

I(yL,i ≤ y) and F̂R(y) = (1/nT )

nT∑

i=1

I(yR,i ≤ y).

Comment on whether and to which degree they look different.

(c) Then do the Bayesian updating, and explain the posterior distributions for FL and

FR. Simulate say 50 curves for each, displayed to the left and to the right in a figure.

Also compute and display the posterior means, along with a 90% pointwise quantile

band, where you for the latter ought to use more than 1000 simulations for good

precision.

(d) Simulate say 1000 (or more) realisations of FL and of FR, reading off their medians

medL = inf{y:FL(y) ≥
1

2
} and medR = inf{y:FR(y) ≥

1

2
}.

Show histograms of medL − medR and of medL/medR, and comment on what you

learn from this.

(e) We all hope the wars will go down, in both frequency and volume. But assume,

for the sake of statistical imagination and communication, that there will be (God

forbid) future inter-state wars, following the same distribution as implied by the FR

distribution. Simulate say 1000 y, from such future wars, and give the 0.10, 0.50, 0.90

quantiles of the appropriate predictive battle deaths distribution.

Exercise 4

Countings one’s blessings involves recording these in repeated rounds, presumably,

and where the underlying intensity measures may change over time. Here we look at a

certain framework for modelling and analysing count data.

(a) Suppose that y1, . . . , ym are independent Poisson counts, recorded over m different

and perhaps small time intervals. Assume next that the underlying parameters, say

θ1, . . . , θm, are independent Gamma variables, with parameters (ai, bi), i.e. densities

proportional to θai−1

i exp(−biθi). Show that

θi | data ∼ Gam(ai + yi, bi + 1),

and that these are independent.

(b) A time-continuous version of the above is as follows, via fine limits. First, let Zm(t) =∑
i/m≤t θm,i, where the individual and independent intensity components are

θm,i ∼ Gam(a(i/m)(1/m), b(i/m)) for i = 1, 2, 3, . . . .

Here a(s) and b(s) are given smooth positive functions. Show that the Zm process

has a clear distribution limit Z, as m grows. Show also that

EZ(t) =

∫ t

0

a(s)

b(s)
ds and VarZ(t) =

∫ t

0

a(s)

b(s)2
ds.

Discuss briefly the special case of b(s) being equal to a constant b.
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(c) In addition to the Gamma increments θm,i, consider Ym(t) =
∑

i/m≤t ym,i, with the

ym,i being independent and Poisson, with the θm,i as parameters. Show that the Ym

process has a clear distributional limit Y , which for the given parameters is Poisson

with cumulative intensity function the Z(t) above.

(d) We have now defined time-continuous processes, with Z(·) as cumulative extended

Gamma process and Y (·) given Z(·) a Poisson process. Show that Z(·) given the

observed counts Y (·) is another cumulative extended Gamma process, with cumulative

intensity function

M(t) = E {Z(t) | data} =

∫ t

0

a(s) ds+ dZ(s)

b(s) + 1
.

Find also an expression for the conditional variance of Z(t), given data.

(e) Suggest further variations and extensions of this initial Bayesian nonparametrics setup

with Gamma increments and counts, and indicate something which could be or become

a statistical application.
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