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Abstract

Exercises and Lecture Notes collected here are indeed for the Bayesian Nonparametrics course

STK 9190, given for the first time in the spring semester 2018. It is still useful to go through

some prototype lower-dimensional Bayesian work, however, so a few exercises of that type

are also included. This relates to clarifying concepts and principles, and also to Bayesian

Nonparametrics constructions that use lower-dimensional pieces – as the famous interlocking

versatile Lego bricks pieces.

1. Prior to posterior updating with Poisson data

This exercise illustrates the basic prior to posterior updating mechanism for Poisson data.

(a) First make sure that you are reasonably acquainted with the Gamma distribution. We say

that Z ∼ Gamma(a, b) if its density is

g(z) =
ba

Γ(a)
za−1 exp(−bz) on (0,∞).

Here a and b are positive parameters. Show that

EZ =
a

b
and VarZ =

a

b2
=

EZ

b
.

In particular, low and high values of b signify high and low variability, respectively.

(b) Now suppose y | θ is a Poisson with parameter θ, and that θ has the prior distribution

Gamma(a, b). Show that θ | y ∼ Gamma(a+ y, b+ 1).

(c) Then suppose there are repeated Poisson observations y1, . . . , yn, being i.i.d. ∼ Pois(θ) for

given θ. Use the above result repeatedly, e.g. interpreting p(θ | y1) as the new prior before

observing y2, etc., to show that

θ | y1, . . . , yn ∼ Gamma(a+ y1 + · · ·+ yn, b+ n).

Also derive this result directly, i.e. without necessarily thinking about the data having

emerged sequentially.

(d) Suppose the prior used is a rather flat Gamma(0.1, 0.1) and that the Poisson data are 6, 8,

7, 6, 7, 4, 11, 8, 6, 3. Reconstruct a version of Figure 1 in your computer, plotting the ten

curves p(θ |dataj), where dataj is y1, . . . , yj , along with the prior density. Also compute the

ten Bayes estimates θ̂j = E(θ |dataj) and the posterior standard deviations, for j = 0, . . . , 10.
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(e) The mathematics turned out to be rather uncomplicated in this situation, since the Gamma

continuous density matches the Poisson discrete density so nicely. Suppose instead that the

initial prior for θ is a uniform over [0.5, 50]. Try to compute posterior distributions, Bayes

estimates and posterior standard deviations also in this case, and compare with what you

found above.

Figure 0.1: Eleven curves are displayed, corresponding to the Gamma(0.1, 0.1) intial prior density for the Poisson

parameter θ along with the ten updates following each of the observations 6, 8, 7, 6, 7, 4, 11, 8, 6, 3.

2. The Master Recipe for finding the Bayes solution

I decide to copy in this particular exercise from the lower-dimensional lower-ambition Bayes course,

without changing the terms or the notation. The meta-exercise, however, is to understand that

all of this still applies in the higher-level world of Bayesian Nonparametrics, partly at the price

of the required higher-level mathematical abstraction level. Basically, where one for Bayesian

Parametrics writes model likelihoods in terms of the famous generic θ, below, one needs for Bayesian

Nonparametrics to think and write and work in terms of a very-high-dimensional or even infinite-

dimensional parameter vector. This could be an unknown cumulative distribution function F ,

an unknown median regression function m(x), an intensity function λ(t), etc., rather than the

prototypical θ. Often enough there are no clear-and-simple likelihood functions coming out of such

constructions, however, as we shall see during the course. This does not stop us from trying to

crunch our way from priors to posteriors.

Crucially and amazingly, the basic concepts of decision functions, prior and posterior, loss

functions and risk functions, and the optimal Bayesian strategy, carry over. As long as the statis-

tician has data y, a model in terms of some distribution P (i.e. rather than the ubiquitous θ), a
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clear (nonparametric) prior for this P , and a loss function L(P, a) encountered for decision a if

the truth is P – then there will be (a) a posterior π(P |data); (b) a clear strategy for reaching the

Bayes solution âB ; and (c) this strategy is unbeatable, the sole gold medal winner, in the Olympic

competition against other strategies.

Consider a general framework with data y, in a suitable sample space Y; having likelihood

p(y | θ) for given parameter θ (stemming from an appropriate parametric model), with θ being

inside a parameter space Ω; and with loss function L(θ, a) associate with decision or action a if

the true parameter value is θ, with a belonging to a suitable action space A. This could be the

real line, if a parameter space is called for; or a two-valued set {reject, accept} if a hypothesis test

is being carried out; or the set of all intervals, if the statistician needs a confidence interval.

A statistical decision function, or procedure, is a function â : Y → A, getting from data y the

decision â(y). Its risk function is the expected loss, as a function of the parameter:

R(â, θ) = EθL(θ, â) =

∫
L(θ, â(y))p(y | θ) dy.

(In particular, in this expectation operation the random element is y, having its p(y | θ) distribution

for given parameter, and the integration range is that of the sample space Y.)

So far the framework does not include Bayesian components per se, and is indeed a useful one

for frequentist statistics, where risk functions for different decision functions (be they estimators,

or tests, or confidence intervals, depending on the action space and the loss function) may be

compared.

We are now adding one more component to the framework, however, which is that of a prior

distribution p(θ) for the parameter. The overall risk, or Bayes risk, associated with a decision

function â, is then the overall expected loss, i.e.

BR(â, p) = ER(â, θ) =

∫
R(â, θ)p(θ) dθ.

(Here θ is the random quantity, having its prior distribution, making also the risk function R(â, θ)

random.) The minimum Bayes risk is the smallest possible Bayes risk, i.e.

MBR(p) = min{BR(â, p) : all decision functions â}.

The Bayes solution for the problem is the strategy or decision function âB that succeeds in min-

imising the Bayes risk, with the given prior, i.e.

MBR(p) = BR(âB , p).

The Master Theorem about Bayes procedures is that there is actually a recipe for finding the

optimal Bayes solution âB(y), for the given data y (even without taking into account other values

y′ that could have been observed).

(a) Show that the posterior density of θ, i.e. the distribution of the parameter given the data,

takes the form

p(θ | y) = k(y)−1p(θ)p(y | θ),

where k(y) is the required integration constant
∫
p(θ)p(y | θ) dθ. This is the Bayes theorem.

(b) Show also that the marginal distribution of y becomes

p(y) =

∫
p(y | θ)p(θ) dθ.
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(I follow a certain semi-classical convention here, regarding using the ‘p’ multipurposedly,

and with each ‘p’ to be understood by the reader from the context.)

(c) Show that the overall risk may be expressed as

BR(â, p) = EL(θ, â(Y ))

= E E {L(θ, â(Y )) |Y }

=

∫ {∫
L(θ, â(y))p(θ | y) dθ

}
p(y) dy.

The inner integral, or ‘inner expectation’, is E{L(θ, â(y)) | y}, the expected loss given data.

(d) Show then that the optimal Bayes strategy, i.e. minimising the Bayes risk, is achieved by

using

âB(y) = argmin g = the value a0 minimising the function g,

where g = g(a) is the expected posterior loss,

g(a) = E{L(θ, a) | y}.

The g function is evaluated and mininised over all a, for the given data y. This is the Bayes

recipe. – For examples and illustrations, with different loss functions, see the Nils 2008

Exercises.

3. The Dirichlet-multinomial model

The Beta-binomial model, with a Beta distribution for the binomial probability parameter, is on

the ‘Nice List’ where the Bayesian machinery works particularly well: Prior elicitation is easy, as

is the updating mechanism. This exercise concerns the generalisation to the Dirichlet-multinomial

model, which is certainly also on the Nice List and indeed in broad and frequent use for a number

of statistical analyses.

(a) Let (y1, . . . , ym) be the count vector associated with n independent experiments having m

different outcomes A1, . . . , Am. In other words, yj is the number of events of type Aj , for

j = 1, . . . ,m. Show that if the vector of Pr(Aj) = pj is constant across the n independent

experiments, then the probability distribution governing the count data is

f(y1, . . . , ym) =
n!

y1! · · · ym!
py11 · · · pymm

for y1 ≥ 0, . . . , ym ≥ 0, y1 + · · · + ym = n. This is the multinomial model. Explain how it

generalises the binomial model.

(b) Show that

EYj = npj , VarYj = npj(1− pj), cov(Yj , Yk) = −npjpk for j 6= k.

(c) Now define the Dirichlet distribution over m cells with parameters (a1, . . . , am) as having

probability density

π(p1, . . . , pm−1) =
Γ(a1 + · · ·+ am)

Γ(a1) · · ·Γ(am)
pa1−11 · · · pam−1−1

m−1 (1− p1 − · · · − pm−1)am−1,
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over the simplex where each pj ≥ 0 and p1 + · · · + pm−1 ≤ 1. Of course we may choose to

write this as

π(p1, . . . , pm−1) ∝ pa1−11 · · · pam−1−1
m−1 pam−1m ,

with pm = 1 − p1 − · · · − pm−1; the point is however that there are only m − 1 unknown

parameters in the model as one knows the mth once one learns the values of the other m−1.

Show that the marginals are Beta distributed,

pj ∼ Beta(aj , a− aj) where a = a1 + · · ·+ am.

(d) Infer from this that

E pj = p0,j and Var pj =
1

a+ 1
p0,j(1− p0,j),

in terms of aj = ap0,j . Show also that

cov(pj , pk) = − 1

a+ 1
p0,jp0,k for j 6= k.

For the ‘flat Dirichlet’, with parameters (1, . . . , 1) and prior density (m−1)! over the simplex,

find the means, variances, covariances.

(e) Now for the basic Bayesian updating result. When (p1, . . . , pm) has a Dir(a1, . . . , am) prior,

then, given the multinomial data, show that

(p1, . . . , pm) |data ∼ Dir(a1 + y1, . . . , am + ym).

Give formulae for the posterior means, variances, and covariances. In particular, explain why

p̂j =
aj + yj
a+ n

is a natural Bayes estimate of the unknown pj . Also find an expression for the posterior

standard deviation of the pj .

(f) In order to carry out easy and flexible Bayesian inference for p1, . . . , pm given observed counts

y1, . . . , ym, one needs a recipe for simulating from the Dirichlet distribution. One such is as

follows: Let X1, . . . , Xm be independent with Xj ∼ Gamma(aj , 1) for j = 1, . . . ,m. Then

the ratios

Z1 =
X1

X1 + · · ·+Xm
, . . . , Zm =

X1

X1 + · · ·+Xm

are in fact Dir(a1, . . . , am). Try to show this from the transformation law for probability

distributions: If X has density f(x), and Z = h(X) is a one-to-one transformation with

inverse X = h−1(Z), then the density of Z is

g(z) = f(h−1(z))
∣∣∣∂h−1(z)

∂z

∣∣∣
(featuring the determinant of the Jacobian of the transformation). Use in fact this theorem

to find the joint distribution of (Z1, . . . , Zm−1, S), where S = Z1 + · · · + Zm (one discovers

that the Dirichlet vector of Zj is independent of their sum S).

(g) The Dirichlet distribution has a nice ‘collapsibility’ property: If say (p1, . . . , p8) is Dir(a1, . . . , a8),

show that then the collapsed vector (p1 +p2, p3 +p4 +p5, p6, p7 +p8) is Dir(a1 +a2, a3 +a4 +

a5, a6, a7 + a8).
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4. Gott würfelt nicht

... but I do so, on demand. I throw a certain moderately strange-looking die 30 times and have

counts (2, 5, 3, 7, 5, 8) of outcomes 1, 2, 3, 4, 5, 6.

(a) Use either of the priors (i) ‘flat’, Dir(1, 1, 1, 1, 1, 1); (ii) ‘symmetric but more confident’,

Dir(3, 3, 3, 3, 3, 3); (iii) ‘unwilling to guess’, Dir(0.1, 0.1, 0.1, 0.1, 0.1, 0.1)

for the probabilities (p1, . . . , p6) to assess the posterior distribution of each of the following

quantities:

ρ = p6/p1,

α = (1/6)

6∑
j=1

(pj − 1/6)2,

β = (1/6)

6∑
j=1

|pj − 1/6|,

γ = (p4p5p6)1/3/(p1p2p3)1/3.

(b) The above priors are slightly artificial in this context, since they do not allow the explicit

possibility that the die in question is plain boring utterly simply a correct one, i.e. that

p = p0 = (1/6, . . . , 1/6). The priors used hence do not give us the possibility to admit that

ok, then, perhaps ρ = 1, α = 0, β = 0, γ = 1, after all. This motivates using a mixture prior

which allows a positive chance for p = p0. Please therefore redo the Bayesian analysis above,

with the same (2, 5, 3, 7, 5, 8) data, for the prior 1
2 δ(p0) + 1

2 Dir(1, 1, 1, 1, 1, 1). Here δ(p0) is

the ‘degenerate prior’ that puts unit point mass at position p0. Compute in particular the

posterior probability that p = p0, and display the posterior distributions of ρ, α, β, γ.

5. The Dirichlet Process: definition, existence, constructions

Let X be some sample space, like the real line, with subsets A belonging to an appropriate sigma-

algebra A. Let P0 be a fixed probability distribution on X , and a a positive scalar. We say that

P is a Dirichlet process on X , with parameter aP0, and write P ∼ Dir(aP0) to indicate this, if it

is the case for each partition (A1, . . . , Am), we have

(p1, . . . , pm) =
(
P (A1), . . . , P (Am)

)
∼ Dir(aP0(A1), . . . , aP0(Am)).

This is required for any number m of elements in the partition.

(a) Show that the basic ‘logic coherence’ property is satisfied, that we may put some of the

Aj together where the resulting distribution does not clash with the start definition. For

example, with sets A1, . . . , A8 in such a partition, deduce the distribution for

(P (A1) + P (A2), P (A3) + P (A4) + P (A5), P (A6), P (A7) + P (A8)),

and verify that this is as it should be (i.e. the same distribution as dictated from the start

definition). This is the ‘collapsibility property’ for the Dirichlet distribution, cf. Exercise

3(g). Without this property, the start definition would not make sense, and there would be

no Dirichlet process.
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(b) The full existence of the Dir(aP0) is not a trivial matter, however. There are several routes to

proving that yes, lo & behold, it exists. Think a bit about the paths of proofs brief indicated

below. If sufficiently curious (now or later), with enough time, go ad fontem and check the

arguments.

(i) Check the original argument used by Ferguson (1973, Annals), appealing to Kolmogorov’s

consistency (or ‘inherent coherence’) theorem. Under a few natural and clearly necessary

conditions, Kolmogorov proved that these are also sufficient; there will be no cognitive dis-

sonance. Ferguson then verified the Kolmogorov dictated conditions. It is worth noting that

in this fashion he ‘only’ got a random P = {P (A) : A ∈ A}, with a certain well-defined

probability distribution P, in the enormous space [0, 1]A of all function P on the enormous

space A, with values P (A) in [0, 1] for every A. He could then could go on to prove that

P(M) = 1, where M is the space of all probability measures on X . This is still not the

same as having created a P working directly on M. Several of the other Dirichlet process

constructions are more direct than this, however.

(ii) Check also Ferguson (1974, Annals), where a representation in the form of P = Z/Z(X ) is

worked through, with Z(·) a gamma process.

(iii) Hjort (1976, last chapter) showed that the distribution P of a P ∼ Dir(aP0) can be reached

as the well-defined limit in distribution of say Pm, where Pm is an easier finite-dimensional

construction, basically a Dirichlet process aP0,m for a simpler discrete P0,m concentrated in

only finitely many positions (for which the Dirichlet process existence is immediate). With

the P0,m sequence constructed to tend in distribution to the perhaps continuous P0, Hjort

showed that Pm is tight; that its finite-dimensional distributions converge; that it must have

a unique limit; and this limit is identical to Ferguson’s Dir(aP0). Care needs to be exercised

regarding the convergence of probability measures on a space of probability measures (yes,

you heard that right). In other words, the complicatedness of the statement Pm →d P needs

to be examined carefully, as part of the construction.

‘Det er å h̊ape at denne alternative konstruksjonen av en Dirichlet-prosess ikke bare er av

teoretisk verdi. Konstruksjonen gir informasjon utover det tre år gamle faktum at Dirichlet-

prosessen eksisterer.’ (Hjort, 1976, last chapter.) Hjort’s 1976 construction takes place

directly on the subspace M0 of all discrete probability measures on (X ,A), so Ferguson’s

non-trivial 1973 theorem that P with probability 1 selects a discrete probability measure is

here automatic.

(iv) Tiwari and Sethuranam (1982, Purdue Symposium), and later Sethuraman (1994, Statistica

Sinica), have given an intriguing explicit representation of a Dirichlet process, in the form of

P =

∞∑
h=1

whδ(ξh),

where the ξh are i.i.d. from P0, and the random probability weights wh constructed in a

certain way, discussed in Exercise [xx ... xx] below. Here, δ(ξh) means the degenerate point-

mass measure with value 1 at position ξh.

(v) Hjort (1990, Annals). [xx via the Beta process. xx]
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(vi) Hjort (2003, HSSS book). [xx via the symmetric representation and then the limit. xx]

6. Some properties for the Dirichlet process

Let P ∼ Dir(aP0) on some space X . Here are a few properties to go through, shedding light on

the behaviour of the random P . Note that the Dirichlet process provides a model for random

probability measures (hence also for random distribution functions, etc.), with independent or

separate interest. The broader appeal lies however in its use as a prior for an unknown distribution,

from which we then have observations, say X1, . . . , Xn. See exercises and notes below.

(a) With A a given set, show that

P (A) ∼ Beta(aP0(A), aP0(Ac)),

with mean and variance

EP (A) = P0(A) and VarP (A) =
P0(A){1− P0(A)}

a+ 1
.

Thus P0 is the mean of P , hence often called simply the prior mean. The a parameter

indicates strength of belief in the prior guess; a large a means a tight distribution around P0,

and vice versa for a smaller a.

(b) Find the covariance and then correlation between P (A) and P (B), first for A and B disjoint,

then with potential overlap.

(c) With g : X → R a function, consider the random mean

θ =

∫
g dP =

∫
g(x) dP (x).

Show that

E θ = θ0 =

∫
g dP0,

so the mean of the random mean is the prior mean. Show also that

Var θ =
σ2
0

a+ 1
,

with σ2
0 =

∫
(g − θ0)2 dP0 the prior variance.

(d) For two functions g1, g2, consider the two random means θ1 =
∫
g1 dP and θ2 =

∫
g2 dP .

Find expressions for the covariance and correlation between these two random neans.

7. The basic updating theorem for the Dirichlet process

Suppose P ∼ Dir(aP0), and that X |P follows the P distribution:

P{X ∈ A |P} = P (A) for all A.

In yet other words, X is a sample of size n = 1 from the given P , where P is selected randomly

from the Dir(aP0) machine first.
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(a) Show that X has distribution P0. Start from

E {I(X ∈ A) |P} = P (A)

and use double expectation.

(b) The task is then to deduce the distribution of P given X = x. Attempt to show that if

A1, . . . , Am is a partition, where x happens to lie in say the first of these, then

(P (A1), . . . , P (Am)) ∼ Dir(aP0(A1) + 1, aP0(A2), . . . , aP0(Am)).

(c) This is an indication that P given x is actually itself a Dirichlet process, with updated

parameter aP0 + δ(x). This also fits nicely with the finite-dimensional situation, see Exercise

3(f). You may attempt to give a formal proof of this basic updating statement for the

Dirichlet process. See Ferguson (1973, Annals) or Ghosal and van der Vaart (2017, CUP

book, Ch. 4).

(d) Then consider a random sample X1, . . . , Xn from the randomly selected P , with the defining

property that

P{X1 ∈ A1, . . . , Xn ∈ An |P} = P (A1) · · ·P (An)

for all A1, . . . , An. With P from the Dirichlet aP0, this defines a joint probability measure

for (P,X1, . . . , Xn). Show, perhaps by induction, that

P |x1, . . . , xn ∼ Dir(aP0 +

n∑
i=1

δ(xi)).

This is really a wondrously and convenient convincing result, which matches the classical

Dirichlet-multinomial situation examined in Exercise 3. Note that the parameter of the

posterior Dirichlet process can be written

aP0 +

n∑
i=1

δ(xi) = aP0 + nPn,

with Pn =
∑n
i=1(1/n)δ(xi) the empirical distribution for the n data points.

8. Simulating from the prior and posterior, for a Dirichlet process

We need to be able to simulate realisations from the prior and the posterior, and here, specifically,

from a given Dirichlet process. There are indeed several recipes for accomplishing this, but the

simplest and most direct is to cut the space into a high number of smaller boxes, and then use

the ensuing finite-dimensional Dirichlet as a fully adequate approximation. To carry out such

finite-dimensional simulation we may use the recipe implicit in Exercise 3(g), which here means

simulating a long list of small Gamma pieces and then normalisting in the end.

Suppose you observe the following data points on the unit interval:

0.103, 0.110, 0.140, 0.175, 0.186, 0.205, 0.219, 0.348, 0.511, 0.592.

I have actually generated these from another distribution, namely the Beta(1, 2), but the statistician

seeing and about to analyse the data does not know this. For the prior for the unknown cumulative

distribution function (cdf) F , take F ∼ Dir(aF0), with F0 the Beta(2, 1).
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Figure 0.2: 100 simulations of F from the Dir(aF0) prior (left); then 100 simulations of F from the Dir(aF0 +nFn)

posterior (right), with the n = 10 data points of Exercise 8. The fat black curves are the prior mean

and posterior mean, respectively.

(a) Simulate say 100 realisations F = {F (x) : x ∈ [0, 1]} from the prior, using the ‘lots of tiny

boxes’ scheme of things. See the left panel of Figure 0.2, where I’ve used a = 3.333.

(b) Then simulate say 100 realisations F from the posterior, where

F |data ∼ Dir(aF0 + nFn),

with nFn =
∑n
i=1 δ(xi). See the right panel of Figure 0.2.

(c) Show that the Bayes estimator, under quadratic loss, is

F̂B(x) = E {F (x) |data} =
aF0(x) + nFn(x)

a+ n
=

a

a+ n
F0(x) +

n

a+ n
Fn(x),

with Fn the empirical distribution function, i.e. the one having point-mass 1/n at each data

point. Show furthermore that the posterior variance is

τ̂2(x) = Var {F (x) |data} =
1

n+ a+ 1
F̂B(x){1− F̂B(x)}.

(d) Given realisations from F , these may be used to read off outcomes for parameters of interest,

like F (0.70)− F (0.60), the mean
∫ 1

0
x dF (x), or the median

µ = min{x : F (x) ≥ 1
2}.
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Carry out analysis for this random median, by computing the µ = µ(F ) for each realisation

of F , for the prior and the posterior. This leads to Figure 0.3, where I used 104 simulations.

(e) Play with your code a bit, to see the influence of a small a or a large a, and of the choice

of the prior mean cdf F0. You should also monitor what happens if you have say n = 40

data points from the underlying data generating mechanism, not only n = 10. You should

get something similar to the right panel of Figure 0.2, but now with a slimmer and tighter

spread around the Bayes estimator F̂B .

(f) Then try a = 0.0001, a very tiny value, to see that happens with the posterior distribution of

the median µ. You should learn that it has a distribution concentrated in the n data points.

Try to find explicit formulae for these point masses,

P(µ = xi |data), for i = 1, . . . , 10.
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Figure 0.3: For the random median µ = min{x : F (x) ≥ 1
2
}, I give histograms of its distribution, for the prior (left)

and the posterior (right), based on 104 simulations, for each case.

9. War and peace, before and after Vietnam

Access the Tolstoyean krigogfred-data dataset on the course website and download it to your

computer. It provides

(xi, zi) for i = 1, . . . , 95,
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the 95 inter-state wars from 1823 to 2003 with at least 1000 battle deaths; here xi is time of onset

and zi the number of battle deaths, for war i. Look through Hjort’s FocuStat Blog Post (which

apparently impressed Steven Pinker enough to cause an admiring tweet about it, to his 368,001

followers), and also the Cunen, Hjort, Nyg̊ard (2018) paper, to get a sense of the themes, the

questions, the predictions of our common future, and the controversies.
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Figure 0.4: 100 simulated realisations of FL, representing the past up to Vietnam (left), and 100 realisations of FR,

representing post-Vietnam period (right). The scale here is that of y = log(z/7061), for all wars with

battle death counts at least 7061.

From these data, carry out the following two follow-up operations. First, limit attention to

the 51 wars where zi ≥ z0, with z0 = 7061, a certain threshold value selected by A. Clauset,

with the statistical intention that above this threshold, the density if proportional to 1/zα, for

an appropriate α. This is related to power laws and fat tails etc.; see again the Hjort blog post.

Second, divide the remaining 51 value of (xi, zi) into a Left part, those 37 wars where xi ≤ 1965.103

(the onset-time for the Vietnam War), and a Right part, those 14 wars where xi > 1965.103.

The statistical task is now to model and analyse the distributions of

yi = log(zi/z0) = log zi − log 7061, for i = 1, . . . , 51,

divided into

y1, . . . , y37, with xi before and up to Vietnam,

y38, . . . , y51, with xi after Vietnam.

Specifically, we take the 37 before and including Vietnam to be i.i.d. from some FL, and the 14

after Vietnam to be i.i.d. from some FR.
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(a) Suppose z has the power law tail property that

(b) It makes sense to take the same prior Dir(aF0) for both FL and FR, since there is controversy

in claiming that there is a difference between them at all; see Clauset’s papers (2017, 2018).

Take indeed F0(y) = 1 − exp(−0.5 y), and exponential, and a = 3.333 (later on you may

tinker with that strength parameter). Work out the posterior distributions, and simulate say

100 realisations from each of them, as I have done to create Figure 0.4.

(c) Carry out the consequent Bayesian nonparametric inference for the difference function δ(y) =

FL(y) − FR(y). Plot the Bayes estimate δ̂(y) = E {δ(y) |data}, along with a pointwise

90% credibility interval. The latter can be constructed accurately, via simulations, or via

± 1.645κ(y), where κ(y) is the posterior standard deviation. Attempt both methods.

(d) [xx something more. inference for median of FL minus median of FR. xx]

10. The marginal distribution of a sample

Suppose that P ∼ Dir(aP0), and that data points are subsequently drawn independently from that

P . The defining property for a sample of size n, is again that

P{X1 ∈ A1, . . . , Xn ∈ An |P} = P (A1) · · ·P (An),

for all sets A1, . . . , An. Here we look at a few properties.

(a) Let X be one of these points, say the first point. Show that its distribution is P0; see also

Exercise 7.

(b) Consider next (X1, X2), the two first data points. Show that their distribution can be ex-

pressed as

Q2(A×B) = P{X1 ∈ A,X2 ∈ B} = EP (A)P (B).

Then give formulae for this expression, (i) when A and B are disjoint; (ii) when they are

identical; (iii) in the general case.

(c) Show that

Q2 =
a

a+ 1
P0 × P0 +

1

a+ 1
P0,12,

where P0,12(A × B) = P0(A ∩ B). We may think about this latter probability component

P0,12 as a mechanism that first picks X1 ∼ P0 and then automatically takes the X2 equal to

the first.

(d) Next study the joint distribution of three observations from a Dirichlet process. Note that

X1, X2, X3 are indeed i.i.d. given P , but the randomness in P makes the three dependent.

Start from

Q3(A×B × C) = P3{X1 ∈ A,X2 ∈ B,X3 ∈ X} = EP (A)P (B)P (C),

and give a formula for the case where A,B,C are disjoint.

(e) [xx then finish this, give clear representation of Q3, find Hjort (1976). xx]
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11. The number of discrete values in a Dirichlet sample

[xx to be written and polished. xx] we have Dn = R1+· · ·+Rn representation. we find Dn/ log n→
a, and limiting normality from Nils 1976,

(log n)1/2(Dn/ log n− a)→d N(0, a).

Also, the simple Dn/ log n is large-sample equivalent to the maximum likelihood estimator.

12. A simple models for clusters in data

[xx to be written out and polished. xx] We consider a simple hierarchical model which in a natural

fashion leads to clusters, or groups, in the data, and where the number of such clusters is not

specified in advance. The setup can be described as a three-step machinery, as follows:

(i) A distribution P is taken from Dir(aP0);

(ii) model parameters θ1, . . . , θn are sampled from P (which in particular means various ties);

(iii) observations y1, . . . , yn are independent, given the θ1, . . . , θn, and yi | θi ∼ f(yi | θi).

The Bayesian task is to understand the posterior distribution of P, θ1, . . . , θn given the observations

y1, . . . , yn.

To make this clear and understandable in a simple prototype setup, consider a case where

the parameters θi form a sample from P , where P ∼ Dir(aP0), with P0 = N(0, σ2
0). We also take

yi ∼ N(θi, σ
2), with known σ. [xx more to come here. xx]

13. The Sethuraman stick-breaking representation

A somewhat surprising representation of the Dirichlet process, stemming from Sethuraman and

Tiwari (1982, Purdue Symposium) and written out more fully in Sethuraman (1994, Sinica), is

described here. With P0 a probability measure, and a positive, we start with B1, B2, B3, . . . being

i.i.d. from Beta(1, a). From these we form weights w1, w2, w3, . . ., from

w1 = B1, w2 = (1−B1)B2, w3 = (1−B1)(1−B2)B3, , wh = (1−B1) · · · (1−Bh−1)Bh.

In addition, we draw an infinite i.i.d. sequence ξ1, ξ2, . . . from P0. The stick-breaking representation

is

P =

∞∑
h=1

whδ(ξh),

with δ(ξh) the unit point-mass in position ξh.

(a) Show that

1− w1 − w2 − w3 = (1−B1)(1−B2)(1−B3),

with the immediate generalisation to 1− w1 − · · · − wn. Show from this that
∑∞
h=1 wh = 1,

with probability 1.

(b) For a fixed set A, consider the random probability p = P (A), using the representation above.

Show that p has mean p0 = P0(A), and that

Var p = E (p− p0)2 = p0(1− p0)/(a+ 1).
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(c) For a given bounded function g, consider the random mean

θ =

∫
g dP =

∞∑
h=1

whg(ξh).

Show that it has mean θ0 =
∫
g dP0 and variance σ2

0/(a+ 1), with σ2
0 =

∫
(g − θ0)2 dP0.

(d) well

(e) well

XX. Brownian motion via convergence of a partial-sum process

well

XX. A little lemma

We shall encounter situations involving long products of the type an =
∏
i≤n(1+zn,i), where there

for each n is a well-defined sequence of zn,i for i = 1, . . . , n. If these are small and their sum

converges, the sequence of products will converge. Specifically, assume

(i) that
∑
i≤n zn,i → z;

(ii) that δn = maxi≤n |zn,i| → 0;

(iii) that
∑
i≤n |zn,i| remains bounded.

Show that then an =
∏
i≤n(1 + zn,i)→ a = exp(z). It is helpful here to write

log(1 + z) = z − 1
2z

2 + z2K(z),

where |K(z)| ≤ 1
2 for all |z| ≤ 1

2 .

Similar results also hold when the product is taken over suitable subsets of i/n, like∏
s<i/n≤t

(1 + zn,i)→ exp(zs,t),

if
∑
s<i/n≤t zn,i → zs,t, etc.

XX. The gamma process

For a given monotone function M(t), starting at M(0) = 0, we may define a gamma process

Z = {Z(t) : t ≥ 0} with the property that it has independent increments with Z(t) − Z(s) ∼
Gamma(M(t)−M(s), 1). Existence of such a process is not entirely obvious, but one is of course

helped by the fact that

Gamma(M(t)−M(s), 1) + Gamma(M(u)−M(t), 1) ∼ Gamma(M(u)−M(s), 1)

for s < t < u, with the two components on the left hand side being independent.

The purpose of this exercise is to work through some of the crucial details for the Gamma

process, which also opens the door for more general constructions later on, like the extended

Gamma process in the next exercise.
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(a) Let G ∼ Gamma(a, b), with density proportional to xa−1 exp(−bx). Show that its Laplace

transform may be written as

E exp(−uG) =
ba

Γ(a)

Γ(a)

(b+ u)a
=

1

(1 + u/b)a
= exp{−a log(1 + u/b)}.

(b) Use this to show that if G1, . . . , Gm are independent Gamma distributed variables, with

parameters (a1, b), . . . , (am, b), then their sum is also Gamma distributed, with parameters

(
∑m
i=1 ai, b).

(c) Show that the negative exponent in the Laplace transform can be expressed as

a log(1 + u/b) =

∫ ∞
0

{1− exp(−us)} dL(s),

with

dL(s) = as−1 exp(−bs) ds.

(d)

(e)

(f)

XX. The extended gamma process

[xx In the course of this exercise I build a more general process, which I term an extended gamma

process. xx] We start with independent and inherently small gammas,

Gm,i ∼ Gamma(a(i/m)(1/m), b(i/m)) for i = 1, 2, . . . ,

and from these form the partial sum process

Zm(t) =
∑
i/m≤t

Gm,i.

Show that the Laplace transform converges properly:

E exp{−uZm(t)} =
∏
i/m≤t

E exp(−uGm,i) = exp
[
−
∑
i/m≤t

a(i/m)(1/m) log{1 + u/b(i/m)}
]
,

which indeed tends to

exp
[
−
∫ t

0

a(s) log{1 + u/b(s)}ds
]
.

XX. The extended gamma process with a Poisson process

well

XX. The jumps of a gamma process

[xx something from Hjort and Ongaro (2006, Metron). xx]

XX. The Beta process

Hjort (1985, SJS) introduced the Beta process, used as a prior process for cumulative hazard

functions, and gave the crucial conjugacy property when used for survival data. A fuller account
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was then given in Hjort (1990, Annals). The present exercise indicates how the Beta process can

be constructed from a limit operation for a partial-sum process involving small Beta components.

We start with a function a0(s), intended to be like a prior guess hazard function, with cumula-

tive A0(t) =
∫ t
0
a0(s) dds. For given m, let Bm,1, Bm,2, . . . be independent Beta random variables,

with

Bm,i ∼ Beta
(
c
( i
m

)
a0

( i
m

) 1

m
, c
( i
m

)
− c
( i
m

)
a0

( i
m

) 1

m

)
.

Here c(s) is a positive function, with at most finitely many discontinuities; it may e.g. be a constant.

Our process is

Am(t) =
∑
i/m≤t

Bm,i for t ≥ 0.

(a) Show that

EZm(t) =
∑
i/m≤t

a0(i/m)(1/m)→ A0(t).

Show also that

VarAm(t) =
∑
i/m≤t

a0(i/m)(1/m){1− a0(i/m)(1/m)}
c(i/m) + 1

→
∫ t

0

a0(s) ds

c(s) + 1
.

(b) Hjort (1985, 1990) proves that Am really converges to a well-defined limit process A =

{A(t) : t ≥ 0}, with independent increments all inside [0, 1], and calls this the Beta process,

with parameters (c, A0). Proving convergence and existence of this limit process takes some

care and tools from empirical processes. The crucial point here is that the Laplace transform

has a well-defined limit, so let us work with

E exp{−uAm(t)} =
∏
i/m≤t

E exp(−uBm,i) =
∏
i/m≤t

(1 + zm,i),

say. We must then work hard enough with the zm,i to be able to apply the Little Lemma of

Exercise XX. Show via Beta moments that

E exp(−uBm,i) = 1 + zm,i = 1 +

∞∑
j=1

(−1)j
uj

j!

Γ(c(i/m))

Γ(c(i/m)a0(i/m))

Γ(c(i/m)a0(i/m) + j)

Γ(c(i/m) + j)
.

(c)

(d)

(e)

XX. The Beta process for survival data

[xx write down and polish. xx] with conjugacy property and updating. the Bayes estimator for

the cumulative hazard is

Â(t) =

∫ t

0

cdA0 + dN

c+ Y
,

with link to the Nelson–Aalen estimator. also, the Bayes estimator for the survival function is

Ŝ(t) =
∏
[0,t]

{
1− dN(s)

Y (s)

}
,
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with link to Kaplan–Meier. Can simulate from A and S given data, and read off what we might

wish for from these, like the posterior median

µ = min{t : F (t) ≥ 1
2}.

XX. Lifelengths in Roman Era Egypt

[xx this to be polished. xx] Access the egypt-data dataset from the course website, pertaining to

the life-lengths of 82 men and 59 women from Roman Era Egypt, the 1st century b.C. This was

a relatively peaceful society, without major wars, etc., and the life-lengths can be seen as having

been sampled from the upper classes of that society. I’ve taken the data from the very first issue

of Biometrika (1901), where Karl Pearson briefly discussed aspects of the life-lengths distribution,

comparing them to Britain 1900.

Here we are interested in aspects of the underlying distributions Fw and Fm, for women and

men, respectively, and, in particular, aspects where we might identify differences between the two

distributions. Let Aw and Am be the cumulative hazard rate functions, along with survival curves

Sw(t) =
∏
[0,t]

{1− dAw(s)} and Sm(t) =
∏
[0,t]

{1− dAm(s)}. (eg1)

We use Beta process priors for the cumulative hazard rates, Aw ∼ Beta(cw, A0,w) and Am ∼
Beta(cm, A0,m).

(a) Assume for about two minutes that Aw and Am are continuous functions. Then show from

the product integrals that the familiar formulae

Sw(t) = exp{−Aw(t)} and Sm(t) = exp{−Am(t)} (eg2)

emerge. With the Beta process priors to be used, however, there are discrete components,

and we prefer (eq1) over (eq2), in terms of setup, modelling, prior to posterior, analysi, and

interpretation. See also the general discussion regarding this point in Hjort (1990, Annals).

(b) To make this concrete, choose the same Beta process prior for men and for women, with prior

guess A0(t) =
∫ t
0
α0(s) ds corresponding to a Gamma with mean 30.00 and standard deviation

20.00, and then your own c(s) strength function. Simulate realisations from Aw, Am, and by

implication Sw, Sm, on your screen.

(c) Then update the Beta processes, given the data from the heroic Egyptian women and men,

to say

Aw |data ∼ Beta(cw + Yw, Âw) and Am |data ∼ Beta(cm + Ym, Âm).

In particular, compute and display both

Âw(t) =

∫ t

0

cw dA0(s) + dNw(s)

cw(s) + Yw(s)
and Âm(t) =

∫ t

0

cm dA0(s) + dNm(s)

cm(s) + Ym(s)
,

and the survival curves

Ŝw(t) =
∏
[0,t]

{
1− cw(s) dA0(s) + dNw(s)

cw(s) + Yw(s)

}
and Ŝm(t) =

∏
[0,t]

{
1− cm(s) dA0(s) + dNm(s)

cm(s) + Ym(s)

}
.
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(d) Compute and display also the standard deviation curves, say κ̂w(t) and κ̂m(t) for Aw and

Am, and τ̂w(t) and τ̂m(t) for Sw and Sm.

(e) Display the easy and simulation free approximate pointwise 90% confidence bands, of the

type

Âw(t)± 1.645κw(t) and Âm(t)± 1.645κm(t),

and similarly for the survival curves. Crucially, in order to check the differences between the

female and male populations, do this also for Aw −Am and Sw − Sm.

(f) Then re-do the above point, without formulae, but via simulations from the posterior Beta

processes.

(g) This thing looks cool and relevant: Consider the survival curve ratio

ρ(t) =
Sm(t)

Sw(t)
=
∏
[0,t]

1− dAm(s)

1− dAw(s)
.

Find formulae for the prior and posterior mean of ρ(t), and display the resulting ρ̂(t). Sup-

plement this with a pointwise 90% credibility band, from simulations, or from conditional

variances.

(h) Summarise your findings properly. Yes, the women and the men of Roman Era Egypt had

different life-length distributions. For which age interval is this most clear? And what could

be the underlying mechanism or explanations?

XX. The Bernoulli process and the Poisson process

[xx to be written down. xx] showing that a Bernoulli construction becomes a Poisson process.

XX. The Beta process with a Bernoulli process

[xx to be written down. xx] prior A ∼ Beta(c, A0) for the cumulative intensity of a Bernoulli

process Z. then

A |data ∼ Beta(c+ 1, Â),

where

Â(t) =

∫ t

0

c(s) dA0(s) + dZ(s)

c(s) + 1
.

to become a Nils-Emil story, with the Oslo Police tweets. with variation: extended Gamma.

perhaps with marks or covariates.

XX. The Gamma process, with a Poisson process, with a marks process

well

XX. Bernshtĕın–von Mises theorems

[xx to be written down xx] first for Dirichlet, with fairly clear details. but it takes the Donsker

and Kolmogorov thing. then for Beta processes.

XX. The Bayesian bootstrap

well
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XX. Hjort’s informative Bayesian bootstrap

well

XX. Simulating realisations of a Gaussian process

[xx to be written down and polished. xx] We say that Z = {Z(x) : x ∈ [a, b]} is a Gaussian

process if all its finite-dimensional distributions are Gaussian. In particular, Z(x) is normal, say

N(m(x), σ2(x)), and (Z(x), Z(x′)) is binormal, with correlation say ρ(x, x′).

(a) Explain why giving the mean function m(x), the standard deviation function σ(x), and the

correlation function ρ(x, x′), is actually sufficient to determine the full distribution of Z.

– For some Gaussian processes there are specialised techniques making it easier-than-brute-

force to simulate realisations. In general, however, we can’t do much better than brute-force,

which means simulating Z∗ = (Z(x1), . . . , Z(xn)), for a fine enough grid x1, . . . , xn. The

implied distribution is multinormal,

Z∗ ∼ Nn(ξ,Σ),

with ξ having components m(xi) and Σ of size n×n and with components σ(xi)σ(xj)ρ(xi, xj).

Thus simulating from Z becomes practically the same as being able to simulate from a general

multinormal Nn(0,Σ).

(c) The R algorithm rmvnorm may be used, for simulating from a given multinormal, but my

impression is that it might not work well for higher n. A general technique that can be used

here is as follows. First, find a unitary matrix P such that

PΣP t = D = diag(λ1, . . . , λn).

A unitary or orthonormal matrix Q is one having the property that QQt = I = QtQ. Finding

such a P , for given Σ, can be achieved via the eigen algorithm in R. Then define, compute,

and store the root-matrix

Σ1/2 = PD1/2P t, with D1/2 = diag(λ
1/2
1 , . . . , λ1/2n ).

Verify that Σ1/2Σ1/2 = Σ. Then use

z = Σ1/2ε, where ε = (ε1, . . . , εn)t ∼ Nn(0, In),

i.e. these are independent standard normals. Verify that z then has the desired multinormal

distribution.

(d) Consider an Ornstein–Uhlenbeck process Z on [0, 10], with mean zero and covariance function

cov{Z(x), Z(x′)} = exp(−a|x − x′|), say with a = 1.3579. Simulate and plot 50 realisations

of the Z process.

XX. Bayesian Kriging

[xx to be written out and polished. xx] Suppose there is a continuous process Z(x) on [0, 1], which

we have observed only in a small number of locations. How can we estimate Z(x) where we have

not seen it, along with a measure of precision? This translates to ‘spatial interpolation’ and so on,
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and with Kriging one of its names (from the Master Thesis of Danie Gerhardus Krige, 1919–2013,

a South African geostatistician).

Suppose Z(x) is Gaussian, with constant mean function a, and covariance function

cov{Z(x), Z(x′)} = σ2K0(|x− x′|),

where K0(r) is the correlation function. This means a stationary setup, where Z(x) and Z(x+ r)

have a correlation independent of position x.

(a) Use a = 1.3579 and K0(r) = exp(−λr), with λ = 2.222. Simulate realisations of Z(x), for

x ∈ [0, 1]. Take σ = 1 here (but later on we may tinker with this precision parameter).

(b) Assume now that the scientific team has come back from their expedition and report that for

positions 0.11, 0.22, 0.33, 0.77, 0.88, they found that Z(x) is equal to 0.99, 1.33, 1.66, 1.22, 1.11

(yes, I’m inventing this, and will search for a real application later on). Find expressions

giving the posterior distribution of Z = {Z(x) : x ∈ [0, 1]}.

(c) Find in particular an expression for

Ẑ(x) = E {Z(x) |data},

and plot that curve.

(d) Find also a formula for

κ̂(x)2 = Var {Z(x) |data},

and plot the 90% prediction confidence band

Ẑ(x)± 1.645 κ̂(x).

(e) Simulate say 50 realisations from the distribution of Z = {Z(x) : x ∈ [0, 1]} given the data,

and plot them.

XX. Bayesian nonparametric regression

[xx to be written out and polished. xx] model is

yi = m(xi) + εi for i = 1, . . . , n,

where the εi are i.i.d. from N(0, σ2). Suppose m(x) is Gaussian, with mean function m0(x) and

covariance function for the form σ2
0K0(|x− x′|), with a given correlation function K0(r).

Then find expressions for the conditional mean, the conditional variance, and conditional

covariance, of the process m(x), given the data (xi, yi).

XX. A nonparametric minimax estimator for an unknown mean

[xx to be written out and polished. should be cool. xx] observations x1, . . . , xn are i.i.d. from some

F on the unit interval. wish to estimate θ =
∫
xdF (x), with quadratic loss function (θ̂ − θ)2.

risk function for the direct sample average x̄:

R(x̄, F ) = (1/n)σ(F )2, with σ(F )2 =

∫
{x− θ(F )}2 dF (x).
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find the max-risk. Then the cool enough

θ̂ =
1√
n+ 1

1
2 +

√
n√

n+ 1
x̄.

find the risk function and its max value. Then show that it is minimax (Lehmann 1951, Berkeley

Notes, precursor to the Theory of Point Estimation book). Then show that it is actually also

admissible; Lehmann made an error her, in these 1951 Berkeley Notes, but Nils 1976 has several

proofs.
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