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This extended preface is meant to explain why you are right to be curious about Bayesian non-

parametrics – why you may actually need it and how you can manage to understand it and use it.

The preface also serves as an introductory chapter, giving an overview of the aims and contents of

the book. We also explain the background for how the book came into existence, delve briefly on

the history of the still relatively young field of Bayesian nonparametrics, and offer some concluding

remarks, pertaining to various challenges and likely future developments of the area.

1 Bayesian nonparametrics

As modern statistics has developed over the past few decades various ‘dichotomies’, where pairs of

approaches are somehow contrasted, are not as sharp as they appeared to be in the past. That some

border lines appear more blurred than a generation or two ago is also seen regarding the contrasting

pairs ‘parametric vs. nonparametric’ and ‘frequentist vs. Bayes’. It appears to follow that ‘Bayesian

nonparametrics’ cannot be a very well-defined body of methods.

1.1 What is it all about?

It is nevertheless an interesting exercise to delineate some of the implied regions of statistical method-

ology and practice by constructing a two-by-two table of sorts, via the two ‘factors’ mentioned above;

Bayesian nonparametrics would then be whatever is not found inside the other three categories.

(i) ‘Frequentist parametrics’ encompasses the core of classical statistics, involving methods as-

sociated primarily with maximum likelihood, developed in the 1920ies and onwards. Such methods

relate to various optimum tests, with calculation of p-values, optimal estimators, confidence inter-

vals, multiple comparisons, etc. Some of the procedures stem from exact probability calculations for

models that are sufficiently amenable to mathematical derivations, while others relate to the appli-

cation of large-sample techniques (central limit theorems, delta methods, higher-order corrections

involving expansions or saddle-point approximations, etc.).

(ii) ‘Bayesian parametrics’ correspondingly comprises classic methodology for prior and posterior

distributions in models with a finite (and often low) number of parameters. Such methods, starting

from the premise that uncertainty about model parameters somehow may be represented in terms of

probability distributions, have arguably been in existence for more than a hundred years (since the

basic theorem that drives the machinery simply says that the posterior density is proportional to the

product of the prior density with the likelihood function, which again relates to the Bayes theorem

of ca. 1763), but were naturally quite limited to a short list of sufficiently simple statistical models

and priors. The applicability of Bayesian parametrics widened significantly with the advent and

availability of modern computers, say from ca. 1975 and onwards, and then with the development of



further numerical methods and software packages pertaining to numerical integration and Markov

chain Monte Carlo (MCMC) simulations, say from ca. 1990 and onwards.

As for category (i) above, asymptotics is often useful also for Bayesian parametrics, partly for

giving practical and simple to use approximations to the exact posterior distributions and partly

for proving results of interest about the performance of the methods, including aspects of similarity

between methods arising from frequentist and Bayesian perspectives. Specifically, frequentists and

Bayesians agree in most matters, to the first order of approximation, for inference from parametric

models, as the sample size increases. The mathematical theorems that in various ways make such

statements precise are sometimes collectively referred to as ‘Bernshtĕın–von Mises theorems’; see

e.g. Le Cam and Young (1990, Ch. 7) for a brief treatment of this theme, including historical

references going back not only to Bernshtĕın (1917) and von Mises (1931) but all the way back to

Laplace (1810). One such statement is that confidence intervals computed by the frequentist and

the Bayesians (who frequently term them credibility intervals), with the same level of confidence (or

credibility), become equal, to the first order of approximation, with probability tending to one as

the sample size increases.

(iii) ‘Frequentist nonparametrics’ is a somewhat mixed bag, covering various different areas of

statistics. The term has historically been associated with various test procedures that are or asymp-

totically become ‘distribution free’, leading also to nonparametric confidence intervals and bands,

etc.; for methodology related to statistics based on ranks (cf. Lehmann, 1975); then progressively

with estimation of probability densities, regression functions, link functions etc., without parametric

assumptions; and also with specific computational techniques such as the bootstrap. Again, asymp-

totics plays an important role, both for developing fruitful approximations and for understanding

and comparing properties of performance. A good reference book for learning about several classes

of these methods is Wasserman (2006).

(iv) What ostensibly appears to remain for our fourth category, then, that of ‘Bayesian nonpara-

metrics’, are models and methods characterised by (a) big parameter spaces (unknown density and

regression functions, link and response functions, etc.) and (b) construction of probability measures

over these spaces. Typical examples include Bayesian set-ups for density estimation (in any dimen-

sion), nonparametric regression with a fixed error distribution, hazard rate and survival function

estimation for survival analysis, without or with covariates, etc. The division between ‘small’ and

‘moderate’ and ‘big’ for parameter spaces is not meant to be very sharp, and the scale is interpreted

flexibly (see e.g. Green and Richardson, 2001, for some discussion of this).

It is clear that category (iv), which is the focus of our book, must meet challenges of a greater

order than for the other three categories. The mathematical complexities are more demanding, since

placing well-defined probability distributions on potentially infinite-dimensional spaces is inherently

harder than for Eucledian spaces. Added to this is the challenge of ‘understanding the prior’; the

ill-defined transformation from so-called ‘prior knowledge’ to ‘prior distribution’ is hard enough for

elicitation in lower dimensions and of course becomes even more challenging in bigger spaces. Fur-

thermore, the resulting algorithms, e.g. for simulating unknown curves or surfaces from complicated

posterior distributions, tend to be more difficult to set up and to test properly.

Finally, in this short list of important subtopics, we must note that the bigger world of nonpara-
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metric Bayes holds more surprises and occasionally exhibit more disturbing features than what the

smaller and more comfortable world of parametric Bayes does. It is a truth universally acknowledged

that a statistician in possession of an infinity of data points must be in want of the truth – but some

nonparametric Bayes constructions actually lead to inconsistent estimation procedures, where the

truth is not properly uncovered when the data collection grows. Also, the Bernshtĕın–von Mises

theorems alluded to above, which hold very generally for parametric Bayes problems, tend not to

hold as easily and broadly in the infinite-dimensional cases. There are e.g. important problems where

the nonparametric Bayes methods obey consistency (the posterior distribution properly accumulates

its mass around the true model, with increased sample size), but with a different rate of convergence

than that of the natural frequentist method for the same problem. Thus separate classes of situations

typically need separate scrutiny, as opposed to theories and theorems that apply very grandly.

It seems to us to be clear that the potential list of good, worthwhile nonparametric Bayes

procedures must be rather longer, so to speak, than the already enormously long lists of Bayes

methods for parametric models, simply because bigger spaces contain more than smaller ones. A

book on Bayesian nonparametrics must therefore limit itself to some of these worthwhile procedures.

A similar comment applies to the study of these methods, in terms of performance, comparisons with

results from other approaches, etc. (making the distinction between the construction of a method

and the study of its performance characteristics).

1.2 Who needs it?

Most modern statisticians have become well acquainted with various non- and semiparametric tools,

on the one hand (nonparametric regression, smoothing methods, classification and pattern recogni-

tion, proportional hazards regression, copulae models, etc.), and with the most important simulation

tools, on the other (rejection-acceptance methods, MCMC strategies like the Gibbs Sampler and

the Metropolis algorithm, etc.), particularly in the realm of Bayesian applications, where the task

of drawing simulated realisations from the posterior distribution is the main operational job. The

combination of these methods is becoming increasingly popular and important (in a growing number

of ways), and each such combination may be said to carry the stamp of Bayesian nonparametrics.

To answer the question of why combining nonparametrics with Bayesian posterior simulations

is becoming more important, one component is related to practical feasibility, in terms of software

packages and implementation of algorithms. The other component is that such solutions contribute

to the solving of actual problems, in a steadily increasing range of applications, as indicated in this

book, and as seen at workshops and conferences dealing with Bayesian nonparametrics. The steady

influx of good real-world application areas contributes both to the sharpening of tools and to the

sociological fact that not only hard-core and classically oriented statisticians, but also various schools

of other researchers in quantitative disciplines, lend their hands to work in variations of nonparamet-

ric Bayes methods. Bayesian nonparametrics is used by researchers working in finance, geosciences,

botanics, biology, epidemiology, forestry, paleontology, computer science, machine learning, recom-

mender systems, etc.

By pre-fixing various methods and statements by the word ‘Bayesian’ we are already acknowl-

edging that there are different schools of thought in statistics – Bayesians place prior distributions
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over their parameter spaces while parameters are fixed unknowns for the frequentists. We should also

realise that there are different trends of thought regarding how statistical methods are actually used

(as partly opposed to how they are constructed). In an engaging discussion paper, Breiman (2001)

argues that contemporary statistics lives with a snowean ‘two cultures’ problem. In some applica-

tions the careful study and interpretation of finer aspects of the model matter and are of primary

concern, as in various substantive sciences – an ecologist or a climate researcher may place great

emphasis on a finding that a certain statistical coefficient parameter is positive, for example, as this

might be tied to scientifically relevant questions of identifying whether a certain background factor

really influences a phenomenon under study. In other applications such finer distinctions are largely

irrelevant, as the primary goals of the methods are to make efficient predictions and classifications of

a sufficient quality. This pragmatic viewpoint, of making good enough ‘black boxes’ without specific

regard to the components of the box in question, is valid in many situations – one might be satisfied

with a model that predicts climate parameters and the number of lynx in the forest, without always

needing or aiming to understand the finer mechanisms involved in these phenomena.

This continuing debate is destined to play a role also for Bayesian nonparametrics, and the right

answer to what is more appropriate, and to what is more important, would be largely context-driven.

A statistician applying Bayesian nonparametrics may use one type of model for uncovering effects

and another for making predictions or classifications, even when dealing with the same data. Using

different models for different purposes, even with the very same data set, is not a contradiction in

terms, and relates to different loss functions and to themes of interest driven inference; cf. various

focussed information criteria for model selection (see Claeskens and Hjort, 2008, Ch. 6).

It is also empirically true that some statistics problems are easier to attack using Bayesian

methods, with machineries available that make analysis and inference possible, in the partial absence

of frequentist methods. This picture may of course be shifting with time, as better and more refined

frequentist methods may be developed also for e.g. complex hierarchical models, but the observation

reminds us that there is a necessary element of pragmatism in modern statistics work; one uses what

one has, rather than spending three more months for developing alternative methods. An eclectic

view of Bayesian methods, also among those statisticians hesitant to accept all of the underlying

philosophy, is to nevertheless use them, as they are practical and have good performance. Indeed

a broad research direction is concerned with reaching performance related results about classes of

nonparametric Bayesian methods, as partly distinct from the construction of the models and methods

themselves (cf. Chapter 2 in this book and its references). For some areas in statistics, then, including

some surveyed in this book, there is an ‘advantage Bayes’ situation. A useful reminder in this regard

is the view expressed e.g. by Art Dempster (see Wasserman, 2008): ‘a person cannot be Bayesian

or frequentist; rather, a particular analysis can be Bayesian of frequentist’. Another and perhaps

humbling reminder is Good’s (1959) lower bound for the number of different Bayesians (46,656,

actually), a bound that perhaps needs to be revised upwards when discussion concerns nonparametric

Bayesians.
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1.3 Why now?

Themes of Bayesian nonparametrics have engaged statisticians for about forty years, but now, as in

around 2010 and onwards, the time is ripe for further rich developments and applications of the field.

This is due to a confluence of several different factors: the availability and convenience of computer

programmes and accessible software packages, loaded down to the laptops of the modern scientists,

along with methodology and machinery for finessing and fine-tuning these algorithms for new ap-

plications; the increasing accessibility of statistical models and associated methodological tools for

taking on new problems (leading also to the development of further methods and algorithms); various

developing application areas parallelling statistics, that find use for these methods and sometimes

develop them further; and the broadening meeting points for the two flowing rivers of nonparametrics

(as such) and Bayesian methods (as such).

Elements of the growing trend and importance of Bayesian nonparametrics can also be traced

in the archives of conferences and workshops devoted to such themes. In addition to having been on

board in various broader conferences over several decades, an identifiable subsequence of workshops

and conferences specifically set up for Bayesian nonparametrics per se has developed as follows, with

a rapidly growing number of participants: Belgirate (1997), Reading (1999), Ann Arbor (2001),

Rome (2004), Jeju (2006), Cambridge (2007), Turin (2009). Monitoring the programmes of these

conferences one learns that development has been and remains steady, both regarding principles and

practice.

Two more long-standing series of workshops are of interest to researchers and learners of non-

parametric Bayesian statistics. The BISP series (Bayesian inference for stochastic processes) is

focussed on nonparametric Bayesian models related to stochastic processes. Its sequence up to the

time of writing reads Madrid (1998), Varenna (2001), La Mange (2003), Varenna (2005), Valencia

(2007), Brixen (2009), alternating between Spain and Italy. Another related research community is

defined by the series of research meetings on Objective Bayes methodology. The coordinates of the

O’Bayes conference series history are Purdue, USA (1996), Valencia, Spain (1998), Ixtapa, Mexico

(2000), Granada, Spain (2002), Aussois, France (2003), Branson, USA (2005), Rome, Italy (2007),

Philadelphia, USA (2009).

2 The aims, purposes and contents of this book

The present book has in a sense grown out of a certain event. The book reflects this particular origin,

but is very much meant to stand solidly and independently on its constructed feet, as a broad text

on modern Bayesian nonparametrics; in other words, readers do not need to know about or take into

account the event that led to the book being written.

2.1 A background event

The event in question was a four-week programme on Bayesian nonparametrics hosted by the Isaac

Newton Institute of Mathematical Sciences at Cambridge, UK, in August 2007, and organised by the

four authors. In addition to involving a core group of some twenty researchers from various countries,
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the programme organised a one-week international conference with about a hundred participants.

These represented an interesting modern spectrum of researchers whose work in different ways is re-

lated to Bayesian nonparametrics – those engaged in methodological statistics work, from university

departments and elsewhere; statisticians involved in collaborations with researchers from substan-

tive areas (like medicine and biostatistics, quantitative biology, mathematical geology, information

sciences, paleontology); mathematicians; machine learning researchers; and computer scientists.

For the workshop, the organisers selected four experts to provide open tutorial type forum

lectures, representing four broad, identifiable themes pertaining to Bayesian nonparametrics. These

were seen not merely as ‘four themes of interest’, but as closely associated with the core models, the

core methods, and the core application areas, of nonparametric Bayes. These tutorials were

– Dirichlet processes, related priors and posterior asymptotics (by S. Ghosal);

– Models beyond the Dirichlet process (by A. Lijoi, with I. Prünster as co-author);

– Nonparametric Bayes applications to biostatistics (by D.B. Dunson); and

– Bayesian nonparametrics in machine learning (by Y.W. Teh, with M.I. Jordan as co-author).

The programme and the workshop were evaluated (by the participants and other parties) as having

been very successful, by having bound together different strands of work and perhaps by opening

some doors to further research work of promise, both theme-wise and person-wise. The experiences

made it clear that nonparametric Bayes is an important growth area, with various side-streams that

perhaps risk evolving too much by themselves if they do not make connections with the core field or

with other of its components. All of this led to the idea of creating the present book.

2.2 What does this book do?

We have chosen to structure the book around these four core methods and core themes, associated

with the tutorials mentioned above, and here appearing in the form of invited chapters. These are

then complemented by ‘extension chapters’, as follows:

– Bayesian nonparametric methods: Motivation and ideas (by S.G. Walker, extending Ghosal’s

chapter);

– Further models and applications (by N.L. Hjort, extending Lijoi and Prünster’s chapter);

– More nonparametric Bayesian models for biostatistics (by P. Müller and F. Quintana, extending

Dunson’s chapter); and

– Bayesian nonparametrics for supervised and unsupervised learning (by J. Griffin and C. Holmes,

extending Teh and Jordan’s chapter).

The extension chapters provide discussion, further developments, and links to related areas.

As explained at the end of the previous section, it would not be possible to have ‘everything

important’ inside a single book, in view of the size of the expanding topic. It is our hope and view,

however, that the dimensions we have probed are sound, deep and relevant ones, and that different

strands of readers will benefit from working their way through some or all of these.

The first core theme (Chapters 1 and 2) is partly concerned with some of the cornerstone classes

of nonparametric priors, including the Dirichlet process and some of its relatives. Mathematical

properties are investigated, including characterisations of the posterior distribution. The theme
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also encompasses properties of the behaviour of the implied posterior distributions, and, specifically,

consistency and rates of convergence. Bayesian methodology is often presented as essentially a

machinery for coming from the prior to the posterior distributions, but is at its most powerful when

coupled with decision theory and loss functions. This is true for the nonparametric situations as

well, as also discussed inside this first theme.

The second main theme (Chapters 3 and 4) is mainly occupied with the development of the

more useful nonparametric classes of priors beyond those related to the Dirichlet processes men-

tioned above: completely random measures, neutral to the right processes, the Beta process, par-

tition functions, clustering processes, models for density estimation, stationary time series with

nonparametrically modelled covariance functions, models for random shapes, etc., along with many

application areas, such as survival and event history analysis,

The third and fourth core themes are more application driven that the two first ones. The third

core theme (Chapters 5 and 6) focusses on biostatistics. Topics discussed and developed include

personalised medicine (a growing trend in modern biomedicine), hierarchical modelling with Dirichlet

processes, clustering strategies and partition models, and functional data analysis.

Finally the fourth main theme (Chapters 7 and 8) represents the important and growing applica-

tion area often referred to as machine learning. Hierarchical modelling, again with Dirichlet processes

as building blocks, lead to algorithms that solve problems in information retrieval, multi-population

haplo-type phasing, word segmentation, speaker diarisation, and so-called topic modelling. The

models that help accomplishing these tasks include Chinese restaurant franchises and Indian buf-

fet processes, in addition to extensive use of Gaussian processes, priors on function classes such as

splines, free-knot basis expansions, MARS and CART, etc.

2.3 How to teach from this book

Our book may be used as the basis for a Master or PhD level course in Bayesian nonparametrics.

Various options exist, for different audiences and for different levels of mathematical skills. One

venue, for perhaps a typical audience of statistics students, is to concentrate on core themes two

(Chapters 3 and 4) and three (Chapters 5 and 6), supplemented with computer exercises (drawing

on methods exhibited in these chapters, and using e.g. the software package described in Jara,

2007). A course building upon the material in these chapters could be focussed on data analysis

problems and typical data formats arising in biomedical research problems. Nonparametric Bayesian

probability models would be introduced as and when needed to address the data analysis problems.

More mathematically advanced courses could then include more of core theme one (Chapters 1

and 2). Such a course would be naturally more centred around a description of nonparametric

Bayesian models and include applications as examples to illustrate the models. A third option is

a course designed for an audience with interest in machine learning, hierarchical modelling, etc. It

would be focussed on core themes two (Chapters 2 and 3) and four (Chapters 7 and 8).

Natural prerequisites for such courses as briefly outlined here, and by association for working

with this book, would include basic statistics courses (regression methods associated with generalised

linear models, density estimation, parametric Bayes), perhaps some survival analysis (hazard rate

models, etc.), along with basis skills with simulation methods (MCMC strategies).
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3 A brief history of Bayesian nonparametrics

Lindley (1972) noted in his review of general Bayesian methodology that Bayesians up to then

had been ‘embarrassingly silent’ in the area of nonparametric statistics. He pointed out that there

were in principle no conceptual difficulties with combining ‘Bayesian’ with ‘nonparametric’, but

indirectly acknowledged that the mathematical details in such constructions would have to be more

complicated.

3.1 From the start to the present

Independently of and concurrently with Lindley’s review, what may be considered to be the his-

torical start of Bayesian nonparametrics took place in California. The 1960ies had been a period

of vigorous methodological research into various nonparametric directions. David Blackwell, among

the prominent members of the statistics department at Berkeley (and, arguably, belonging to the

Bayesian minority there), suggested to his colleagues that there ought to be Bayesian parallels to

problems and solutions, for some of these nonparametric situations. These conversations led to two

noteworthy developments, both important in their own rights and for what followed. These were (i)

a 1970 U.C.L.A. technical report termed ‘A Bayesian analysis of some nonparametric problems’, by

T.S. Ferguson; and (ii) a 1971 University of Berkeley technical report called ‘Tailfree and neutral

random probabilities and their posterior distributions’, by K.A. Doksum. These led after review

processes to the two seminal papers Ferguson (1973) in Annals of Statistics, where the Dirichlet

process is introduced, and Doksum (1974) in Annals of Probability, featuring his neutral to the right

processes (see Chapters 2 and 3 for descriptions, inter-connections and further developments of these

classes of priors). The neutral to the right processes are also foreshadowed in Doksum (1972). In

this very first wave of genuine Bayesian nonparametrics work, also Ferguson (1974) stands out, an

invited review paper for Annals of Statistics. Here he gives early descriptions of and results for Pólya

trees, for example, and points to further fruitful research problems.

We ought also to mention that there were earlier contributions to constructions of random

probability measures and their probabilistic properties, such as Kraft and van Eeden (1964) and

Dubins and Freedman (1966). More specific Bayesian connections, including matters of consistency

and inconsistency, were made in Freedman (1963) and Fabius (1964), involving also the important

notion of tailfree distributions. Similarly, a density estimation method given in Good and Gaskins

(1971) may be seen to have a Bayesian nonparametric root, involving an implied prior on the set

of densities. Nevertheless, to the extent that such finer historical distinctions are of interest, we

would identify the start of Bayesian nonparametrics with the work described above by Ferguson and

Doksum.

These early papers provided significant stimulus for many further developments, including re-

search on various probabilistic properties of these new prior and posterior processes (probability

measures on spaces of functions), procedures for density estimation based on mixtures of Dirichlet

processes, applications to survival analysis (with suitable priors on the random survivor functions,

or cumulative hazard functions, and with methodology developed to handle censoring), a more flex-

ible machinery for Pólya trees and their cousins, etc. We point to Chapters 2 and 3 for further
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information, rather than detailing these developments here.

The emphasis in this early round of new papers was perhaps simply on the construction of new

prior measures, for an increasing range of natural statistical models and problems, along with suf-

ficiently clear results on how to characterise the consequent posterior distributions. Some of these

developments were momentarily hampered or even stopped by the sheer computational complex-

ity associated with handling the posterior distributions; sometimes exact results could be written

down and proved mathematically, but algorithms could not always be constructed to evaluate these

expressions. The situation improved around 1990, when simulation schemes of the MCMC variety

became more widely known and implementable, at around the time when statisticians suddenly had

real and easily programmable computers in their offices (the MCMC methods had in principle been

known to the statistics community since around 1970, but it took two decades for the methods to

become widely and flexibly used; see e.g. Gelfand and Smith, 1990). The MCMC methods were at

the outset constructed for classes of finite-parameter problems, but it became apparent that their

use could be extended to solve problems also in Bayesian nonparametrics.

Another direction of research, in addition to the purely constructive and computational sides of

the problems, is that of performance: how do the posterior distributions behave, in particular when

the sample size increases, and are the implicit limits related to those reached in the frequentist camp?

Some of these questions first surfaced in Diaconis and Freedman (1986a, 1986b), where situations

were exhibited in which the Bayesian machine yielded asymptotically inconsistent answers; cf. also

the many discussion contributions to these two papers. This and similar research made it clearer

to researchers in the field that even though asymptotics typically lead to various mathematical

statements of the comforting type ‘different Bayesians agree among themselves, and also with the

frequentist, as the sample size tends to infinity’, for finite-dimensional problems, results are rather

more complicated in infinite-dimensional spaces; cf. Chapters 1 and 2 in this book and comments

already made in Section 1.1.

3.2 Applications

The subsection above dealt in essence with theoretical developments. A reader sampling his or

her way through the literarure briefly surveyed there will make the anthropological observation that

articles written say after 2000 have a different look to them than those written say around 1980. This

is partly reflecting a broader trend, with a transition of sorts that has moved the primary emphases

of statistics from the more mathematically oriented articles to those nearer to actual applications

– there are fewer sigma-algebras and less measure theoretic language, and more on motivation,

algorithms, problem-solving and illustrations.

The history of applications of Bayesian nonparametrics is perhaps a more complicated and less

well-defined one than that of the theoretical counterpart. For natural reasons, including the general

difficulty of transforming mathematics to efficient algorithms and the lack of good computers in the

beginning of the nonparametric Bayes adventures, applications simply lagged behind. Ferguson’s

(1973, 1974) seminal papers are incidentally noteworthy also since they spell out interesting and

non-trivial applications, e.g. to adaptive investment models and to adaptive sampling with recall,

though without data illustrations. As indicated above, the first broad theoretical foundations stem
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from the early 1970ies, while the first note-worthy real-data applications, perhaps primarily in the

areas of survival analysis and biostatistics, started to emerge in the early 1990ies (see e.g. the book by

Dey, Müller and Sinha, 1998). At the same time various rapidly growing application areas emerged

inside machine learning (pattern recognition, bioinformatics, language processing, search engines;

cf. Chapter 7). More information and further pointers to actual application areas for Bayesian

nonparametrics may be found by browsing the programmes for the Isaac Newton Institute workshop

2007 (www.newton.ac.uk/programmes/BNR/index.html) and that of the Carlo Alberto Programme

in Bayesian Nonparametrics 2009 (bnpprogramme.carloalberto.org/index.html).

3.3 Where does this book fit in the broader picture?

We end this section by pointing to a short and annotated list of books and articles in the literature

that provide overviews of Bayesian nonparametrics (necessarily with different angles and emphases).

The first and very early one of these is Ferguson (1974), mentioned above. Dey, Müller and Sinha

(1998) is an edited collection of papers, with an emphasis on more practical concerns, and in par-

ticular containing various papers dealing with survival analysis. The book Ibrahim, Chen and Sinha

(2001) gives a comprehensive treatment of the by then more prominently practical methods of non-

parametric Bayes pertaining to survival analysis. Walker, Damien, Laud and Smith (1999) is a read

discussion paper for the Royal Statistical Society, exploring among other issues that of more flexible

methods for Pólya trees. Hjort (2003) is a later discussion paper, reviewing various topics and ap-

plications, pointing to research problems, and making connections to the broad ‘Highly Structured

Stochastic Systems’ theme that is the title of the book in question. Similarly Müller and Quintana

(2004) provides another review of established results and some evolving research areas. Ghosh and

Ramamoorthi (2003) is an important and quite detailed, mathematically oriented book on Bayesian

nonparametrics, with focus on precise probabilistic properties of priors and posteriors, including that

of posterior consistency (cf. Chapters 1 and 2 of this book). Lee (2004) is a slim and elegant book

dealing with neural networks via tools from Bayesian nonparametrics.

4 Further topics

Where would you want to go next (after having worked with this book)? The purpose of the present

section is to rather briefly point to some of the research directions inside Bayesian nonparametrics

that somehow lie outside the natural boundaries of the present book.

Gaussian processes: Gaussian processes have an important role in several branches of probability

theory and statistics, also for problems related to Bayesian nonparametrics. An illustration could

be of regression data (xi, yi) where yi is modelled as m(xi)+ ǫi, with say Gaussian i.i.d. noise terms.

If the unknown m(·) function is modelled as a Gaussian process with a known covariance function,

then the posterior is another Gaussian process, and Bayesian inference may proceed. There are many

extensions of this simple scenario, yielding Bayesian nonparametric solutions to different problems,

ranging from prediction in spatial and spatial-temporal models (see e.g. Gelfand, Guindani and

Petrone, 2008) to machine learning (cf. Rasmussen and Williams, 2006). Gaussian process models are

also a popular choice for inference with output from computer simulation experiments; see e.g. Oakley
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and O’Hagan (2002) and references there. An extensive annotated bibliography of Gaussian process

literature, including links to public domain software, is available at www.gaussianprocess.org/.

Regression and classification methods using such processes are reviewed in Neal (1999). Extensions

to treed Gaussian processes is developed in Gramacy (2007) and Gramacy and Lee (2008).

Spatial statistics: We touched on spatial modelling in connection with the Gaussian processes

above, and indeed many such models may be handled, with the appropriate care, as long as the

prior processes involved have covariance functions determined by a low number of parameters. The

situation is more complicated when one wishes to place nonparametric priors also on the covariance

functions; cf. some comments in Chapter 4.

Neural networks: There are by necessity several versions of ‘neural networks’, and some of these

have reasonably clear Bayesian interpretations, and a subset of these is amenable to nonparametric

variations. See Lee (2004) for a lucid overview, and e.g. Holmes and Mallick (2000) for a particular

application.

p >> n problems: A steadily increasing range of statistical problems involve the ‘p >> n’

syndrome, that there are much more covariates (and hence unknown regression coefficients) than

individuals. Thus ordinary methods do not work, and alternatives must be devised. Various meth-

ods have been derived from frequentist perspectives, but there is clear scope for developing Bayesian

techniques. The popular Lasso method of Tibshirani (1996) may in fact be given a Bayesian inter-

pretation, as the posterior mode solution (the Bayes decision under a sharp 0–1 loss function) with

a prior for the large number of unknown regression coefficients being that of independent double

exponentials with the same spread. Various extensions have been worked with, some also from this

implied or explicit Bayesian nonparametric perspective.

Model selection and model averaging: Some problems in statistics are attacked by working out

the ostensibly best method for each of a list of candidate models, and then either select the tentatively

best one, via some model selection criterion, or average over a subset of the best looking ones. When

the list of candidate models becomes large, as it easily does, the problems take on nonparametric

Bayesian shapes; see e.g. Claeskens and Hjort (2008, Ch. 7). Further methodology needs to be

developed for both the practical and theoretical side.

Classification and regression trees: A powerful and flexible methodology for building regression

or classifiers via trees, with perhaps a binary option at each node of the tree, was first developed

in the CART system of Breiman, Friedman, Olshen and Stone (1984). Several attempts have been

made at making Bayesian versions of such schemes, involving priors on large families of growing

and pruned trees. Their performance has been demonstrated to be excellent in several classes of

problems; see e.g. Chipman, George and McCulloch (2007). See in this connection also Neal (1999)

mentioned above.

Performance: There are quite a few journal papers dealing with issues of performance, compar-

isons between posterior distributions arising from different priors, etc.; for some references in that

direction, see Chapters 1 and 2.
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5 Computation and software

A critical issue for the practical use of nonparametric Bayesian prior models is the availability of

efficient algorithms to implement posterior inference. Recalling the earlier definition of nonparametric

Bayesian models as probability models on big parameter spaces this might seem a serious challenge at

first thought. But we run into some good luck. For many popular models it is possible to analytically

marginalise with respect to some of the infinite-dimensional random quantities, leaving a probability

model on some lower-dimensional manageable space. For example, under Gaussian process priors the

joint probability model for the realisation at any finite number of locations is simply a multivariate

normal distribution. Similarly, various analysis schemes for survival and event history models feature

posterior simulation of Beta processes (Hjort, 1990), which may be accomplished by simulating

and then adding independent Beta distributed increments over many small intervals. Under the

popular Dirichlet process mixture of normals model for density estimation the joint distribution of

the observed data can be characterised as a probability model on the partition of the observed data

points and independent priors for a few cluster specific parameters. Also, under a Pólya tree prior,

or under quantile pyramids type priors (cf. Hjort and Walker, 2009), posterior predictive inference

can be implemented considering only finitely many levels of the nested partition sequence.

Increased availability of public domain software for nonparametric Bayesian models greatly sim-

plifies the practical use of nonparametric Bayesian models for data analysis. The perhaps most

widely used software is the R package DPpackage (Jara, 2007, exploiting the R platform of the R

Development Core Team, 2006). Functions in the package implement inference for Dirichlet pro-

cess mixture density estimation, Pólya tree priors for density estimation, density estimation using

Bernshtĕın–Dirichlet priors, nonparametric random effects models, including generalised linear mod-

els, semiparametric item-response type models, nonparametric survival models, inference for ROC

(relative operating characteristic) curves and several functions for families of dependent random

probability models. See Chapter 6 for some illustrations. The availability of validated software like

DPpackage will greatly accelerate the move of nonparametric Bayesian inference into the mainstream

statistical literature.

6 Challenges and future developments

Where are we going, after all of this? A famous statistical prediction is that ‘the twenty-first century

will be Bayesian’. This originated with Lindley’s preface to the English edition of de Finetti (1974),

and has since been repeated with different modifications and different degrees of boldness by various

observers of and partakers in the principles and practice of statistics; thus the Statistica Sinica

journal devoted a full issue (2007, no. 2) to this anticipation of the Bayesian century, for example.

The present book may be seen as yet another voice in this chorus, promising an increased frequency

of nonparametric versions of Bayesian methods. Along with implications of certain basic principles,

involving the guarantee of uncovering each possible truth with enough data (not only those truths

that are associated with parametric models), then, in combination with the increasing versatility

and convenience of streamlined software, the century ahead looks decidedly both Bayesian and

nonparametric.
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There are of course several challenges, associated with problems that are not yet solved in a

sufficiently good manner, or that are perhaps not worked with yet at the required level of seriousness.

We shall here be bold enough to point to some of these.

Efron (2003) argues that the brightest statistical future may be reserved for empirical Bayes

methods, as tentatively opposed to pure Bayes methodology that Lindley and others envisage. This

points to the identifiable stream of Bayesian nonparametrics work that is associated with a careful

setting and fine-tuning of all the algorithmic parameters involved in a given type of construction

– the parameters involved in a Dirichlet or Beta process, or in an application of quantile pyramids

modelling, etc. A subset of such problems may be attacked via empirical Bayes strategies (estimating

these hyper parameters via current or previously available data) or by playing the Bayesian card at

a yet higher and more complicated level, i.e. via background priors for these hyper parameters.

Another stream of work than may be surfacing is that associated with replacing difficult and

slow-converging MCMC type algorithms with quicker, accurate approximations. Running MCMC

in high dimensions, as for several methods associated with models dealt with in this book, is often

fraught with difficulties related to convergence diagnostics etc. Inventing methods that somehow

sidestep the need for MCMCs is therefore a useful endeavour. For good attempts in that direction,

for at least some useful and broad classes of models, see Skaug and Fournier (2006) and Rue, Martino

and Chopin (2009).

Gelman (2008), along with discussants, consider various important objections to the theory and

applications of Bayesian analysis; this is worthwhile reading also since the writers in question belong

to the Bayesian camp themselves. The themes they point to, chiefly in a framework of parametric

Bayes, are a fortiori valid for nonparametric Bayes.

In Section 2 we pointed to the ‘two cultures’ of modern statistics, associated respectively with

the close interpretation of model parameters and with automated black boxes. There are yet further

schools or cultures, and an apparent growth area is that broadly associated with causality. There

are difficult aspects of theories of statistical causality, both conceptually and model-wise, but the

resulting methods see steadily more application in e.g. biomedicine, see e.g. Aalen and Frigessi (2007),

Aalen, Borgan and Gjessing (2008, Ch. 9) and Pearl (2009). We predict that Bayesian nonparametrics

will play a more important role in such directions.
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