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This chapter deals with nonparametric inference for quantiles from a
Bayesian perspective, using the Dirichlet process. The posterior distri-
bution for quantiles is characterised, enabling also explicit formulae for
posterior mean and variance. Unlike the Bayes estimator for the distribu-
tion function, our Bayes estimator for the quantile function is a smooth
curve. A Bernshtĕın–von Mises type theorem is given, exhibiting the
limiting posterior distribution of the quantile process. Links to kernel-
smoothed quantile estimators are provided. As a side product we de-
velop an automatic nonparametric density estimator, free of smoothing
parameters, with support exactly matching that of the data range. Non-
parametric Bayes estimators are also provided for other quantile-related
quantities, including the Lorenz curve and the Gini index, for Doksum’s
shift curve and for Parzen’s comparison distribution in two-sample situ-
ations, and finally for the quantile regression function in situations with
covariates.
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1. Introduction and summary

Assume data X1, . . . , Xn come from some unknown distribution F , and

that interest focusses on one or more quantiles, say Q(y) = F−1(y). This

chapter develops and discusses methods for carrying out nonparametric

1
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Bayesian inference for Q, based on a Dirichlet process prior for F . The

methods also extend to various other quantile-related quantities in other

contexts, notably to various functions and plots for comparing two samples,

like Doksum’s shift function (see Doksum, 1974a and Doksum and Sievers,

1976) and Parzen’s (1979, 1982) comparison distribution, and to quantile

regression. A guide-map of our chapter is as follows.

We start in Section 2 with setting the framework and by characterising

the prior and posterior distributions of one or more quantiles. This makes it

possible to derive explicit formulae for the posterior mean, variance and co-

variance in Section 3. A noteworthy feature here is that the posterior mean

function is a smooth curve Q̂(y), unlike the traditional Bayes estimator F̃n

for F , which has jumps at the data points. Of particular interest is the

non-informative limit of the Bayes estimator Q̂0 when the strength param-

eter of the Dirichlet prior is sent to zero. It is seen to be a Bernshtĕın-type

smoothed quantile method.

In Section 4 we consider Bayes estimators of the quantile density q = Q′

and of the probability density f = F ′, formed by the appropriate opera-

tions on Q̂. A particular construction of interest is the density estimator f̂0,

computed by inversion and differentiation of Q̂0. This estimator is nonpara-

metric and automatic, requires no smoothing parameters, and is supported

on the exact data range, say [x(1), x(n)]. In Section 5 we discuss applica-

tions to the Lorenz curve and the Gini index, which are frequently used in

econometric contexts. We obtain nonparametric Bayes estimators of these

quantities. Then Section 6 provides Bayesian sister versions of two impor-

tant nonparametric plotting strategies for comparing two populations: Dok-

sum’s shift curve D(x) and Parzen’s comparison distribution π(y). Recipes

for computing Bayesian credibility bands are also given. In Section 7 we

study large-sample properties of our estimators, and reach Bernshtĕın–von

Mises type theorems for the limits of the posterior processes
√
n(Q − Q̂),√

n(D − D̂),
√
n(π − π̂). This can be used to form certain approximate

credibility intervals for the quantile function, for the shift function, and for

the comparison distribution. Then in Section 8 results are generalised to a

semiparametric regression framework, where the regression parameters are

given a prior independent of the quantile process of the error distribution.

Our chapter ends with a list of concluding comments, some pointing to

further research problems of interest.
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2. The quantile process of a Dirichlet

This section derives the basic distributional results about the distribution

of random quantiles for Dirichlet priors, pre and post data. Our point of

departure is a Dirichlet process F with parameter measure α(·) = aF0(·),
written F ∼ Dir(aF0), splitting into constant a = α(IR) and probability

distribution F0 = α/a; for definitions and basic results one may consult

Ferguson (1973, 1974). For a review of general Bayesian nonparametrics,

see Hjort (2003).

2.1. Prior distributions of quantiles

For the random F , consider its accompanying quantile process

Q(y) = F−1(y) = inf{t : F (t) ≥ y}.

For this left-continuous inverse of the right-continuous F it holds generally

that Q(y) ≤ x if and only if y ≤ F (x), even for cases when F , like here,

has jumps. It follows, by the basic Beta distribution property of marginals

of Dirichlet processes, that the distribution of Q(y) can be written

H0,a(x) = Pr{Q(y) ≤ x}
= 1− Be(y; aF0(x), aF̄0(x)) = Be(1− y; aF̄0(x), aF0(x)). (1)

Here and below we let Be(·; b, c) and be(·; b, c) denote respectively the dis-

tribution function and the density of a Beta variable with parameters (b, c),

and F̄0 is the survival function 1−F0. We allow Beta variables with param-

eters (b, 0) and (0, c); these are with probability one equal to respectively 1

and 0. Thus Be(y; b, 0) = 0 and Be(y; 0, c) = 1 for y ∈ [0, 1].

Note that H0,a(x) = Ja(F0(x)), where Ja(x) = Be(1 − y; a(1 − x), ax)

is the distribution of a random y-quantile for the special case of F0 being

uniform on (0, 1), say Quni(y). This means that the distribution of Q(y)

in the general case is the same as the distribution of F−1
0 (Quni(y)). If F0

has a density f0, this also implies that the prior density of Q(y) is h0(x) =

ja(F0(x))f0(x), where

ja(x) =
∂

∂x

∫ 1−y

0

Γ(a)

Γ(a− ax)Γ(ax)
ua−ax−1(1− u)ax−1 du (2)

is the density of Quni(y). The point is that the prior densities can be com-

puted and displayed via numerical integration and derivation; see Figure 1.
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2.2. Several quantiles simultaneously

Consider now the joint distribution of two or more Q-values. For y1 < · · · <
yk, we have

Pr{Q(y1) ≤ t1, . . . , Q(yk) ≤ tk} = Pr{y1 ≤ F (t1), . . . , yk ≤ F (tk)}
= Pr{V1 ≥ y1, . . . , V1 + · · ·+ Vk ≥ yk},

in terms of a Dirichlet vector (V1, . . . , Vk, Vk+1) with parameters

(c0, . . . , ck, ck+1), where cj = aF0(tj−1, tj ]; here F0(A) is the probability

assigned to the set A by the F0 distribution, and t0 = −∞, tk+1 = ∞. This

in principle determines all aspects of the simultaneous distribution of the

vector of random quantiles.

To give somewhat more qualitative insights into the joint distribution

of the random quantiles, we start recalling an important and convenient

property of the Dirichlet process. When it is ‘chopped up’ into smaller

pieces, conditioned to have certain total probabilities on certain sets, the

individual daughter processes become independent and are indeed still

Dirichlet. In detail, if F is Dirichlet aF0, and one conditions on the event

F (B1) = z1, . . . , F (Bm) = zm, where the Bis form a partition and the zis

sum to 1, then this creates m new and independent Dirichlet processes on

B1, . . . , Bm. Specifically, F (.)/zi is Dirichlet on its ‘local sample space’ Bi

with parameter aF0, that is,

F (.)/zi ∼ Dir(aF0) = Dir(aF0(Bi)F0(.)/F0(Bi)).

See Hjort (1986, 1996) for this fact about pinned down Dirichlets and

some of its consequences. Note the rescaling of the Dirichlet parameter,

as a new prior strength parameter aF0(Bi) times the rescaled distribution

F0(.)/F0(Bi) on set Bi.

Consider two quantiles Q(y1) and Q(y2), where y1 < y2, for the prior

process. Conditional on y2 = F (t2), our F splits into two independent

Dirichlet processes on (−∞, t2] and (t2,∞). By the general result just de-

scribed, and arguing as with equation (1), one finds for t1 ≤ t2 that

Pr{Q(y1) ≤ t1 | y2 = F (t2)} = Pr{y1 ≤ y2F
∗(t1)}

= Be(1− y1/y2; aF0(t1, t2], aF0(−∞, t1]),

where F ∗ is Dirichlet (aF0) on (−∞, t2]. This argument may be extended

to the case of three or more random quantiles, also suitable for simulation

purposes.
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2.3. Posterior distributions of quantiles

Conditionally on the randomly selected F , let X1, . . . , Xn be independently

drawn from F . Since F given data is an updated Dirichlet with parameter

aF0 + nFn, where Fn is the empirical distribution of the data points, the

posterior distribution of Q(y) may be written as in (1), with aF0 + nFn

replacing aF0 there. Assume for simplicity that the data points are distinct,

order them x(1) < · · · < x(n), and write x(0) = −∞ and x(n+1) = ∞. Then

Hn,a(x) = Pr{Q(y) ≤ x | data}
= 1− Be(y; (aF0 + nFn)(x), (aF̄0 + nF̄n)(x)), (3)

in terms of F̄0 = 1 − F0 and F̄n = 1 − Fn. For x(i) ≤ x < x(i+1), this is

equal to Be(1 − y; aF̄0(x) + n − i, aF0(x) + i). Thus Q(y) has a density of

the form

hn,a(x) = (∂/∂x) Be(1− y; aF̄0(x)+n− i, aF0(x)+ i) inside (x(i), x(i+1)),

cf. the calculations leading to (2), and posterior point mass

∆Hn,a(x(i)) = Be(y; aF0(x(i)−) + i− 1, aF̄0(x(i)−) + n− i+ 1)

−Be(y; aF0(x(i)) + i, aF̄0(x(i)) + n− i)

= (n+ a)−1be(y; aF0(x(i)) + i, aF̄0(x(i)) + n− i+ 1) (4)

at point x(i). The partial integration formula (A1) of the Appendix is used

here, and assumes continuity of F0 at x(i).

If a is sent to zero here there is no posterior probability mass left be-

tween data points; the distribution concentrates on the data points with

probabilities

pn(x(i)) = Be(y; i− 1, n− i+ 1)− Be(y; i, n− i)

=

(
n− 1

i− 1

)
yi−1(1− y)n−i. (5)

These binomial weights concentrate around y for moderate to large n. We

also have the following result, proved in our Appendix, which says that even

if a is large, the combined posterior probability that Q(y) has of landing

outside the data points goes to zero as n increases. In other words, the dis-

tribution function Hn,a(x) becomes closer and closer to being concentrated

in only the n sample points.

Proposition 1: For fixed positive a, the sum of the posterior point masses

∆Hn,a(x(i)) that Q(y) has at the data points goes to 1 as n → ∞.
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The prior to posterior mechanism is illustrated in Figure 1 for the case

of the upper quartile Q(0.75), with prior guess F0 = N(0, 1), with n = 100

data points really coming from N(1, 1). The right panel shows only the

posterior probabilities (5) corresponding to a = 0; even for a = 10 the (4)

probabilities are quite close to those of (5).
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Fig. 1. Prior to posterior for a given quantile: The left panel shows the prior densities

ja(F0(x))f0(x) at quantile y = 0.75, for values a = 0.1, 1, 5, 10, for F0 the standard
normal, with smaller values of a closer to the f0 and larger values of a tighter around
Q0(y) = 0.675. The right panel shows the posterior probabilities (5) after having observed

n = 100 data points from the distribution N(1, 1), with true quartile 1.675. The posterior
probability mass outside the data points equals 0.0002, 0.0017, 0.0085, 0.0181 for the four
values of a, respectively.

Next consider random quantiles at positions y1 < · · · < yk. Then the

event Q(y1) ≤ t1, . . . , Q(yk) ≤ tk, where t1 ≤ · · · ≤ tk, is equivalent to

y1 ≤ V1, y2 ≤ V1 + V2, . . . , yk ≤ V1 + · · ·+ Vk,

writing now Vj = F (tj) − F (tj−1) for j = 1, . . . , k + 1, where t0 = −∞
and tk+1 = ∞. The vector (V1, . . . , Vk, Vk+1) has the appropriate Dirich-

let distribution with parameters (c1, . . . , ck, ck+1), where cj = (aF0 +

nFn)(tj−1, tj ]. This fully defines Pr{Q(y1) ≤ t1, . . . , Q(yk) ≤ tk | data}.
Its limit as a → 0 is discussed below.
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2.4. The objective posterior quantile process

For the non-informative prior case of a = 0 we have seen that Q(y)

concentrates on the observed data points with binomial probabilities

given in (5). When considering two quantiles, we find that Pr{Q(y1) =

x(i) | data, Q(y2) = x(j)} becomes

Be(1− y1/y2; j − i, i) − Be(1− y1/y2; j − i+ 1, i− 1)

= (1/j)be(1− y1/y2; j − i+ 1, i),

using (A1) again. Combining this with (5) one finds that (Q(y1), Q(y2))

selects the pair (x(i), x(j)) with probability pn(x(i), x(j)) equal to

(n− 1)!

(j − 1)!(n− j)!
yj−1
2 (1− y2)

n−j (1/j) j!

(j − i)!(i− 1)!

(y2 − y1
y2

)j−i(y1
y2

)i−1

=

(
n− 1

i− 1, j − i, n− j

)
yi−1
1 (y2 − y1)

j−i(1− y2)
n−j (6)

for 1 ≤ i ≤ j ≤ n. This trinomial structure generalises to a suitable multi-

nomial one for more than two quantiles at a time.

In fact, the non-informative case corresponds to a random F which

is concentrated at the data points x(1) < · · · < x(n) with probabilities

D1, . . . , Dn following a Dirichlet distribution with parameters (1, . . . , 1).

This in turn means that

Q(y) = x(i) if D1 + · · ·+Di ≤ y < D1 + · · ·+Di+1.

In yet other words, Q(y) = x(N(y)), where N(y) is the smallest i at which

the cumulative sum Si = D1 + · · · + Di exceeds y. One may re-prove (5)

from this, as well as the trinomial result (6) for

pn(x(i), x(j)) = Pr{Si−1 < y1 ≤ Si ≤ Sj−1 < y2 ≤ Sj},
via integrations in the distribution for (Si−1, Si − Si−1, Sj−1 − Si−1, Sj −
Sj−1, 1−Sj), which is Dirichlet with parameters (i−1, 1, j−1− i, 1, n− j).

The easiest argument uses that S1, . . . , Sn−1 forms an ordered sample of

size n−1 from the uniform distribution on the unit interval. For the general

case of m quantiles one finds that Pr{Q(y1) = x(i1), . . . , Q(ym) = x(im)} is

equal to
(

n− 1

i1 − 1, 1, . . . , im − im−1, 1, n− im

)
yi1−1
1 (y2 − y1)

i2−i1 · · · (1− ym)n−im ,

valid for y1 < · · · < ym and i1 ≤ · · · ≤ im. This ‘multinomial structure’

hints at connections to Brownian bridges; such are indeed studied in Sec-

tion 7.
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3. Bayesian quantile inference

To carry out Bayesian inference for Q(y), for specific quantiles or for the

full quantile function, several options are available.

One possibility is to repeatedly simulate full Q functions by numeri-

cally inverting simulated paths of F , these being drawn according to the

Dir(aF0 + nFn) distribution. Another is to work directly with the explicit

posterior distribution Hn,a of (3) for Q(y), or if necessary with the gen-

eralisations to several quantiles discussed in Section 2.3. One attractive

estimator is

Q∗
n(y) = median{Q(y) | data} = H−1

n,a(
1
2 ),

which is the Bayes estimator under loss functions of the type
∫ 1

0
w(y)|Q̂(y)−

Q(y)| dy. It is not difficult to implement a programme that for each y

finds the posterior median, from the formula for Hn,a(x). For the special

case of y = 1
2 , the posterior median of the random median is the me-

dian of the posterior expectation F̃n = (aF0 + nFn)/(a + n). This may

also naturally be supplemented with posterior credibility bands of the type

[H−1
n,a(0.05), H

−1
n,a(0.95)]. It follows from theory developed below that such

a band is secured limiting 90% pointwise coverage probability, also in the

frequentist sense. Here, however, we focus on directly computable Bayes

estimators and on posterior variances.

We first set out to compute the posterior mean function of Q(y), which

is the Bayes estimator under quadratic loss. The informative case a > 0 is

more cumbersome mathematically than the a → 0 case, and is considered

first. Ferguson (1973, p. 224) pointed out that the posterior expectation “is

difficult to compute, and may, in fact, not even exist”. Here we give both

precise finiteness conditions and a formula; such have apparently not been

given earlier in the literature. From our results in Section 2 it is clear that

when the integrals exist, a formula for the posterior mean takes the form

Q̂a(y) =

n∑

i=1

∆Hn,a(x(i))x(i) +

n∑

i=0

∫

(x(i),x(i+1))

xhn,a(x) dx, (7)

with Hn,a and hn,a as given in Section 2.3. Existence requires finiteness

of the first and the last integrals here, over respectively (−∞, x(1)) and

(x(n),∞). The following is proved in our Appendix.

Proposition 2: Let Q = F−1 have the prior process induced by a Dirichlet

process prior with parameter aF0 for F , where a is positive. Then the pos-

terior mean Q̂a(y) of the quantile function Q(y) is well-defined and finite
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if and only if the prior mean E0|X| =
∫
|x| dF0(x) is finite. This result is

independent of the sample size n and of the value of y, and is also valid for

the prior situation.

For implementation purposes, formula (7) is a little awkward. A simpler

equivalent formula is

Q̂a(y) =

∫ ∞

0

Pr{Q(y) ≥ x | data}dx−
∫ 0

−∞

Pr{Q(y) ≤ x | data}dx

=

∫ ∞

0

Be(y; aF0(x) + nFn(x), aF̄0(x) + nF̄n(x)) dx (8)

−
∫ 0

−∞

Be(1− y; aF̄0(x) + nF̄n(x), aF0(x) + nFn(x)) dx.

For large a dominating n in size, this estimator is close to the prior guess

function F−1
0 (y). Even a moderate or large a will however be ‘washed out’

by the data as n grows, as is apparent from Proposition 1 and made clearer

in Section 7.

Particularly interesting is the nonparametric quantile estimator emerg-

ing by letting a tend to zero, since the posterior then concentrates on the

data points alone. By (5), the result is

Q̂0(y) =

n∑

i=1

(
n− 1

i− 1

)
yi−1(1− y)n−ix(i). (9)

This is a (n − 1)-degree polynomial function that smoothly climbs from

Q̂0(0) = x(1) to Q̂0(1) = x(n). It may of course be used also outside the

present Bayesian framework. Its frequentist properties have been studied, to

various extents, in Hjort (1986), Sheather and Marron (1990), and Cheng

(1995), and we learn more in Section 7 below. Interestingly, it can also

be expressed as n−1
∑n

i=1 be(y; i, n − i + 1)x(i), an even mixture of beta

densities.

The posterior variance V̂a(y) may also be computed explicitly, via

E{Q(y)2 | data} =
∫∞

0
Pr{|Q(y)| ≥ x1/2 | data}dx, which as with other

calculations above with some efforts also may be expressed in terms of fi-

nite sums of explicit terms. One may show as with Proposition 2 that the

posterior variance is finite if and only if the prior variance is finite; this

statement is valid for each n. In the a → 0 case the variance simplifies to

V̂0(y) =

n∑

i=1

(
n− 1

i− 1

)
yi−1(1− y)n−i {x(i) − Q̂0(y)}2. (10)
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The posterior covariance between two quantiles can similarly be estimated

explicitly, via (6). With the limiting normality results of Section 7 this im-

plies for example that Q̂0(y)± 1.96 V̂0(y)
1/2 becomes an asymptotic point-

wise 95% confidence band in the frequentist sense, as well as an asymptotic

pointwise 95% credibility band in the Bayesian posterior sense.

Remark 1: Note first that X([nt]) is distributed as F−1
tr (U([nt])), in terms

of an ordered sample U(1), . . . , U(n) from the uniform distribution on the

unit interval, in terms of the true distribution Ftr for the Xis. Hence X([nt])

is close to F−1(t) for moderate to large n. A kernel type estimator based

on the order statistics would be of the form

Q̃(y) =

∫
Kh(t− y)X([nt]) dt

.
= n−1

n∑

i=1

Kh(i/n− y)x(i),

in terms of a scaled kernel functionKh(u) = h−1K(h−1u) and its smoothing

parameter h. One may now show, via approximate normality of the binomial

weights used in (9), that Q̂0(y) is asymptotically identical to such a kernel

estimator, with K the standard normal kernel, and h = {y(1 − y)/n}1/2;
proving this is related to the classic de Moivre–Laplace result. This means

under-smoothing if compared to the theoretically optimal bandwidths,

which are of size O(n−1/3) for moderate to large n. See Sheather and Mar-

ron (1990).

4. Quantile density and probability density estimators

Assume that the true F = Ftr governing data has a smooth density ftr,

positive on its support. The quantile function Qtr(y) = F−1
tr (y) has deriva-

tive qtr(y) = 1/ftr(Qtr(y)), sometimes called the quantile density function.

In this section we look at the relatives q̂a and f̂a following from Q̂a of the

previous section, with a = 0 leading to particularly interesting estimators.

First consider the quantile density. The Bayes estimator with the Dirich-

let process prior under squared error loss is, via results of Section 3, after

an exchange of derivative and mean operations,

q̂a(y) =

∫ ∞

0

be(y; aF0(x) + nFn(x), aF̄0(x) + nF̄n(x)) dx

+

∫ 0

−∞

be(1− y; aF̄0(x) + nF̄n(x), aF0(x) + nFn(x)) dx.

The limiting non-informative case q̂0 = Q̂′
0 can be written in several reveal-
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ing ways, from (9) or as a limit of the above;

q̂0(y) =

n∑

i=1

(
n− 1

i− 1

)
yi−1(1− y)n−i

( i− 1

y
− n− i

1− y

)
x(i)

=

∫ x(n)

x(1)

be(y, nFn(x), nF̄n(x)) dx =
n−1∑

i=1

(x(i+1) − x(i))be(y, i, n− i).

Note that there is no smoothing parameter in this construction; the inher-

ent smoothing comes ‘for free’ through the limiting Dirichlet process prior

argument. The level of this inherent smoothing is about {y(1 − y)/n}1/2,
as per Remark 1 above.

We have devised Bayesian ways of estimating Q = F−1, and are free to

invert back to the F scale, finding in effect new estimators of the distribution

function. Thus let F̂a(x) be the solution to x = Q̂a(y). It can be computed

from (8). This is not the same as the posterior mean or posterior median,

but is a Bayes estimator in its own right, with loss function of the form

L(F, F̂ ) =
∫ 1

0
w(Q̂−Q)2 dy. It is noteworthy that F̂a is smooth and differ-

entiable in x, unlike the posterior mean function {aF0(x)+nFn(x)}/(a+n),

which has jumps at each data point. When a dominates n, F̂a is close to F0.

The case a = 0 is again of particular interest, with F̂0 climbing smoothly

from zero at x(1) to one at x(n), with an everywhere positive density over

this data range. The F̂0 may be considered a smoother default alternative

to the empirical distribution function Fn, for e.g. display purposes. It fol-

lows from theory of Section 7 that
√
n(F̂0−Fn) →p 0, so the two estimators

are close.

It is well known that distribution functions chosen from the Dirichlet

prior are discrete with probability one. Thus the random posterior quantile

process is also discrete. That the posterior mean of Q(y) happens to be a

smooth function of y is not a contradiction, however. We have somehow

‘gained smoothness’ by passing from F to Q and back to F again. This

should perhaps be viewed as mathematical happenstance; neither F nor Q

is smooth, but the posterior mean function of Q is.

Our efforts also lead to new nonparametric Bayesian density estima-

tors. We solved Q̂a(y) = x to reach the estimator F̂a(x), and its derivative

f̂a(x) is a Bayes estimator of the underlying data density ftr. The result is

a continuous bridge in a, from the prior guess f0 for a large to something

genuinely nonparametric and prior-independent for a = 0. One may con-

template devising methods for choosing a from data, smoothing between

prior and data, perhaps in empirical Bayesian fashions, or via a hyperprior.
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Here we focus on the automatic density estimator f̂0, corresponding to the

non-informative prior.

From f̂0(x) = (Q̂−1
0 )′(x) we may write

f̂0(x) =
[n−1∑

i=1

(x(i+1) − x(i))be(F̂0(x); i, n− i)
]−1

, (11)

where, for each x, the equation Q̂0(y) = x is numerically solved for y to

get F̂0(x), for example using a Newton–Raphson method. From smoothness

properties of F̂0 noted above, one sees that f̂0(x) is strictly positive on the

exact data range [x(1), x(n)], with unit integral.

The formula above for f̂0(x) is directly valid inside (x(1), x(n)). At the

end points some details reveal that

f̂0(x(1)) = 1/q̂0(0) = {(n− 1)(x(2) − x(1))}−1,

f̂0(x(n)) = 1/q̂0(1) = {(n− 1)(x(n) − x(n−1))}−1.

It is interesting and perhaps surprising that this nonparametric Bayesian

approach leads to such explicit advice about the behaviour of f near and

at the endpoints; estimation of densities in the tails is in general a difficult

problem with no clear favourite among frequentist proposals.

It is perhaps too adventurous to struggle for the abolition of all

histograms, replacing them instead with the automatic Bayesian non-

informative density estimator f̂0 of (11). But as Figure 2 illustrates, it can

be a successful data descriptor, with better smoothness properties than the

histogram, and without the need for selecting smoothing parameters. It

also has the pleasant property that
∫
xf̂0(x) dx is precisely equal to the

data mean x̄. When compared to traditional kernel methods it will be seen

to smooth less, actually with an amount corresponding to a locally vary-

ing bandwidth of size O(n−1/2), as opposed to the traditional optimal size

O(n−1/5). The latter does assume two derivatives of the underlying density,

however, whereas the (11) estimator has been constructed directly from the

data, without any further smoothness assumptions.

5. The Lorenz curve and the Gini index

Quantile functions are used in many spheres of theoretical and applied

statistics. One such is that of econometric studies of income distributions,

where information is often quantified and compared in terms of the so-called

Lorenz curve (going back a hundred years, to Lorenz, 1905), along with
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Fig. 2. A histogram (with more cells than usual) over n = 100 data points from the

standard normal, along with the automatic density estimator of (11).

various summary measures, like the Gini index; see e.g. Aaberge (2001) and

Aaberge, Bjerve and Doksum (2005). This section considers nonparametric

Bayes inference for such curves and indices.

When the distribution F of data is supported on the positive halfline,

the Lorenz curve is defined as

L(y) =

∫ y

0

Q(u) du
/∫ 1

0

Q(u) du for 0 ≤ y ≤ 1.

The numerator is also equal to
∫ Q(y)

0
x dF (x), and the denominator is sim-

ply equal to the mean µ of the distribution. It is in general convex, and is

equal to the diagonal L(y) = y if and only if the underlying distribution is

concentrated in a single point (perfect equality of income).

Bayesian inference can now be carried out for L, for example through

simulation of Q curves from the posterior distribution. A natural Bayes

estimator takes the form

L̂a(y) =

∫ y

0

Q̂a(u) du
/∫ 1

0

Q̂a(u) du,

stemming from keeping the weighted squared error loss function for Q,
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transforming the solution to L scale. Particularly interesting is the non-

informative limit version

L̂0(y) =

∫ y

0
Q̂0(u) du∫ 1

0
Q̂0(u) du

=
{
n−1

n∑

i=1

Be(y; i, n− i+1)x(i)

}/
x̄ for 0 ≤ y ≤ 1.

The Gini index is a measure of closeness of the L curve to the diagonal,

i.e. the egalitarian case, and is defined as G = 2
∫ 1

0
{y − L(y)}dy. With a

Dirichlet prior for F and any weighted integrated squared error loss function

for the quantile function, we get a Bayes estimator Ĝa = 2
∫ 1

0
{y−L̂a(y)}dy.

The non-informative limiting version is of particular interest. Some algebra

shows that Ĝ0 = 2
∫ 1

0
{y − L̂0(y)}dy may be expressed as

Ĝ0 = 1− 2
1

n

n∑

i=1

(
1− i

n+ 1

)x(i)

x̄
= 2

1

n

n∑

i=1

i

n+ 1

x(i)

x̄
− 1.

Its value may be supplemented with a credibility interval via posterior

simulation of L curves.

6. Doksum’s shift and Parzen’s comparison

Assume data X ′
1, . . . , X

′
m come from the distribution G, independently of

X1, . . . , Xn from F . When inspecting such data there are various options

for portraying, characterising and testing for differences between the two

distributions.

Doksum (1974a) introduced the so-called shift function

D(x) = G−1(F (x))− x.

Its essential property is thatX+D(X) has the same distribution asX ′. The

shift function has a particularly useful role in situations with control and

treatment groups. If the distributions of X and X ′ differ only in location,

for example, then D(x) is constant; if on the other hand G is a location-

and-scale translation of F , then D(x) is linear. Doksum (1974a) studied the

natural nonparametric estimator D̃(x) = G−1
m (Fn(x)) − x, in terms of the

empirical cumulative distributions Fn and Gm; see Section 7.3 below for

its key large-sample properties. Here we describe how Bayesian inference

can be carried out, starting with independent priors F ∼ Dir(aF0) and

G ∼ Dir(bG0).

The posterior distribution at a fixed x is

Km,n(t) = Pr{G−1(F (x))− x ≤ t | data} = Pr{F (x) ≤ G(x+ t) | data},
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which can be evaluated via numerical integration, using the Beta distribu-

tions involved. For the non-informative case,

Km,n(t) = Pr{Beta(nFn(x), nF̄n(x)) ≤ Beta(mGm(x+ t),mḠm(x+ t))}

=

∫ 1

0

Be(g, nFn(x), nF̄n(x))be(g,mGm(x+ t),mḠm(x+ t)) dg.

This can be used to compute the posterior median estimatorK−1
m,n(

1
2 ), along

with a pointwise credibility band, say [K−1
m,n(0.05),K

−1
m,n(0.95)]. It follows

from results of Section 7 that such a band will have frequentist coverage

level converging to the required 90%, for each x, when the sample sizes

grow.

We also provide formulae for the posterior mean and variance, for the

non-informative case. These are found by first conditioning on F , viz.

E{G−1(F (x)) | data, F} =

m∑

j=1

(
m− 1

j − 1

)
F (x)j−1F̄ (x)m−jx′

(j),

E{G−1(F (x))2 | data, F} =
m∑

j=1

(
m− 1

j − 1

)
F (x)j−1F̄ (x)m−j(x′

(j))
2.

Using Beta moment formulae this gives the Bayes estimator D̂0(x) as

m∑

j=1

(
m− 1

j − 1

)
Γ(n)

Γ(nFn)Γ(nF̄n)

Γ(nFn + j − 1)Γ(nF̄n +m− j)

Γ(n+m− 1)
x′
(j) − x,

writing Fn and F̄n for Fn(x) and F̄n(x), while the posterior variance V̂0(x)

can be found as
m∑

j=1

(
m− 1

j − 1

)
Γ(n)

Γ(nFn)Γ(nF̄n)

Γ(nFn + j − 1)Γ(nF̄n +m− j)

Γ(n+m− 1)
(x′

(j))
2

−{D̂0(x) + x}2.

The theory of Section 7 guarantees that the band D̂0(x) ± 1.645 V̂0(x)
1/2

has pointwise coverage level converging to 90%, for example, as the sample

sizes increase.

Doksum (1974a) illustrated his shift function using survival data of

guinea pigs in Bjerkedal’s (1960) study of the effect of virulent tubercle

bacilli, with 65 in the control group and 60 in the treatment group, the

latter receiving a dose of such bacilli. Here we re-analyse Bjerkedal and

Doksum’s data, with Figure 3 displaying the Bayes estimate D̂0(x), seen

there to be quite close to Doksum’s direct estimate. Also displayed is the
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Fig. 3. For the 65 guinea pigs in the control group and the 60 in the treatment group,
we display the Bayes estimator [full line] of the shift function associated with the two
survival distributions, alongside Doksum’s sample estimator [dotted line]. Also given is

the approximate pointwise 90% credibility band.

approximate 90% pointwise confidence band. The figure illustrates dramat-

ically that the weaker pigs (those who tend to die early) will tend to have

longer lives with the treatment, while the stronger pigs (those whose lives

tend to be long) are made drastically weaker, i.e. their life lengths will

decrease. This analysis agrees with conclusions in Doksum (1974a). For ex-

ample, pigs with life expectancy around 500 days can expect to live around

200 days less if receiving the virulent tubercle bacilli in question.

Parzen (1979, 1982, 2002) has repeatedly advocated analysing and es-

timating the function π(y) = G(F−1(y)), which he terms the comparison

distribution. This function, or estimates thereof, may be plotted against the

identity function πid(y) = y on the unit interval; equality of the two distri-

butions is equivalent to π = πid. See also Newton’s interview with Parzen

(2002, p. 372–374). We now consider nonparametric Bayesian estimation

of the Parzen curve via independent Dirichlet process priors on F and G,

with parameters respectively aF0 and bG0.

A formula for the posterior mean π̂(y) may be derived as follows. Let

Ĝm = w′
mG0 + (1−w′

m)Gm be the posterior mean of G, in terms of w′
m =
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b/(b +m) and the empirical distribution Gm for the m data points. Then

π̂(y) is the mean of E{G(Q(y)) |Q, data}, i.e. the mean of Ĝm(Q(y)) given

data, leading to

π̂(y) = w′
mE{G0(Q(y)) | data}+ (1− w′

m)E{Gm(Q(y)) | data}

= w′
m

∫ 1

0

Pr{G0(Q(y)) > z | data}dz

+ (1− w′
m)

1

m

m∑

j=1

Pr{x′
j ≤ Q(y) | data}

= w′
m

∫ 1

0

Be(y; (aF0 + nFn)(G
−1
0 (z)), (aF̄0 + nF̄n)(G

−1
0 (z))) dz

+(1− w′
m)

1

m

m∑

j=1

Be(y; (aF0 + nFn)(x
′
j−), (aF̄0 + nF̄n)(x

′
j−)),

where the second term is explicit and the first not difficult to compute

numerically. If there are no ties between the x′
j and the xi points for the

two samples, (aF0 + nFn)(x
′
j−) is the same as (aF0 + nFn)(x

′
j). For the

non-informative case of a and b both going to zero, we have the particularly

appealing estimator

π̂0(y) =
1

m

m∑

j=1

Be(y;nFn(x
′
j−), nF̄n(x

′
j−)).

Its derivative, which is an estimate of what Parzen terms the comparison

density g(F−1(y))/f(F−1(y)), provided the densities g = G′ and f = F ′

exist, is quite simply (1/m)
∑m

j=1 be(y;nFn(x
′
j−), nF̄n(x

′
j−)). The poste-

rior variance of π(y) may also be calculated with some further efforts. For

the non-informative case of a = b = 0, we find

Var{π(y) | data} =
1

m+ 1
π̂0(y){1− π̂0(y)}

+
m

m+ 1

{ 1

m2

∑

j,k

Be(y;nFn(x
′
j,k−), nF̄n(x

′
j,k−))− π̂0(y)

2
}
,

in which x′
j,k = max(x′

j , x
′
k).

It is seen that π̂0(y) provides a smoother alternative to the direct non-

parametric Parzen estimator. The theory of Section 7 implies that the two

estimators are asymptotically equivalent, and also that the simple credi-

bility band π̂0(y)± 1.96 ŝd(y), with ŝd(y) the posterior standard deviation

computed as above, is a band reaching 95% level coverage, in both the

frequentist and Bayesian settings, as sample sizes grow.
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Laake, Laake and Aaberge (1985) discussed relations between hospi-

talisation, as a measure of morbidity, and mortality. The patient material

consisted of 367 consecutive admissions at hospitals in Oslo in 1980 (176

males and 191 females), while data on mortality in Oslo consisted of 6140

deaths (2989 males and 3151 females). Letting F be the distribution of age

at hospitalisation and G the distribution of age at death, Laake, Laake and

Aaberge suggested studying Λ(y) = G−1(y)− F−1(y), a direct comparison

of the two quantile functions. It is a close cousin of the Doksum curve in

that Λ(F (x)) = D(x).

We have re-analysed the data of Laake, Laake and Aaberge (1985, Ta-

ble 1) using the Bayes estimator Λ̂(y) = Q̂G(y)− Q̂F (y), with components

as in (9). For our illustration, we ‘made’ continuous data from their ta-

ble, by distributing the number of observations in question evenly over the

required age interval; thus 12 and 17 observed hospitalised women in the

age groups 50–54 and 55–59 gave rise to 12 and 17 Xs spread uniformly

on the intervals [49.5, 54.5] and [54.5, 59.5], and so on. Figure 4 presents

these curves, for women and for men separately, along with confidence band

Λ̂(y)± 1.96 ŝd(y), where ŝd(y)2 is the sum of the two variance estimates in-

volved, computed as in (10). It follows from the theory of Section 7 that

this band indeed has the intended approximate 95% confidence level at each

quantile value y. The analysis shows that to the first order of approxima-

tion, and apart from noticeable deviations for the very young and the very

old, age at hospitalisation and age at death are similar, with a constant

shift between them, about seven years for women and six years for men.

This interpretation is in essential agreement with conclusions reached by

Laake, Laake and Aaberge.

7. Large-sample analysis

In this section we discuss large-sample behaviour of the estimation schemes

we have developed, from both the Bayesian and frequentist perspectives.

7.1. Nonparametric Bernshtĕın–von Mises theorems

To set results reached below in perspective, it is useful first to recall

some well-known results about the limiting behaviour of maximum like-

lihood and Bayes estimators, as well as about the posterior distribu-

tion, valid for general parametric models. Specifically, assume i.i.d. data

Z1, . . . , Zn follow a parametric density g(z, θ), with θtr the true parame-

ter, and let θ̂ml and θ̂B be the maximum likelihood and posterior mean
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Fig. 4. Estimated quantile difference G−1(y)− F−1(y) between age at death distribu-
tion and age at hospitalisation distribution, along with pointwise 95% confidence bands,
for women (left) and for men (right).

Bayes estimator under a suitable prior π(dθ). Then, under mild regu-

larity conditions, discussed e.g. in Bickel and Doksum (2001, Ch. 5–6),

four notable results are valid: (i)
√
n(θ̂ml − θtr) →d N(0, J(θtr)

−1); (ii)√
n(θ̂B − θ̂ml) →p 0; (iii) with probability one, the posterior distribution is

such that
√
n(θ − θ̂B) | data →d N(0, J(θtr)

−1). Here J(θ) is the informa-

tion matrix of the model, see e.g. Bickel and Doksum (2001, Ch. 6). With a

consistent estimator Ĵ of this matrix one may compute the approximation

N(θ̂ml, n
−1Ĵ) to the posterior distribution of θ. Result (iv) is that this sim-

ple method is first-order asymptotically correct, i.e. Ĵ−1/2(θ − θ̂ml) | data
goes a.s. to N(0, I), the implication being that one may approximate the

posterior distribution without carrying out the Bayesian updating calcu-

lations as such. Results of the (iii) and (iv) variety are often called Bern-

shtĕın–von Mises theorems; see e.g. LeCam and Yang (1990, Ch. 7). Note

that Bayes and maximum likelihood estimators have the same limit distri-

bution, regardless also of the prior one starts out with, as a consequence of

(ii).

Such statements and results become more complicated in non- and semi-

parametric models, and sometimes do not hold. There are situation when
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Bayes solutions do not match the natural frequentist estimators, and other

situations where the posterior distribution goes awry, or have a limit differ-

ent from that indicated by Bernshtĕın–von Mises heuristics; see e.g. Diaco-

nis and Freedman (1986a, 1986b), Hjort (1986, 1996, 2003). For the present

case of Dirichlet process priors there are no such surprises, however, as

long as inference about F is concerned, as one may prove the following.

Here the role of the maximum likelihood estimator is played by the em-

pirical distribution Fn, with Bayes estimator (posterior mean) equal to

F̃n = (a/(a+n))F0+(n/(a+n))Fn. Below, W
0 is a Brownian bridge, i.e. a

Gaußian zero-mean process on [0, 1] with covariance structure t1(1− t2) for

t ≤ t2.

Proposition 3: Assume the Dirichlet process with parameter aF0 is used

for the distribution of i.i.d. data X1, X2, . . ., and assume that the real gen-

erating mechanism for these observations is a distribution Ftr. Then (i)

the process
√
n{Fn(t) − Ftr(t)} converges to W 0(Ftr(t)); (ii) the differ-

ence
√
n(F̃n − Fn) goes to zero; and (iii) the posterior distribution process

Vn(t) =
√
n{F (t) − F̃n(t)} | data also converges, with probability one, to

W 0(Ftr(t)). The convergence is w.r.t. the Skorokhod topology in the space

of right-continuous functions with left hand limits.

Proof: The first result is classic and may be found in e.g. Billingsley (1968,

Ch. 4). The second statement is immediate from the explicit representation

of F̃n. Proving the third involves showing finite-dimensional convergence in

distribution and tightness, as per the theory of convergence of probability

measures laid out in e.g. Billingsley (1968).

To show finite-dimensional convergence we start with t1 < · · · < tm
and work with differences ∆Vn,j =

√
n{F (tj−1, tj ] − F̃n(tj−1, tj ]}. The

vector of Dj = F (tj−1, tj ] has a Dirichlet distribution with parameters

(n + a)F̃n(tj−1, tj ]. Also, on a set Ω of probability one, both Fn and F̃n

tend uniformly to Ftr, by the Glivenko–Cantelli theorem. Finishing this

part of the proof is therefore more or less equivalent to the following

lemma: If (U1, . . . , Um) is a Dirichlet distributed vector with parameters

(kp1, . . . , kpm), where p1 + · · · + pm = 1, then the vector with compo-

nents (k + 1)1/2(Uj − pj) tends with growing k to a multinormal vector

with mean zero and ‘multinomial’ covariance structure pi(δi,j−pj), writing

δi,j = I{i=j}. Proving this can be done via Scheffé’s theorem on convergence

of densities, or more easily via the representation Uj = Gj/(G1+ · · ·+Gm)

in terms of independent Gj ∼ Gamma(kpj , 1), and for which one quickly

establishes that k1/2(Gj/k − pj) tends to a normal (0, pj).
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It remains to demonstrate the almost sure tightness of Vn. For this

purpose, take first (U, V,W ) to be Dirichlet with parameter (kp, kq, kr),

where p+ q + r = 1. Then some fairly long calculations show that

E(U − p)2(V − q)2 =
pq

(k + 1)(k + 2)(k + 3)
{k − (k − 6)(p+ q − 3pq)}.

Applying this to the posterior process, writing Vn(s, t] = Vn(t)−Vn(s) and

so on, shows that E{Vn(s, t]
2Vn(t, u]

2 | data} is bounded by 3F̃n(s, t]F̃n(t, u],

with the right hand side converging, under Ω, towards a quantity bounded

by 3Ftr(s, u]
2. Tightness now follows from the proof of Theorem 15.6 (but

not quite by Theorem 15.6 itself) in Billingsley (1968).

The result above was also in essence proved in Hjort (1991), and is also

related to large-sample studies of the Bayesian bootstrap, see e.g. Lo (1987).

We also note that (n+ a+ 1)1/2 is a somewhat superior scaling, compared

to
√
n, giving exactly matched first and second moments for the posterior

process.

We further note that the above conclusions hold also when the strength

parameter a of the prior is allowed to grow with n, as long as a/
√
n → 0.

In the more drastic case when a = cn, say, the frequentist and Bayesian

schemes do not agree asymptotically, as F̃n goes a.s. to F∞ = (c/(c+1))F0+

(1/(c+ 1))Ftr. But the arguments regarding (iii) still go through, showing

that the posterior distribution of (n+ a+ 1)1/2(F − F̃n) tends a.s. to that

of W 0(F∞(·)).

7.2. Behaviour of the posterior quantile process

Here we aim at obtaining results as above for the quantile processes in-

volved. For the quantiles, the natural frequentist estimator is F−1
n , while

several Bayesian schemes may be considered, including F̃−1
n and the poste-

rior mean function Q̂a(y) and its natural non-informative limit Q̂0(y).

Proposition 4: Assume, in addition to conditions listed in Proposition 3,

that the Ftr distribution has a positive and continuous density ftr, and let

Qtr(y) and qtr(y) = 1/ftr(Qtr(y)) be the true quantile and quantile density

functions. Then (i) the process
√
n{F−1

n (y)−Qtr(y)} tends to qtr(y)W
0(y);

(ii) the difference
√
n{F−1

n (y) − F̃−1
n (y)} goes to zero in probability; and

(iii) the posterior distribution process
√
n{Q(y)− F̃−1

n (y)} | data converges

a.s. to the same limit qtr(y)W
0(y). The convergence takes place in each of

the spaces D[ε, 1 − ε] of left-continuous functions with right-hand limits,

equipped with the Skorokhod topology, where ε ∈ (0, 1
2 ).
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Proof: The first result is again classic, see e.g. Shorack and Wellner (1986,

Ch. 3). It is typically proven by tending to the uniform case first, involving

say F−1
n,unif(y), and then applying the delta method using the representation

F−1
n (y) = Qtr(F

−1
n,unif(y)). Results (ii) and (iii) may be proven in different

ways, but the apparently simplest route is via the method devised by Doss

and Gill (1992), which acts as a functional delta method operating on the in-

verse functional F 7→ Q = F−1. We saw above that
√
n{F (t)−F̃n(t)} | data

tends a.s. to V (t) = W 0(Ftr(t)). From a slight extension of Doss and Gill’s

Theorem 2, employing the set Ω of probability 1 encountered in the previous

proposition, follows that
√
n{Q(y) − F̂−1

n (y)} | data must tend a.s. to the

process −V (Qtr(y))/ftr(Qtr(y)), which is the same as −qtr(y)W
0(y). This

proves (iii), since by symmetry W 0 and −W 0 have identical distributions.

Statement (ii) follows similarly from Doss and Gill (op. cit., Theorem 1),

again with the slight extension to secure an ‘almost sure’ version rather

than an ‘in probability’ version, since the process
√
n(Fn− F̃n) has the zero

process as its limit.

Remark 2: We also note that
√
n(Q̂a − Q̂0) →p 0 follows, by the same

type of arguments, starting from
√
n(F̃n−Fn) →p 0. In particular, different

Bayesians using different Dirichlet process priors will all agree asymptoti-

cally. Also, the two estimators Q̂0 (the Bernshtĕın smoothed quantiles) and

F−1
n (the direct quantiles) become equivalent for large samples, in the sense

of
√
n(Q̂0 − F−1

n ) →p 0. This also follows from work of Sheather and Mar-

ron (1990) about kernel smoothing of quantile functions; see also Cheng

(1995).

An important consequence of the proposition is that the posterior vari-

ance of
√
n(Q−F−1

n ) tends to the variance of qtrW
0. This is valid for each

Dirichlet strength parameter a, as n → ∞. For a = 0, n times the posterior

variance V̂0(y) of (10) converges a.s. to qtr(y)
2y(1 − y). This fact, which

may also be proved via results of Conti (2004), is among the ingredients

necessary to secure that the natural confidence bands Q̂0±z0 V̂
1/2
0 have the

correct limiting coverage level. This comment also applies to constructions

in the following subsection.

7.3. Doksum’s shift and Parzen’s comparison

Here we first state results for the natural nonparametric estimators D̃(x)

and π̃(y) of Doksum’s shift function D(x) and Parzen’s comparison dis-

tribution, respectively, before we go on to describe the behaviour of their
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Bayesian cousins, introduced in Section 6. For data X1, . . . , Xn from Ftr

and X ′
1, . . . , X

′
m from Gtr, let again Fn and Gm be the empirical distri-

bution functions. We write N = n + m and assume that n/N → c and

m/N → 1−c as the sample sizes increase. Here Ftr and Gtr are the real un-

derlying distributions, for which we used Dirichlet process priors Dir(aF0)

and Dir(bG0) in Section 6.

The Doksum estimator is D̃(x) = G−1
m (Fn(x)) − x. Some analysis,

involving the frequentist parts of Propositions 3 and 4, shows that the

N1/2{D̃(x)−Dtr(x)} process tends to

(G−1
tr )′(Ftr(x)) {(1− c)−1/2W 0

1 (Ftr(x)) + c−1/2W 0
2 (Ftr(x))}

= {c(1− c)}−1/2(G−1
tr )′(Ftr(x))W

0(Ftr(x)), (12)

where Dtr(x) = G−1
tr (Ftr(x)) − x and W 0

1 and W 0
2 are two independent

Brownian bridges; these combine as indicated into one such Brownian

bridge W 0. This result was given in Doksum (1974a), and underlies vari-

ous methods for obtaining pointwise and simultaneous confidence bands for

D(x); see also Doksum and Sievers (1976).

Arguments used to reach the limit result above may now be repeated

mutatis mutandis, in combination with the Bernshtĕın–von Mises results in

Propositions 3–4, to reach

N1/2{D(x)− D̃(x)} | data →d ZD(x), (13)

say, using ZD to denote the limit process in (12). The convergence takes

place in each Skorokhod spaceD[a, b] over which the underlying densities ftr
and gtr are positive, and holds with probability 1, i.e. for almost all sample

sequences. Result (13) is valid for the informative case with a and b positive

(but fixed) as well as for the limiting case where F | data ∼ Dir(nFn) and

G | data ∼ Dir(mGm). It is also valid with D̃(x) replaced by either the

posterior mean D̂0(x) or posterior median K−1
m,n(

1
2 ) estimators discussed in

Section 6.

Similarly, the nonparametric Parzen estimator is π̃(y) = Gm(F−1
n (y)),

and a decomposition into two processes shows with some analysis that

N1/2{π̃(y)− πtr(y)} tends to the process

ZP (y) =
1

(1− c)1/2
W 0

1 (Gtr(F
−1
tr (y))) +

1

c1/2
gtr(F

−1
tr (y))

ftr(F
−1
tr (y))

W 2
0 (y)

= (1− c)−1/2W 0
1 (πtr(y)) + c−1/2π′

tr(y)W
0
2 (y), (14)

with πtr(y) = Gtr(F
−1
tr (y)). For the case Ftr = Gtr, one has πtr(y) = y, and

the limit result translates to the quite simple (mn/N)1/2(π̃ − π) →d W 0.
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This provides an easy and informative way of checking and testing prox-

imity of two distributions via the π̃ plot. “Why aren’t people celebrat-

ing these facts?”, as says Parzen in the interview with Newton (2002,

p. 373). Similarly worthy of celebrations, in the Bayesian camp, should

be the fact that (14) has a sister parallel in the present context, namely

that N1/2{π(y) − π̂(y)} | data tends to the same limit process as in (14).

Here π̂(y) can be the posterior median estimator or the posterior mean

estimator found in Section 6.

8. Quantile regression

Consider the regression situation where certain covariates (xi,1, . . . , xi,p)
t =

xi are available for individual i, thought to influence the distribution of

Yi. Assume that Yi = βtxi + σεi, where β = (β1, . . . , βp)
t contains un-

known regression parameters and ε1, . . . , εn are independent error terms,

coming from a scaled residual distribution F . Thus a prospective obser-

vation Y , with covariate information x, will have distribution F (t |x) =

F ((t − βtx)/σ), conditional on (β, σ, F ). Its quantile function becomes

Q(u |x) = βtx+ σQ(u), writing again Q for F−1.

The problem to be discussed now is that of Bayesian inference for

Q(u |x), starting out with a prior for (β, σ, F ). Take (β, σ) and F to be

independent, with a prior density π(β, σ) and a Dir(aF0) prior for F , where

the prior guess F0 has a density f0. The posterior distribution of (β, σ, F )

may then be described as follows. First, the posterior density of β can be

shown to be

π(β, σ | data) = const. π(β, σ)
∏

distinct

f0((yi − βtxi)/σ),

where the product is taken over distinct values of yi − βtxi. This may be

shown via techniques in Hjort (1986). Secondly, given data and (β, σ), Q

acts as the posterior quantile process from a Dirichlet F with parameter

aF0 +
∑n

i=1 δ((yi − βtxi)/σ), with δ(z) denoting unit point mass at z;

in particular, expressions for Q̂a(u |β, σ) = E{Q(u) |β, σ, data} may be

written down using the results of earlier sections.

In combination, this gives for each x0 an estimator for Q(u |x0) of the

form

Q̂a(u |x0) = E{βtx0 + σQ(u) | data}
= β̂tx0 + E{σQ̂a(u |β, σ) | data}

= β̂tx0 +

∫
σQ̂a(y |β, σ)π(β, σ | data) dβ dσ,
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where β̂ is the posterior mean of β. For the particular case of a tending to

zero, this gives

Q̂0(u |x0) = β̂tx0 +

n∑

i=1

(
n− 1

i− 1

)
ui−1(1− u)n−i ei.

Here ei =
∫
(y − βtx)(i)π(β | data) dβ, where, for each β, (y − βtx)(i) is

the result of sorting the n values of yj − βtxj and then finding the ith

ranked one. The simplest implementation might be to draw a large number

of βs from the posterior density, and then for each of these sort the values

of yj − βtxj . Averaging over all simulations then gives ei as the posterior

mean of (y − βtx)(i), for each i = 1, . . . , n, and in their turn Q̂0(u |x0) for

all x0.

One may also give a separate recipe for making inference for Q, the

residual quantile process. Other Bayesian approaches to quantile regression

are considered in Kottas and Gelfand (2001) and Hjort and Walker (2006).

9. Concluding remarks

In our final section we offer some concluding comments, some of which

might point to further problems of interest.

Other priors. There are of course other possibilities for quantifying prior

opinions of quantile functions. One may e.g. start with a prior more general

than or different from the Dirichlet process for F , like Doksum’s (1974b)

neutral to the right processes, or mixtures of Dirichlet processes, and at-

tempt to reach results for the consequent quantile processes Q = F−1.

Another and more direct approach is via the versatile class of quantile

pyramid processes developed in Hjort and Walker (2006). These work by

first drawing the median Q( 12 ) from a certain distribution; then the two

other quartiles Q( 14 ) and Q( 34 ) given the median; then the three remaining

octiles Q( j8 ) for j = 1, 3, 5, 7; and so on. The Dirichlet process can actu-

ally be seen to be a special case of these pyramid constructions. While the

treatment in Hjort and Walker leads to recipes which can handle the prior

to posterior updating task for any quantile pyramid, this relies on simula-

tion techniques of the McMC variety. Part of the contribution of the present

chapter is that explicit formulae and characterisations are developed, partly

obviating the need for such simulation work, for the particular case of the

Dirichlet processes.

An invariance property. Our canonical Bayes estimator (9) was derived

by starting with a Dir(aF0) prior for F and then letting a go to zero. Ex-
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tending the horizon beyond the simple i.i.d. setting, suppose for illustration

that data are assumed to be of the form Xi = ξ + σZi, with Zi having dis-

tribution G. One may then give a semiparametric prior for the distribution

F (t) = G((t − ξ)/σ) of Xi, with a prior for (ξ, σ) and an independent

Dir(aG0) prior for G. This leads to a more complicated posterior distribu-

tion for Q(y) = ξ+σQG(y), say. But since G given data and the parameters

is a Dirichlet with parameter aG0+
∑n

i=1 δ((xi−µ)/σ), results of Sections 2

and 3 give formulae for E{Q(y) | data, ξ, σ}. For the non-informative case

of a = 0,

E{Q(y) | data, ξ, σ} = ξ + σ
n∑

i=1

(
n− 1

i− 1

)
yi−1(1− y)n−1x(i) − ξ

σ
.

But the extra parameters cancel out, showing that the posterior mean is

again the (9) estimator, which therefore is the limiting Bayes rule for rather

wider classes of priors than only the pure Dirichlet. The argument goes

through for each monotone transformation Xi = aθ(Zi) with a prior for

(θ,G).

In situations where the Lorenz curve and Gini index are of interest,

for example, one might think of data as Xi = θZi, with separate priors

for θ and the distribution G of Zi. The above argument shows that the

θ information is not relevant for Q(y) = θQG(y), when a is small, thus

lending further support to the estimators L̂0 and Ĝ0 of Section 5.

Alternative proofs. There are other venues of interest towards proving

Proposition 4 or other versions thereof. Johnson and Sim (2006) give a

different proof of the large-sample joint normality of a finite number of

posterior quantiles, including asymptotic expansions. Conti (2004) has in-

dependently of the present authors reached results for the posterior process√
n(Q− F̃−1

n ), partly using strong Hunga̋rian representations. His approach

gives results that are more informative than Proposition 4 concerning the

boundaries, i.e. for y close to 0 and y close to 1, where our direct method

works best on D[ε, 1 − ε] for a fixed small ε. Another angle is to exploit

approximations to the Beta and Dirichlet distributions associated with the

random F and turn these around to good approximations for Q. A third

possibility of interest is to express the random posterior quantile process

as Q(y) = x(N(y)), with N(y) the random process described in Section 2.4,

climbing from 1 at zero to n at one. One may show that
√
n{N(y)/n− y}

tends to a Brownian bridge, and couple this with Q(y) = Qn(N(y)/n) to

give yet another proof of the Bernshtĕın–von Mises part of Proposition 4.
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Simultaneous confidence bands. In our illustrations we focussed on con-

fidence bands with correct pointwise coverage. One may also construct si-

multaneous bands for the different situations, with some more work. For

the Doksum shift function, in the frequentist setting, such simultaneous

bands were constructed in Doksum (1974a), Doksum and Sieverts (1976)

and Switzer (1976). To match this in the Bayesian setting, one might sim-

ulate a large number of D(x) curves from the posterior process, and note

the quantiles of the distribution of simulated max[a,b] |D(x)− D̂0(x)| across
some interval [a, b] of interest. Another method, using result (13), is to note

that N1/2 maxa≤x≤b |D(x)− D̂0(x)| | data tends in distribution to

max
a≤x≤b

|ZD(x)| = 1

{c(1− c)}1/2 max
F (a)≤v≤F (b)

|W 0(v)|
gtr(G

−1
tr (v))

.

With appropriate consistent estimation of the denumerator one might sim-

ulate the required quantile of the limiting distribution. Other bands evolve

with alternative weight functions.

Further quantilian quantities. There are yet other statistical functions

or parameters of interest that depend on quantile functions and that can be

worked with using methods from our chapter. One such quantity is the total

time on test statistic T (u) =
∫ Q(u)

0
{1−F (x)}dx. Doksum and James (2004)

show how inference for T may be carried out via Bayesian bootstraps.

More informative priors for two-sample problems. In situations where

the Doksum band contains a horizontal line it indicates that the shift func-

tion is nearly constant, which corresponds to a location translation from

F to G, say G(t) = F (t − δ). For the Doksum–Bjerkedal data analysed in

Figure 3 the band nearly contains a linear curve, which indicates a location-

and-scale translation, say G(t) = F ((t− δ)/τ). The present point is that it

is fruitful to build Bayesian prior models for such scenarios, linking F and

G together, as opposed to simply assuming prior independence of F and

G. One version is to take F ∼ Dir(aF0) and then G(t) = F ((t− δ)/τ) with

a prior for (δ, τ). This leads to fruitful posterior models for (F, δ, τ).

Appendix: various proofs

Relation between Beta cumulatives. Let be(·; a, b) and Be(·; a, b) denote the

density and cumulative distribution of a Beta variable with parameters

(a, b). Then, by partial integration, for b > 1,

Be(c; a, b)−Be(c; a+1, b− 1) =
be(c; a+ 1, b)

a+ b
=

be(1− c; b, a+ 1)

a+ b
. (A1)



February 9, 2018 12:47 WSPC/Trim Size: 9in x 6in for Review Volume hjort-petrone-final

28 N.L. Hjort & S. Petrone

Proof of Proposition 1. There are several ways in which to prove this,

including analysis via Taylor type expansions of the (4) probabilities and

their sum; see also Conti (2004). Here we briefly outline another and more

probabilistic argument. The idea is to decompose the posterior distribution

of F in two parts, corresponding to jumps D1, . . . , Dn at the data points

and a total probability E = F (IR−{x1, . . . , xn}) representing all increments

between the data points. Thus

F (t) =

n∑

i=1

DiI{x(i) ≤ t}+
n∑

i=1

EiI{x(i) ≤ t} = F̃ (t) + F ∗(t),

say, with Ei the part of E corresponding to the window (x(i−1), x(i)) be-

tween data points. The point here is that (D1, . . . , Dn, E) has a Dirichlet

(1, . . . , 1, a) distribution, with E becoming small in size as n increases. In

fact, E ≤ a/
√
n with probability at least 1 − 1/

√
n. Thus F = F̃ + F ∗

with F − F̃ ≤ a/
√
n, with high probability, and Q = F−1 must with a high

probability be close to Q̃ = F̃−1. But the latter has all its jumps exactly

situated at the data points.

Proof of Proposition 2. We first recall that for any cumulative distribu-

tion function H on the real line,
∫ ∞

0

x dH(x) =

∫ ∞

0

{1−H(x)}dx,
∫ 0

−∞

x dH(x) = −
∫ 0

−∞

H(x) dx.

These results can be shown using partial integration and the Fubini theo-

rem, and hold in the sense that finiteness of one integral implies finiteness

of the sister integral, and vice versa. These formulae are what is being used

when we in Section 3 preferred formula (8) to (7).

With the above formulae and characterisations we learn that the finite

existence of the posterior mean of Q(y) hinges on the finiteness of the

extreme parts
∫∞

c
Be(y; aF0(x)+n, aF̄0(x)) dx, for c ≥ x(n), and

∫ b

−∞
Be(1−

y; aF̄0(x) + n, aF0(x)) dx, for b ≤ x(1). Using Γ(v) = Γ(v + 1)/v the first

integral may be expressed as
∫ ∞

c

Γ(a+ n)aF̄0(x)

Γ(aF0(x) + n)Γ(aF̄0(x) + 1)

[∫ y

0

uaF0(x)+n−1(1− u)aF̄0(x)−1 du
]
dx,

which is of the form
∫∞

c
aF̄0(x)g(x) dx for a bounded function g; hence

this the integral is finite if and only if
∫∞

c
{1− F0(x)}dx is finite. We may

similarly show that the second integral is finite if and only if
∫ b

−∞
F0(x) dx

is finite. These arguments are valid for any n, also for the no-sample prior

case of n = 0. This proves the proposition.



February 9, 2018 12:47 WSPC/Trim Size: 9in x 6in for Review Volume hjort-petrone-final

Dirichlet Quantile Processes 29

Acknowledgements

The authors gratefully acknowledge support and hospitality from the De-

partment of Mathematics at the University of Oslo and the Istituto di

Metodi Quantitativi at Bocconi University in Milano, at reciprocal research

visits. Constructive comments from Dorota Dabrowska, Alan Gelfand,

Pietro Muliere, Vijay Nair and Stephen Walker have also been appreciated.

References

1. Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New
York.

2. Bickel, P.J. and Doksum, K.A. (2001). Mathematical Statistics: Basic

Ideas and Selected Topics (2nd ed.), Volume 1. Prentice Hall, Upper Saddle
River, New Jersey.

3. Bjerkedal, T. (1960). Acquisition of resistance in guinea pigs infected with
different doses of virulent tubercle bacilli. American Journal of Hygiene 72,
132–148.

4. Cheng, C. (1995). The Bernstein polynomial estimator of a smooth quantile
function. Statistics and Probability Letters 24, 321–330.

5. Conti, P.L. (2004). Approximated inference for the quantile function via
Dirichlet processes. Metron LXII, 201–222.

6. Diaconis, P. and Freedman, D.A. (1986a). On the consistency of Bayes
estimates [with discussion]. Annals of Statistics 14, 1–67.

7. Diaconis, P. and Freedman, D.A. (1986b). On inconsistent Bayes esti-
mates of location. Annals of Statistics 14, 68–87.

8. Doksum, K.A. (1974a). Empirical probability plots and statistical inference
for nonlinear models in the two-sample case. Annals of Statistics 2, 267–277.

9. Doksum, K.A. (1974b). Tailfree and neutral random probabilities and their
posterior distributions. Annals of Probability 2, 183–201.

10. Doksum, K.A. and Sievers, G.L. (1976). Plotting with confidence:
Graphical comparisons of two populations. Biometrika 63, 421–434.

11. Doksum, K.A. and James, L.F. (2004). On spatial neutral to the right
processes and their posterior distributions. In Mathematical Reliability: An

Expository Perspective (eds. R. Soyer, T.A. Mazzuchi and N.D. Singpur-
valla), Kluwer International Series, 87–104.

12. Doss, H. and Gill, R.D. (1992). An elementary approach to weak con-
vergence for quantile processes, with applications to censored survival data.
Journal of the American Statistical Association 87, 869–877.

13. Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric prob-
lems. Annals of Statistics 1, 209–230.

14. Ferguson, T.S. (1974). Prior distributions on spaces of probability mea-
sures. Annals of Statistics 2, 615–629.

15. Hjort, N.L. (1986). Discussion contribution to P. Diaconis and D. Freed-
man’s paper ‘On the consistency of Bayes estimates’, Annals of Statistics

14, 49–55.



February 9, 2018 12:47 WSPC/Trim Size: 9in x 6in for Review Volume hjort-petrone-final

30 N.L. Hjort & S. Petrone

16. Hjort, N.L. (1991). Bayesian and empirical Bayesian bootstrapping. Sta-
tistical Research Report, University of Oslo.

17. Hjort, N.L. (1996). Bayesian approaches to non- and semiparametric den-
sity estimation [with discussion]. In Bayesian Statistics 5, proceedings of the
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