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Abstract

Have great wars become less violent over time, and is there something we might identify as the long peace? We
investigate statistical versions of such questions, by examining the number of battle-deaths in the Correlates of
War dataset, with 95 interstate wars from 1816 to 2007. Previous research has found this series of wars to be
stationary, with no apparent change over time. We develop a framework to find and assess a change-point in this
battle-deaths series. Our change-point methodology takes into consideration the power law distribution of the
data, models the full battle-deaths distribution, as opposed to focusing merely on the extreme tail, and evaluates
the uncertainty in the estimation. Using this framework, we find evidence that the series has not been as stationary
as past research has indicated. Our statistical sightings of better angels indicate that 1950 represents the most likely
change-point in the battle-deaths series – the point in time where the battle-deaths distribution might have
changed for the better.

Keywords

change-point analyses, decline of war, interstate conflict, power law tails, war sizes

Introduction

Is the world becoming more peaceful? The question is
both deceptively simple and quite controversial. Authors
such as Gat (2006), Goldstein (2011) and Pinker (2011)
have argued that the world is becoming steadily more
peaceful, and a multidimensional quilt of research has
contributed pieces of layers with similar stories and con-
clusions.1 Parts of these arguments concern wars and
armed conflicts, and there, the concept of ‘the long
peace’ (Gaddis, 1989) has gained the weight of repeated

respectful use, to signal the relatively few large interstate
wars in the period after World War II (WWII).

While the empirical pattern constituting the long
peace is not in itself disputed, some recent investigations
have questioned whether the pattern can be said to con-
stitute a statistically established trend (see e.g. Cirillo &
Taleb, 2016; Clauset, 2017, 2018; Braumoeller, 2019).
Could this long period of relative peace simply be a
random occurrence in an otherwise homogeneous war-
generating process, or does it represent a significant
change, a trend towards peace? Cirillo & Taleb (2016),
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Clauset (2017, 2018) and Braumoeller (2019) answer
the last question negatively: they find that the long peace
is not a sufficiently unusual pattern when considering the
variability inherent in long-term datasets of historical
wars. The question investigated by these authors is essen-
tially statistical in nature, and we follow in the same vein.
We approach a similar question, with similar data, but
with somewhat different statistical tools.

We see our contribution as two-fold. First, we intro-
duce a set of statistical methods to the peace research
community, some of them new. We have attempted to
make the presentation of the methods accessible to most
peace researchers. Technical details, of separate interest
also to specialists in statistics, are placed in the Online
appendix. Second, we present new results and conclu-
sions that partly challenge previous works and may gen-
erate hypotheses that can form the basis of future
investigations. We find evidence that a sequence of war
sizes from the last two centuries is not entirely homo-
geneous. In this sequence, the point of maximal change
is found in 1950, corresponding to the Korean war. The
upper quartile of the battle-deaths distribution decreases
substantially, from 63,545 before the Korean war to
14,943 after. Note that there is considerable uncertainty
around these estimates and that the conclusion is open to
interpretation. Our change-point analysis gives a very
wide 95% confidence interval for the point of change,
but it also places considerable confidence on only a small
handful of wars, including the Korean war, which is the
maximum likelihood estimate. The uncertainty is dis-
cussed in detail below. We differ from parts of the liter-
ature by not focusing exclusively on WWII as the
potential point of change, but by applying change-
point methodology to investigate distributional changes
in a time series of wars. We also investigate the role of
covariates, in particular democracy.

In the next section we draw on the existing literature
to sharpen the question we will be considering. We also
present the data we will use and discuss the overall
analysis framework. Then in the following section, we
present the relevant statistical methods in more detail.
Next, we present our main results: first we perform
a homogeneity test, and as this indicates non-
homogeneity we go forward with change-point metho-
dology, and crucially also present the degree of change.
Then we investigate the effect of democracy. In the
final section, we discuss our findings: we examine the
robustness of our approach to various choices and its
relationship with previous works, and also consider
potential theoretical mechanisms.

Modelling wars

Efforts to uncover trends in armed conflict have a long
history and date back at least to the seminal contribu-
tions of Lewis Fry Richardson (1948, 1960). Richardson
assembled datasets of historical wars and sought to
uncover long-term patterns by statistical modelling of
various quantities, for example the time between wars
and also the number of fatalities in each war. We will
consider the Correlates of War (CoW) interstate conflict
dataset (Sarkees & Wayman, 2010), see Figure 1, which
we discuss in a bit more detail below. For now, consider a
general war dataset consisting of

ðxi; ziÞ for i ¼ 1; . . . ; n; ð1Þ

for a number n of historical wars, where xi is the onset
time of war i and zi the number of fatalities; hence-
forth we will call zi the size of war i. Richardson’s
analyses of historical wars led him to two important
statistical insights:

(i) the between-war times di ¼ xi � xi�1 can be
modelled as independent and identically distrib-
uted (i.i.d.), following a simple exponential
distribution;

(ii) the war sizes zi can be modelled as i.i.d. with a
power law distribution.

Both the time between wars and the size of each war
are relevant for investigating whether the world has
become more peaceful. A peaceful world could be char-
acterized by fewer wars (i.e. longer time between wars),
smaller wars, or both. Note a potential caveat concerning
the assumed connection between a decline in war sizes
and arguments about whether the world is becoming
more peaceful. Fazal (2014) argues that the risk of
dying in war has declined because of the revolution in
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Figure 1. War sizes and onset times in the CoW data
The 95 war sizes zi are on the log10 scale.
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military medicine: war may see just as many casualties
as before but fewer deaths, since modern medicine is
able to save more lives. We will not explore this hypoth-
esis in our article.

Trends in the number of interstate wars have been
studied by, for example, Harrison & Wolf (2012),
Gleditsch & Pickering (2014), Cirillo & Taleb (2016),
Braumoeller (2019) and Clauset (2018). Harrison &
Wolf (2012) claim that interstate wars have become
more frequent over time, while Gleditsch & Pickering
(2014) criticize their approach and claim that wars are in
fact becoming less frequent. Clauset (2018) finds that
the time between wars in the CoW data is adequately
modelled by a simple exponential distribution, a finding
that supports insight (i) of Richardson above. Clauset
(2018) takes this finding as an indication of a lack of
trend in the war timings data. In the Online appendix we
provide a short investigation of the between-war waiting
times di in the CoW dataset and find that the observed
waiting times are more consistent with an exponential-
gamma mixture model than with a simple exponential
model. This indicates that the waiting times in the CoW
dataset are more variable than expected under an expo-
nential model. For the rest of the article we will leave the
waiting times aside and focus on the war sizes.

Richardson’s second insight has possibly received even
more attention than the first one. Power laws are a par-
ticular class of probability distributions, with

PðZ > zÞ / z�� for all large z; ð2Þ

and a positive parameter �. This means that the prob-
ability of observing an event, in our case a war, of size
larger than z is inversely proportional to z raised to �. If �
is large this probability quickly decreases with z, but if �
is smaller PðZ > zÞ can stay considerable even for large
z. This last characteristic is sometimes referred to as the
‘fat-tailed’ property and entails a non-negligible prob-
ability of observing truly enormous events. Often the
power law distribution is only appropriate for observa-
tions larger than some threshold z0, a point we will
return to in the methods section.

Richardson’s insights concerning power laws are dis-
cussed by Pinker (2011) in his international best-seller
The Better Angels of Our Nature. There, he argues that
violence in a wide sense, including crime, torture, animal
cruelty and war, has declined. Power laws also form the
basis of empirical investigations that challenge Pinker’s
conclusions about the decline of war and the long peace.
In Cederman, Warren & Sornette (2011), a sequence of
118 war sizes from 1495 till 1997 is modelled with

power law distributions. The authors find a shift in the
power law parameter in 1789, indicating larger wars after
that year compared to the period before. Cirillo & Taleb
(2016) build their own database of war deaths from year
1 to the present. They use statistical models with power
law tails and find that their dataset is well enough
described by a single, stationary model. Clauset (2017,
2018) examines the CoW data discussed below, models
the size of interstate wars with power laws, and finds that
he cannot reject the null hypothesis of no change.
Indeed, he argues that the current trend would have to
persist for 150 years until we could statistically claim that
the world had become more peaceful.

Now we have decided on a quantity of interest, war
sizes, and have found a class of appropriate statistical
distributions to model this quantity. Still, there is a
major question to resolve: should we normalize the war
sizes by population size or should we consider the abso-
lute number of fatalities instead? Here, normalization
refers to dividing the number of fatalities by the popu-
lation size, typically the world population. Pinker (2011)
forms most of his arguments around relative quantities,
such as deaths per 100,000. Clauset (2017, 2018) dis-
cusses the choice of normalization in some length, and
decides to analyse the absolute numbers. The choice of
normalization in fact translates into different questions:
are we interested in making claims about the absolute
sizes of wars? Or the risk of dying in wars? And in the
latter case, with respect to which segment of the popu-
lation should this risk be defined? All these questions are
valid and interesting, but naturally the answers to one of
them will not be directly relevant for the others. We have
chosen to consider the absolute numbers. For the pro-
ponents of the long peace theory this is a conservative
choice since normalizing by world population inflates
the size of ancient wars compared to more recent wars.

Further, there is a choice between different datasets.
Naturally, we would prefer a dataset stretching as far as
possible back in time, with measurements of high quality
and constructed with careful and precise definitions. The
previously mentioned study by Cederman, Warren &
Sornette (2011) combines data from Levy (1983), the
CoW project (Singer & Small, 1994) and the PRIO/
UCDP Armed Conflict Database (ACD) (Gleditsch
et al., 2002). The dataset has a long time span, but is
unfortunately limited to wars involving ‘major powers’.
The quality of the reported battle-deaths number can
also be an issue. Even for recent wars involving devel-
oped countries the estimates of the number of battle-
deaths can be contested. The Falklands war, for instance,
is included in the CoW interstate wars dataset with
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1,001 battle-deaths, even though the actual number is
most likely closer to 900 (Reiter, Stam & Horowitz,
2016).

We have used the Correlates of War (CoW) inter-
state conflict dataset (Sarkees & Wayman, 2010). This
dataset contains onset dates xi and the number of battle-
deaths zi for all interstate wars with more than 1,000
battle-deaths in the period 1816 to 2007, comprising a
total of 95 wars. The dates xi range from 1823.27 (the
Franco-Spanish war) to 2003.22 (invasion of Iraq). Fig-
ure 1 displays these data, with zi on the log10-scale. The
choice of the CoW dataset is motivated by its wide-
spread use (Clauset, 2017, 2018; Fagan et al., 2018;
Spagat & van Weezel, 2018), which enables compari-
sons with other approaches. Also, the CoW dataset is
considered to be of good quality, despite the issue men-
tioned above.

Finally, there are several different statistical frame-
works for assessing whether a certain sequence of obser-
vations, war sizes in our case, supports a trend, or not.
The possible options include regression models with
respect to time, homogeneity tests and change-point
analyses. We have not investigated regression models as
these would impose too much of a constraint on the type
of change present (also a quick look at Figure 1 clearly
indicates that there is no simple linear time trend).

Homogeneity tests are a general class of methods
which aim at testing a null hypothesis of stationarity, that
is, to test whether the observed sequence is consistent
with a single, stationary statistical model or whether
there is sufficient deviation from the model as to indicate
that there has been a change. Most of the results in
Clauset (2017, 2018) are based on tests of homogeneity,
where Clauset does not find sufficient evidence to reject
the null hypothesis of no change. Tests of homogeneity
seem attractive because they can potentially discover
many types of deviations from the stationary model.
However, for partly the same reason, they can often have
low power in discovering actual changes. There are many
homogeneity tests to choose between, which differ in, for
example, the assumptions made, the choice of test sta-
tistic and the choice of alternative hypothesis; see Hjort
& Koning (2002) and Cunen, Hermansen & Hjort
(2018) for partial reviews and methods. We present a
general homogeneity test in the methods section.

If the null hypothesis of homogeneity is rejected,
there may be reasons to believe that the data are incon-
sistent with a completely stationary model. The rejection
of the hypothesis does not necessarily give any indication
on where the change took place, nor what type of
changes the data support. Change-point analysis is a

framework for investigating a certain type of ‘trend’: an
abrupt change in the distribution of the data, with par-
ticular emphasis on where the change took place. There is
a long tradition in social and political science for study-
ing shifts in history, and for examining conditions for the
potential for shifts (see Tilly, 1995; Marx, 1871; Spen-
gler, 1918; and e.g. Beck, 1983; Mitchell, Gates &
Hegre, 1999; Western & Kleykamp, 2004; Spirling,
2007; Blackwell, 2018). Change-point methods have
been applied to sequences of war sizes in Cederman,
Warren & Sornette (2011), and very recently in Fagan
et al. (2018) and Braumoeller (2019).

Methods

In the first subsection, we construct a non-parametric
homogeneity test. Since this test indicates non-
homogeneity (see the results section), we proceed with
our change-point framework. First, we present para-
metric models for the war sizes, before presenting our
change-point method. In the last subsection, we explain
the inclusion of covariates.

Testing constancy over time
Suppose a sequence of observations y1; . . . ; yn is regis-
tered over time, and that one wishes to query the null
hypothesis H0 that the distribution generating the
sequence has remained constant, against the alternative
that somewhere a change has taken place. Assume � is a
parameter of particular interest, like the median or stan-
dard deviation, with �̂a;b the estimate of this quantity
based on the stretch of data ya; . . . ; yb. For each candi-
date position � , inside a relevant pre-defined interval of
time ½c; d �, consider the relative difference in estimated
�, to the left and to the right, via

Hnð�Þ ¼
�̂L � �̂R

f�̂2
L=� þ �̂2

R=ðn� �Þg
1=2

for � ¼ c; c þ 1; . . . ; d � 1; d :

ð3Þ

Here �̂L ¼ �̂1;� and �̂R ¼ �̂�þ1;n, along with �̂L and �̂R

being estimates of the relevant standard deviations, to the
left and to the right, in the usual setup where �̂a;b is
approximately normal with variance of the form
�2=ðb � a þ 1Þ. The function Hnð�Þ can be plotted for
all potential � values, and also provides natural test sta-
tistics for H0, for example Hn;max ¼ maxc���d jHnð�Þj,
along with one-sided versions. The null hypothesis of
homogeneity is rejected if Hnð�Þ takes values sufficiently
far from zero. In addition, the plot of Hnð�Þ will indicate
the position �̂ at which the plot is farthest away from
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zero, which may serve as an estimate of the change-point
(but from an entirely different perspective than the
change-point method we present below).

Importantly, the Hn plot may be utilized for the one-
sided case where a change is assumed to have a given
direction, on a priori grounds, thus yielding bigger detec-
tion power than with a two-sided version. Also, the
method works for non-parametrically defined �. In order
to find the p-value for the test, one needs to work out the
distribution of the Hn process. We present these deriva-
tions in the Online appendix. There we also investigate a
different homogeneity test based on a weighted
Kolmogorov-Smirnov statistic.

Models with power law tails
In order to use the change-point method from Cunen,
Hermansen & Hjort (2018) we need a parametric model
for the war sizes, zi. As discussed above, we want to use a
model with power law behaviour. One general option is to
use the power law distribution directly, see Equation (2).
For most datasets, the power law distribution will not fit
well for the entire dataset, but only for observations larger
than a certain threshold, that is, zi � z0 has a density
proportional to z�ð�þ1Þ

i . Then, one needs to estimate both
the parameter � and the tail-index threshold z0. We inves-
tigate this approach in the Online appendix; related
approaches are used in Clauset (2017, 2018). This model
is simple to use, but does not directly utilize the observa-
tions below the threshold z0 and may therefore entail
some loss of information compared to the next option.
In the following, we will refer to this model as the ‘simple
power law’ model.

Another option is to model the entire dataset, which
in our case only has wars of sizes 1,001 and more (see
Online appendix Section D), with a distribution that
fulfils the power law requirement in the tails. Generally
speaking, the distribution function F ðzÞ for the zi is said
to have power law tails, with power index b, if
zbf1� F ðzÞg tends to a positive constant as z increases.
One such model is the inverse Burr distribution, taking

F ðz;�; �; �Þ ¼ PrfZ � zg ¼ fðz � 1001Þ=�g�

fðz � 1001Þ=�g� þ 1

" #�

for z � 1001; ð4Þ

with parameters ð�; �; �Þ to be estimated from the 95
wars. When z increases we have F ðzÞ � 1� �ð�=zÞ�;
thus � plays the role of the power index, similarly to its
namesake in the simple power law distribution above.

There are other distributions with power law tails, and
the choice between these models should ideally not influ-
ence the reported results to a great extent, as long as the
chosen model has a reasonably good fit to the data. In the
Online appendix, we examine goodness of fit, some
model selection with the focused information criterion,
and also report results using other parametric models.

Change-point methods
When faced with a sequence of observations, change-
point methodology is used to search for where the point
of maximal distributional change occurs. More formally,
we have observations z1; . . . ; zn from some parametric
model, say f ðz; �Þ, where � is of dimension p. Assume
that there is a change-point � in the sequence, where the
model parameter changes from �L for i � � to �R for
i � � þ 1. The aim of a change-point analysis is to esti-
mate � and, importantly, to assess the uncertainty
around it. Subsequently, one should also assess the degree
of change associated with the change-point, in order to
investigate the magnitude and direction of the change,
and thereby assess whether the change is large enough to
have any practical importance.

There are many ways in which to search for a change-
point in a sequence of data; see Frigessi & Hjort (2002)
for a broad introduction to a special journal issue on
discontinuities. Here we employ change-point machinery
developed in Cunen, Hermansen & Hjort (2018), both
for spotting a potential change-point and, crucially, for
assessing its uncertainty. To assess uncertainty and present
our result, we use confidence curves (see Schweder &
Hjort, 2016). The confidence curves can be understood
as graphical generalizations of confidence intervals. They
present the uncertainty at all levels of confidence, instead
of just a single confidence interval at some arbitrary level
of confidence (typically 95%). See the results section for
more on the interpretation of confidence curves.

In the Online appendix we provide a short technical
overview of the change-point method we have used. The
version of the method used here only allows for a single
change-point in the sequence of data. Importantly, the
method involves maximum likelihood estimators of the
model parameters, �̂L to the left and �̂R to the right, and
of the change-point parameter �̂ . The confidence curve
ccð�Þ is based on the deviance function and its construc-
tion requires computer simulations. Ideally, the results
presented here should not be too sensitive to the choice
among various change-point methods. The chosen
method is easy to use and highly flexible, and relies on
a natural extension of general likelihood theory to

Cunen et al. 225



change-point parameters. It can be used in connection
with any parametric model for the data and allows for
changes in one, some, or all of the p model parameters
inside �L and �R . Thus, it allows the user to discover
more complex changes than simple jumps in the mean
level (which parts of the change-point literature are
constrained to).

The change-point method of Cunen, Hermansen &
Hjort (2018) also allows us to construct confidence curves
for the degree of change associated with the change-point.
The degree of change is a one-dimensional parameter,
called �, defined as a function of the model parameters
on both sides of � , and meant to capture the size and
direction of the change. Usually it will be in the form of
a ratio or a difference; here we will study the ratio between
quantiles of war sizes on each side of � . Confidence curves
for the degree of change, ccð�Þ, are displayed in the results
section. Importantly, ccð�Þ takes into account the uncer-
tainty in the change-point position. The confidence curves
for the degree of change can therefore be considered an
implicit homogeneity test. The change-point method
described here always gives a point estimate for the
change-point position, but if the degree of change analysis
indicates that the magnitude of the change is very small, or
highly uncertain, there is no reason to argue that there really
has been a shift in the distribution. Conversely, if the degree
of change analysis indicates a change of large and significant
magnitude, one may put faith in the existence of a change.

In our analysis, we will use the change-point
method briefly discussed here along with the inverse
Burr model described in the previous section. In addi-
tion to the choice of distribution, the modeller also
needs to decide on which parameters of the distribu-
tion should be allowed to be (potentially) influenced
by the change-point. For the model in Equation (4),
we allow � and � to change, but assume the same �
across the change-point. We then end up with a total
of six parameters to estimate: the change-point � ,
along with ð�; �L; �L; �R; �RÞ.

Covariates
The change-point method above is sufficiently general to
support the inclusion of covariates influencing the model
parameters, for example democracy scores, as we will see.
For simplicity of presentation, we will present the inclu-
sion of a single covariate to the inverse Burr model
described above; in the Online appendix we give a more
general treatment.

Assume that we have covariate information wi for
each war. In this illustration, the covariate is the mean

democracy score of the countries involved in each war,
measured the year before the war started. To measure
democracy, we utilize the Polity index from the Polity IV
dataset (Marshall & Jaggers, 2003). The Polity index
scores regimes on a �10 to 10 scale, where �10 are the
most autocratic regimes and 10 the most democratic.
The covariate will be negative when a war involves
mostly autocratic regimes, and large and positive if a war
involves only democracies. Here, we will let the covariate
influence the scale parameter � of the inverse Burr:

�L;i ¼ �L;0expð	LwiÞ and �R;i ¼ �R;0expð	RwiÞ
ð5Þfor i ¼ 1, . . . ,90.

Note that some of the wars have missing democracy
scores. We remove these observations and end up with
90 wars for this analysis. The full model has now become
moderately complex, with parameters �L; �L;0; 	L to the
left, �R; �R;0; 	R to the right and a common �, in addi-
tion to the change-point � .

When introducing covariates in this change-point
model, there are some issues to consider. First, one can
either assume that the covariate effect has changed across
the change-point, or that it has remained constant (so
	L ¼ 	R). This choice might depend on prior knowl-
edge, or be decided based on some model selection cri-
teria. Secondly, one must be aware that inclusion of
covariates might alter the change-point inference (com-
pared to a model without covariates).

Results

Testing constancy
For the sequence of log-battle-deaths yi ¼ log zi for
i ¼ 1; . . . ; n ¼ 95, we may compute, display and ana-
lyse Hn plots of Equation (3) for any relevant choice of
focus parameter �. Figure 2 displays Hn plots for the
median F�1ð0:50Þ and upper quartile F�1ð0:75Þ, with
maxima 1.436 and 2.746, respectively. When looking at
the median level we cannot reject the null hypothesis of
homogeneity at any ordinary level. For the upper quar-
tile, however, the maximum of 2.746 is significantly
high. Computing an associated p-value uses theory from
the results section, with a one-sided version of the test
statistic, since we judge it a priori clear that the battle-
death distribution has not gone up after WWII. The
exact p-value depends on the time range ½c; d � used.
We take d ¼ 1987, to allow ten wars to the right, in
order for the statistical approximation theory to work
well. With c ¼ 1909 we find the p-value equal to
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0.0351, and with a tighter time range even smaller
p-values.

The p-values, for monitoring the no-change hypoth-
esis with respect to quantiles, become even smaller for
higher quantiles than 0.75. Thus the battle-death distri-
bution has not remained constant over time. More spe-
cifically, plots such as those in Figure 2 reveal that there
are clearer changes in the upper parts of the distribution
than in the lower parts.

Change-point results
Our change-point method provides the maximum like-
lihood estimate for the change-point at �̂ ¼ 1950:483.
Thus, the point of maximal change in the parameters of
the inverse Burr model is found between the 60 wars up
to and including the Korean war on the one side and the
35 wars following the Korean war on the other side.

The full uncertainty around the point estimate is
given by the confidence curve in Figure 3. The potential
change-point values are on the horizontal axis, while the
degree of confidence is on the vertical axis. The confi-
dence curve hits zero at the point estimate (1950), and
we can read off confidence intervals at all levels. Note
that these intervals can consist of disjoint parts. Clearly
there is uncertainty in the change-point position; we see
that the 95% confidence interval, indicated by the red
horizontal line in the figure, encompasses the whole
range of possible change-point values. The 80% interval
encompasses only 30 war-onset-times however, most of
them from 1939 to 1992, but with ‘gaps’. Note that the
analysis places considerable confidence on three war-
onset-times in the dataset in addition to the point

estimate, especially 1965:103 (the Vietnam war),
1939:669 (WW2) and 1982:236 (the Falklands war).

For the inverse Burr model in Equation (4), the esti-
mated parameters are: �̂ ¼ 0:499, �̂L ¼ 43887,
�̂L ¼ 0:702, �̂R ¼ 10940, �̂R ¼ 1:022. We assess the
direction and magnitude of the potential change by com-
puting confidence curves for the degree of change. We
examine the ratio between certain quantiles before and
after the estimated change-point, �1 ¼ 
0:50;L=
0:50;R

and �2 ¼ 
0:75;L=
0:75;R , with L and R again referring
to the parameters to the left and to the right of the
change-point. When the bigger wars are of primary inter-
est, the ratio �2 of the upper quartiles would be more
relevant to assess than the ratio �1 of medians. With the
inverse Burr we have the following expression for the
100q% quantile,


q ¼ 1001þ � q1=�

1� q1=�

� �1=�

: ð6Þ

Here we use q ¼ 0:50 and q ¼ 0:75 to estimate the
medians and the upper quartiles, respectively. Note that
the number 1,001 here simply serves to bring the quan-
tiles back to the battle-death scale. The point estimates
via the inverse Burr are �̂1 ¼ 2:15 and �̂2 ¼ 4:25. The
fitted median decreases from 10,129 battle-deaths pre
1950 to 4,721 after the change-point. The upper quar-
tile decreases from 63,545 to 14,943 battle-deaths.

Figure 4A gives the confidence curves for the two
degree of change parameters described above. These are
computed with the simulation based method described
in Section C of the Online appendix. The confidence
curves reveal that the ratio between upper quartiles is
significantly larger than 1 on the 95% level, whereas the
ratio of medians is larger than 1 only at somewhat lower
confidence levels. Thus, the upper quartiles on each side
of the potential change-point are significantly different
on a 5% level. This analysis is not conditional on a given
change-point value, but takes into account the uncer-
tainty in the change-point position.

Figure 4B gives a different way to visualize the change
in distribution at the estimated change-point. The red
dots are wars taking place before the Korean war, and the
black dots are the wars after. The lines are the fitted
complement cumulative distribution functions (CDFs),
That is, 1 minus the fitted CDFs, on the log-log scale for
the inverse Burr distribution on each side of the esti-
mated change-point. The vertical dashed lines indicated
the fitted medians and upper quartiles, and again we
observe that the difference between the two distributions
is larger for the higher quantiles. We also see that for
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Figure 2. The relative change Hn plot of Equation (3)
The two curves are the median F�1(0.50) (red dashed curve) and
the upper quartile F�1(0.75) (black full curve). The lower gives
the point-wise threshold, the upper gives the threshold for the null
distribution corresponding to the time window [c, d ] ¼ [1909,
1987].
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large wars the fitted complement CDF approaches line-
arity on the log-log scale, as expected (the complement
CDF of a simple power law distribution is a straight line
in log-log plots).

Covariate results
We include the democracy covariate and allow the effect
of democracy to change across the change-point. The

inclusion of the covariate changes the point estimate of
the change-point somewhat, from 1950:483 to
1967:431 (the Six Day war). The Korean war is still
given high confidence and we have therefore performed
follow-up analysis taking the 1950.483 change-point as
given. When it comes to parameters �L; �L;0; �R; �R;0; �,
estimates with precision correspond roughly to those
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Figure 4A. Confidence curves for the degree of change, using
the inverse Burr model
The dashed curve belongs to the ratio of medians while the fully
drawn one is for the ratio of 75% quantiles. The red horizontal line
marks the 0.95 confidence level.
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Figure 3. Confidence curve for the change-point using the inverse Burr model
The confidence curve points to the Korean war (1950). The red dashed line corresponds to the 0.95 confidence level.
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found for the change-point analysis without covariates.
The most interesting parameters, in this context, are 	L

(estimate�0:007, 90% interval ½�0:202; 0:187�) and 	R

(estimate�0:163, 90% interval ½�0:308;�0:018�). The
estimated 	L is close to zero and its confidence interval
covers zero, while the interval for 	R indicates that the
scale parameter decreases as the mean democracy score
increases. The changing effect of democracy is reflected
in Figure 5, showing the fitted median as a function of
mean democracy on both sides of the change-point.
Before 1950 the median number of battle-deaths is almost
constant across democracy scores, while after 1950 the
median number of battle-deaths decreases sharply with
increasing democracy.

Discussion

Recent contributions, reviewed above, argue that there is
no clear evidence of change in the sizes or the times
between interstate wars since 1816. In contrast, we find
evidence that a change in the distribution of war sizes has
taken place, and that it may have happened in the years
after WWII, rather than in 1945 which is the assumed
change-point within the current literature. We stress that
the results from the change-point analysis are open to
interpretation. On one hand there is considerable uncer-
tainty in the change-point position: the 95% interval for
� covers the entire range of possible change-point posi-
tions. Some readers will thus interpret Figure 3 as

favouring the ‘no-change’ hypothesis. On the other
hand, the figure also indicates that all the most likely
candidates for the change-point positions are found
either at or after WWII. Moreover, the degree of change
analysis shows a significant decrease in battle-deaths after
the change, at least when considering the upper quartiles.
The change in the parameters of the distribution of
battle-deaths thus manifests itself in smaller wars in the
period after the change-point. On the whole, we inter-
pret our analyses as supporting a decrease in battle-deaths
at some point in the time span we are considering. The
exact position of the shift remains somewhat uncertain,
but the most likely candidate is the Korean war.

Our claim rests upon two distinct analyses. First, we
presented a non-parametric test of homogeneity. The
test suggests that the sequence of war sizes has not been
homogeneous when considering the higher quantiles of
the war size distribution; see the results for the upper
quartiles in Figure 2. With this test the null hypothesis of
no change is rejected at the 5% level. Second, we have
conducted a change-point analysis. Here, we needed a
parametric model for the data, and we found suitable
models among the class of models with power law tails.

We have also introduced the use of covariates – point-
ing towards further modelling efforts including mechan-
isms and explanations. In addition to enriching the long
peace debate by generating hypotheses concerning the
long-term characteristics of interstate wars, we have also
introduced models and methods to the peace research

−10 −5 0 5 10

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

mean democracy score

B
at

tle
 d

ea
th

s,
 z

−10 −5 0 5 10

mean democracy score

B
at

tle
 d

ea
th

s,
 z

, i
n 

th
ou

sa
nd

s

1
10

10
0

10
00

10
00

0

Figure 5. Regression with inverse Burr model and mean democracy as covariate
The left plot is on the z scale, the right plot is on the log10 scale. Each of the 95 wars is represented by a point; before 1950 (red dots) and after
(black triangles). The lines are the fitted medians; before 1950 (red full curve) and after (black dashed).

Cunen et al. 229



literature. In the rest of this section, we will discuss our
findings on various levels. First, we will take a critical
look at our approach and report on some robustness
checks we have conducted. Then we will explore con-
nections between our contribution and related articles,
both in terms of methods and results. Finally, we will
discuss our findings in light of the general peace research
literature, and in particular consider some theoretical
explanations.

Robustness of our approach
Statistical analyses require a series of assumptions and
some level of abstraction to get from a real world ques-
tion to a statistical question. Here, we return to some of
the choices we discussed in the beginning and attempt to
assess their influence on our results.

For our statistical modelling we have been guided by
previous works using power law distributions. There
have been a few attempts to give a theoretical justifica-
tion to the power law behaviour of war sizes (see e.g.
Cederman, 2003), but for most authors, including
Richardson, the power law models have been used as
essentially descriptive models, that is, as ‘lower dimen-
sional representations’ allowing us to assess potential reg-
ularities given the inherent variation in the data. In that
case, it is particularly important that the model fits well
to the data – that the distribution of war sizes according
to the model is close to the actually observed war size
distribution. We have therefore conducted various good-
ness of fit evaluations, for example the log-log plot in
Figure 4. We see that the data in general have a good fit
to the inverse Burr models on each side of the change-
point. The clearest deviation from the model is found for
the very largest wars, especially among those taking place
after 1950. The three largest wars in this period have
more battle-deaths than expected under the model. This
particular aspect of the data was not successfully
accounted for by any of the models we considered (see
the corresponding figures in the Online appendix) and
would necessitate a more complex model than those
considered so far. We have also conducted some good-
ness of fit tests. On both sides of 1950, the observed data
were consistent with having been generated by the fitted
inverse Burr distributions (pL ¼ 0:64 and pR ¼ 0:23,
see details in the Online appendix).

Several models within the class of distributions with
power law tails provide adequate fit to the data. In order
to investigate the sensitivity of our results to the model-
ling assumptions, we present results for similar change-
point analyses assuming two different models for the

data in the Online appendix: the simple power law dis-
tribution and the inverse Pareto distribution. The inverse
Pareto, like the inverse Burr, models the full sequence of
95 war sizes, and we obtained very similar results to those
presented in Figures 3 and 4: the same point estimate for
the change-point, �̂ ¼ 1950:483, and similar looking
confidence curves for both � and the parameters repre-
senting the degree of change. This is not surprising
since the inverse Pareto distribution is just a simplifica-
tion of the inverse Burr. With the simple power law
model the results were somewhat different. Here, we
needed to set the tail-index threshold z0, and we used
z0 ¼ 7061, see details in the Online appendix. The
subsequent change-point analysis then makes use of
only the 51 wars larger than z0. Using this model we
found �̂ ¼ 1965:103 as the point estimate for the
change, corresponding to the Vietnam war. We provide
the full confidence curve in the Online appendix, and it
displays more uncertainty than we saw with the two
other models (i.e. wider confidence intervals). In par-
ticular, the degree of change analysis indicates that the
change was non-significant, in contrast with the analy-
ses with the inverse Burr and inverse Pareto models.
The increased uncertainty is related to the reduced
sample size.

The different estimated change-points, for the full
battle-deaths distribution and only the large wars (the
simple power law analysis), underscores an important
aspect inherent to any change-point exercise. What
constitutes a change-point when analysing some aspects
of the available data will not necessarily be recognized as
a change-point when examining other relevant data.
Thus it should not be seen as a paradox that the Viet-
nam war in 1965 can be a change-point for the extreme
tail of the battle-death distribution, whereas perhaps
the Korean war in 1950 is more of a change-point when
examining more complex models involving the full
battle-death distribution.

Some readers might question our choice of using a
change-point framework at all. As mentioned in the
beginning, change-point methods assume a very
particular form of change, an abrupt shift in the dis-
tribution generating the data. In the case of our
change-point method, we have in addition assumed
that only a single such shift takes place. Is it realistic
to assume that the long peace emerged in that way?
Hardly, but a single change-point model could be
considered a reasonable approximation to various
other patterns, for example to more gradual changes.
We are inclined to interpret the change-points we
identify here as the culmination of a process that has
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unfolded over some time. This could apply to several
of the mechanisms discussed below.

Connections to other analyses
There are several recent contributions with clear connec-
tions to our article. Many of these also analyse the CoW
interstate conflict dataset (Clauset, 2017, 2018; Spagat
& van Weezel, 2018; Fagan et al., 2018; Braumoeller,
2019), while Cederman, Warren & Sornette (2011) and
Cirillo & Taleb (2016) use datasets with a longer time
span (from year 1494, and year 1, respectively). Cirillo &
Taleb (2016) and Spagat & van Weezel (2018) normal-
ize the war sizes with respect to world population, while
Clauset (2017, 2018) and Cederman, Warren & Sorn-
ette (2011) analyse the absolute numbers. Fagan et al.
(2018) conduct analyses of both absolute and relative
numbers. As expected, analyses using relative war sizes
find a clearer decline of war than those focusing on
absolute numbers.

Parametric models within the class of distributions
with power law tails are used in Cederman, Warren &
Sornette (2011), Cirillo & Taleb (2016) and Clauset
(2017, 2018), while Fagan et al. (2018) and Spagat &
Weezel (2018) use non-parametric approaches. Clauset
(2017, 2018) also investigated a certain semi-parametric
model. The articles also differ in their choice of frame-
work for investigating potential trends. Cirillo & Taleb
(2016) and Clauset (2017, 2018) use types of homoge-
neity tests. Spagat & van Weezel (2018) test for differ-
ences in the probability of observing wars of a certain size
across specific potential years-of-change, namely 1945
and 1950. Initially, Cederman, Warren & Sornette
(2011) also investigate a single, specific year-of-change,
1789, but the authors proceed by searching for a change-
point along the full sequence of wars. Their approach
differs from ours: they do not make use of a formal
change-point method and their method does not provide
any measures of uncertainty. Fagan et al. (2018) use a
formal change-point method based on work by Killick,
Fearnhead & Eckley (2012) and Haynes, Fearnhead &
Eckley (2017), but their approach has several differences
from ours. Their methodology relies on an algorithm
which introduces distributional changes in the data
sequence when the change-point leads to a sufficiently
large increase in the fit to the data. The fit is measured by
some cost function, which the user has to define, along
with some penalty function (against introducing unne-
cessary change-points). In contrast, our change-point
method treats the change-point as a parameter in the
model and we therefore analyse it in a parallel manner

as we would ordinary model parameters. Our method
also allows investigating the magnitude and direction of
the change, which Fagan et al. (2018) do not provide.
On the other hand the method in Fagan et al. (2018)
naturally allows for multiple change-points, while we
have only investigated the introduction of a single poten-
tial change-point.

As mentioned in the beginning, Cirillo & Taleb
(2016) and Clauset (2017, 2018) test a null hypothesis
of stationarity, and do not find sufficient statistical evi-
dence to reject it. Cederman, Warren & Sornette (2011)
find a shift towards larger wars in 1789, while Spagat &
van Weezel (2018) find a shift towards smaller wars after
1950. Fagan et al. (2018) find multiple change-points in
the sequence of wars between 1816 and 2007, notably
around 1950. Braumoeller (2019), using a non-
parametric change-point model, finds no change-point
in war intensity – measured as battle-deaths per comba-
tant population – or in war severity – measured as total
battle-deaths. Braumoeller (2019) does find a change-
point in the rate of which wars are initiated, but if any-
thing this indicates that the Cold War period was more
not less warlike than other periods.

How can all these results be reconciled with each
other, and with ours? First of all it is important to realize
that they do not necessarily stand in stark opposition to
each other. The studies differ in the time span considered
and in the specific research question they treat, through
their choices of, for example, normalization and statisti-
cal framework. Also, as usual, non-rejections do not
imply that the null hypothesis is true. Further, the
homogeneity tests used in Cirillo & Taleb (2016) and
Clauset (2017, 2018) differ from the one we use. The
test in Clauset (2017, 2018) investigates whether the
observed dataset as a whole is sufficiently different from
simulated data from a stationary model. Our test focuses
on specific aspects of the distribution of the data, specif-
ically the upper quartile for instance. This sharper focus
likely increases the statistical power. This focus is also
shared by our degree of change investigations where we
study changes in the medians and upper quartiles.

There is no clear consensus among the studies men-
tioned here, but neither is there any strong incompatibil-
ity, despite the differences in methodology. Each should
be considered as providing some evidence to the full pic-
ture, which remains to be fully understood. In further
work, we hope to draw on these studies and devote energy
into the development of more realistic models for the
underlying processes behind the war characteristics we
observe, incorporating explicit theoretical mechanisms.
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Mechanisms
So far, we have not discussed the mechanisms that may
underlie the patterns our analysis has revealed. In this,
our exercise is similar to the path-breaking work of
Richardson (1960) and the aforementioned articles by
Clauset (2018, 2017), Cirillo & Taleb (2016) and Fagan
et al. (2018), which mainly focus on modelling battle-
deaths and uncovering potential trends.2 A full investi-
gation of mechanisms is beyond the scope of this article.
Nonetheless, we will discuss a set of plausible mechan-
isms that could help explain the change-point our analy-
sis revealed. We base this discussion on existing
theoretical work.

There exists a large literature attempting to explain
the production of wars at the systems level. Of partic-
ular relevance are the contributions by Cederman and
co-authors. Cederman (2003) builds an agent-based
model for war and state formation that reproduces the
power law distribution of war. He argues that ‘techno-
logical change and contextually activated decision-
making go a long way toward explaining why power
laws emerge in geopolitical systems’ (Cederman,
2003: 147). As mentioned above, Cederman, Warren
& Sornette (2011) find a change-point in 1789, with a
subsequent increase in the severity of war. They discuss
potential explanations driving the shift, and argue that
it was driven by a revolution in the technology of
statecraft, especially in the ability of states to extract
resources and organize their militaries.

Our analysis identified 1950 and the Korean war as
the most likely change-point in the distribution of battle-
deaths in international wars. A change-point in the
period around and following the Korean war fits well
with the thesis developed by Pinker (2011: Ch. 5). Here
the mechanism underlying the change-point would be
the cultural, political and moral shift that took place
across especially the Western world. War went from
being an appropriate part of statecraft, ‘the continuation
of policy by other means’ (Clausewitz, 1989), to some-
thing inappropriate or even evil (Mueller, 1989). This
shift began in the post-Korean war world, and is partic-
ularly associated with the Vietnam war period. As infor-
mal evidence for the argument Pinker (2011) lists a
multitude of songs and movies from that period with
clear and explicit anti-war themes, themes that were
much less present in earlier periods.

In addition to this norms-based mechanism, we con-
sider two other mechanisms particularly plausible. The
first centers around the development of nuclear weapons.
When the USSR conducted its first atomic weapons test
in 1949, the two superpowers, the USA and the USSR,
created the basis by which war could escalate to a point
where the world would face total annihilation. The devel-
opment of the system of mutual assured destruction led all
key actors to fear that low intensity conflict could escalate
into thermonuclear war (Kahn, 1965). This restraining
effect could operate as a mechanism reducing the intensity
of international conflicts. We could label this the ‘George
Orwell Mechanism’. In his essay ‘You and the Atomic
Bomb’ (October 1945), Orwell predicted that power
would be consolidated in the hands of the superpowers
due to the atomic bomb, and that these two would perpe-
tually threaten atomic war against each other, without
actually risking it. As a result, large-scale wars would end
and instead we would see the rise of a new form of smaller
wars. The restraining effect of nuclear weapons could by
itself be an important mechanism, but this mechanism
may have been further strengthened by the system of
international governance, and especially the United
Nations, which was developed to help defuse conflicts
before they escalated out of control (Goldstein, 2011).

A second mechanism centers around the role of
democracy. Democracies very rarely go to war against
each other, a tendency labelled the democratic peace (see
e.g. Maoz & Russett, 1993). Moreover, Mitchell, Gates
& Hegre (1999) show that the relationship between
democracy and war has become more pronounced over
time, indicating that democracy could be particularly
useful for studying change-points in the history of inter-
state wars. In the section ‘Covariate results’ in this article,
we do indeed find an increasingly pacifying effect of
democracy, though this analysis is only indicative, and
the results should be treated with caution. In the period
before 1950, democracy seems to have no effect on the
number of battle-deaths. After 1950, however, the wars
between more democratic countries have become much
less violent. The increasing effect of democracy on con-
flict coupled with a simultaneous increase in the number
of democracies in the world could translate into a more
peaceful world in the aggregate.

Replication data
The dataset and scripts for the empirical analyses in this
article, along with the Online appendix, can be found at
http://www.prio.org/jpr/datasets. All analyses were con-
ducted using R v. 3.6.0.

2 This does not mean that the authors make no attempt to explain the
patterns they uncover – Clauset (2017) in particular does discuss this.
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