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Abstract We demonstrate how to perform direct simulation

from the posterior distribution of a class of multiple change-

point models where the number of changepoints is unknown.

The class of models assumes independence between the pos-

terior distribution of the parameters associated with segments

of data between successive changepoints. This approach is

based on the use of recursions, and is related to work on

product partition models. The computational complexity of

the approach is quadratic in the number of observations, but

an approximate version, which introduces negligible error,

and whose computational cost is roughly linear in the num-

ber of observations, is also possible. Our approach can be

useful, for example within an MCMC algorithm, even when

the independence assumptions do not hold. We demonstrate

our approach on coal-mining disaster data and on well-log

data. Our method can cope with a range of models, and ex-

act simulation from the posterior distribution is possible in a

matter of minutes.

Keywords Bayes factor · Forward-backward algorithm ·
Model choice · Perfect simulation · Reversible jump

MCMC · Well-log data

1. Introduction

Many time-series models incorporate one, or multiple,

changepoints. Some examples include Poisson processes

with a piece-wise constant rate parameter (Raftery and

Ak-man, 1986; Yang and Kuo, 2001; Ritov et al., 2002),

changing linear regression models (Carlin et al., 1992; Lund

and Reeves, 2002), Gaussian observations with varying mean
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(Worsley, 1979) or variance (Chen and Gupta, 1997; Johnson

et al., 2003), and Markov models with time-varying transi-

tion matrices (Braun and Muller, 1998). Such models have

been used for modelling stock prices, muscle activation, cli-

matic time-series, DNA sequences and neuronal activity in

the brain, amongst many other applications.

In this paper we consider Bayesian analysis for a class

of multiple changepoint problems. We call a period of time

between two consecutive changepoints a segment. This class

of models assumes that the parameter values associated with

each segment are independent from each other. Yang and

Kuo (2001) comment that calculating the Bayes factors for

models with different numbers of changepoints is “essen-

tially infeasible for a large model with many changepoints”.

Our aim is to show that calculation of Bayes factors, and per-

fect sampling from the posterior distribution of changepoint

locations, is both possible, and computationally inexpensive

for the class of models we consider. While this class of mod-

els may seem restrictive, recent examples of work on such

models can found in Johnson et al. (2003), Punskaya et al.
(2002), and Braun et al. (2000).

Although we use the phrase “perfect simulation”, we do

not use coupling-from-the past (Propp and Wilson, 1996),

or related ideas, which have become synonymous with this

phrase. Instead, the work we present is closely related to

work by Yao (1984), Barry and Hartigan (1992) and Barry

and Hartigan (1993). These papers present efficient re-

cursions that allow the posterior probabilities of different

numbers of changepoints, and the posterior mean of the

parameters to be calculated. Despite the desirability of exact

solutions, and the simplicity and computational efficiency of

the recursions, these methods are currently underused. We

extend these methods to allow for direct simulation from

the posterior distribution of the number and position of the

changepoints, and to also perform inference conditional on
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the number of changepoints. Our approach is a generalisation

of that suggested by Liu and Lawrence (1999).

Much recent research for changepoint models is based on

the use of MCMC. For inference in the presence of a known

number of changepoints, Stephens (1994) and Chib (1996)

both propose MCMC methods. For models with an unknown

number of changepoints, a common approach is that of Green

(1995): a set of models, each incorporating a different number

of changepoints, are introduced, and reversible jump MCMC

is used to explore the joint space of model and parameters.

An alternative approach, based on analysing the different

models separately is given by Chib (1998); with the different

models being compared based on their evidence (also known

as marginal likelihood), which can be estimated using ideas

from Chib (1995). Potential difficulties of these approaches

include designing moves, particular ones between different

models, which enable the MCMC algorithm to mix well (for

guidelines on designing reversible jump MCMC algorithms

see Brooks et al., 2003), and being able to detect convergence

of the algorithm. For example, in the analysis of the coal-

mining disaster data in Green (1995), the reversible jump

MCMC algorithm had not converged. The reanalysis of the

data in Green (2003), using a reversible jump MCMC algo-

rithm run for 25 times as long, does fully explore the posterior

distribution. The exact simulation method we describe here

avoids any problems of needing to diagnose convergence of

an MCMC algorithm.

We consider two classes of prior for the changepoint pro-

cess. One, that of Green (1995), involves a prior on the num-

ber of changepoints, and then a conditional prior on their

position. The other is based on modelling the changepoint

process by a point process (Pievatolo and Green, 1998), and

is a special case of a product-partion model (Hartigan, 1990).

This indirectly specifies a joint prior on the number and po-

sition of the change-points. In both cases we assume that,

conditional on the realisation of the changepoint process, the

joint posterior distribution of the parameters is independent

across the segments of the time series. We also assume a con-

jugate prior for the parameters associated with each segment.

Under these two assumptions we derive a set of recursions

to perform exact inference.

The recursions are similar to those of the Forward-

Backward algorithm (see Scott, 2002, for a review). Recent

work has shown how such recursions can be used to per-

form exact inference for a range of problems (Fearnhead

and Meligkotsidou, 2004; Fearnhead, 2005a). The assump-

tion of independence between segments ensures the neces-

sary Markov property that is required for Forward-Backward

type recursions. For a data set consisting of observations at

discrete times, 1, . . . , n, the recursions are based on calcu-

lating the probability of the data from time t to time n, given

a changepoint at time t, in terms of the equivalent probabili-

ties at times t + 1, . . . , n. Once these probabilities have been

calculated for all time-points, it is possible to directly sim-

ulate from the posterior distribution of the time of the first

changepoint, and then the conditional distribution of the time

of the second changepoint, given the first, and so on. The

recursions can also be used to perform exact inference con-

ditional on the number of changepoints, and in some cases

to calculate the posterior distribution of the parameters that

govern the point process model for the changepoints.

The computational cost of the recursions increases

quadratically with n. However an approximate version, which

introduces negligible error, is possible. In limiting situations

where the length of time series increases, and the number of

changepoints is increasing linearly with the number of ob-

servations, the computational cost increases roughly linearly

with n. (In the alternative limiting regime of more frequent

observations, the computational cost remains quadratic in

n.) The assumption of conjugate priors can potentially be

relaxed, but with an increase in the computational cost. Es-

sentially, low-dimensional integrals that can be calculated

analytically under conjugate priors would need to be calcu-

lated numerically (for example see Section 4.2). Relaxation

of the independence assumption is more difficult, but our

algorithm can still be used as a useful tool for analysing

such data. For example, the algorithm can be embedded in

an MCMC algorithm, and we demonstrate such an approach

on some real data.

The outline of the paper is as follows. In Section 2 we

introduce the two classes of changepoint model that we con-

sider. The recursions are derived and detailed in Section 3.

The resulting algorithm is demonstrated on two data sets in

Section 4. For the second, we show how our method can be

applied within an MCMC scheme to analyse the data under

a model where there is dependence between the parameters

for each segment. The paper concludes with a discussion.

2. Models and notation

We consider the following class of multiple changepoint

models. Consider a sample of size n, y1, . . . , yn . Observation

yi is obtained at time i, and we let yi : j denote the observations

from time i to time j inclusive.

Firstly condition on m integer-valued changepoints, at

points 0 < τ1 < τ2 < · · · < τm < n. We let τ0 = 0 and

Tm+1 = n. Then the jth segment consists of the observa-

tions from time τ j−1 + 1 to time τ j . We associate a (pos-

sibly vector-valued) parameter θ j with the jth segment for

j = 1, . . . , m + 1. Conditional on the change-points and pa-

rameter values, the observations are independent; observa-

tion yi being drawn from a density f (yi |θ j ) if time i is in the

jth segment.

We assume independent priors for the parameters associ-

ated with each segment. The prior for θ j is denoted by π (θ j ).
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Here, and throughout, we use π (·) solely to denote a prior

density; the argument making it clear as to which parameter

the prior is for.

We assume that the changepoints occur at discrete time

points, and consider two priors for the changepoints. The

first prior is based on a prior for the number of change-

points, and then a conditional prior on their positions.

We will define this conditional prior on the positions in

terms of πm(τm) the prior for the last change point, and,

for j = 1, . . . , m − 1, πm(τ j |τ j+1), the prior for the po-

sition of the jth changepoint, given the position of the

( j + 1)st.

The second prior is obtained from a point process on the

positive and negative integers. The point process is specified

by the probability mass function g(t) for the time between

two succesive points. We assume that this time must be a

strictly positive integer. We observe the point process on the

interval [1, n − 1], and assume that changepoints occur at

the positions of points in the point process. This prior is an

example of a product-partition model.

If G(t) = ∑t
s=1 g(s), is the distribution function of the

distance between two succesive points, and g0(t) is the mass

function of the first point after 0, then the probability of m
changepoints occuring at τ1, . . . , τm is

g0(τ1)

(
m∏

j=2

g(τ j − τ j−1)

)
(1 − G(τm+1 − τm)).

Natural choices for the distribution of the time between suc-

cessive points are from the negative binomial family. For a

negative binomial distribution with parameters k, a positive

integer, and p we have

g(t) =
(

t − k

k − 1

)
pk(1 − p)t−k

g0(t) =
k∑

i=1

(
t − i

i − 1

)
pi (1 − p)t−i/k.

The negative binomial distribution can be thought of as a

discrete version of the gamma distribution (especially if p
is small). If k = 1 then the negative binomial distribution is

the geometric distribution, and the point process is Markov.

Larger values of k can reduce the number of very short seg-

ments.

3. Filtering recursions

We first derive the recursions for analysing data under the

point process prior for the changepoints. We later derive re-

cursions to perform inference conditional on the number of

changepoints, and show how these can be used to perform

inference under the other prior, and to perform inference

about the parameters of the point process prior.

3.1. Basic recursions

For times s ≥ t , define

P(t, s) = Pr(yt :s |t, s in the same segment)

=
∫ s∏

i=t

f (yi |θ )π (θ )dθ. (1)

We will assume that the probabilities P(t, s) can be calcu-

lated for all t and s. In practice this will require conjugate

priors on θ , or, if θ is low-dimensional, that the required

integration can be calculated numerically.

We next define for t = 2, . . . , n

Q(t) = Pr(yt :n|changepoint at t − 1),

with Q(1) = Pr(y1:n). A set of recursions for calculating

these probabilities are given by the following theorem.

Theorem 1. Define the probabilities Q(t) and P(t, s) as
above. Then for t = 2, . . . , n

Q(t) =
n−1∑
s=t

P(t, s)Q(s + 1)g(s + 1 − t)

+P(t, n)(1 − G(n − t)), (2)

and

Q(1) =
n−1∑
s=1

P(1, s)Q(s + 1)g0(s) + P(1, n)

× (1 − G0(n − 1)), (3)

where G0(t) = ∑t
s=1 g0(s).

Proof: We only prove Equation 2. Equation 3 can be derived

similarly.

For notational convenience we drop the explicit condition-

ing on a changepoint at t − 1 in the following. Thus,

Q(t) = Pr(yt :n)

=
n−1∑
s=t

Pr(yt :n, next changepoint at s)

+ Pr(yt :n, no further changepoints).
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Now these probabilities can be calculated by the product

of the prior probability on the changepoints, and the prob-

abilities of the observations from a single segment, P(t, s).

Thus

Pr(yt :n, next changepoint at s)

= Pr(next changepoint at s)

Pr(yt :s, ys+1:n|next changepoint at s)

= g(s + 1 − t) Pr(yt :s |t, s in same segment)

Pr(ys+1:n|changepoint at s)

= g(s + 1 − t)P(t, s)Q(s + 1)

Similarly

Pr(yt :n, no further changepoints) = P(t, n)

· (1 − G0(n − t)),

as required. �

Equations 2 and 3 give recursions that can be used to calcu-

late Q(t) in turn for t = n, . . . , 1. The evidence of the model

is just Q(1). These equations are equivalent to those of Barry

and Hartigan (1992), and are based on the same idea as re-

cursions of Yao (1984).

The computational complexity of the resulting algorithm

is quadratic in n. However often only a small proportion of

the terms on the right-hand side of (2) make an appreciable

contribution to Q(t). This can happen when the data makes

it almost certain that a changepoint occurs before a given

time-point. Thus the summation can often be truncated with

negligible error. We propose truncating the sum at term k
when

P(t, k)Q(s + 1)g(k + 1 − t)∑k
s=t P(t, s)Q(s + 1)g(s + 1 − t)

(4)

is less than some predetermined value, for example 10−10.

In the limiting regime of analysing a process over a longer

time period, so that the number of changepoints will in-

crease roughly linearly with the number of observations,

n, the computational complexity of the resulting approxi-

mate set of recursions will be linear in n. Essentially the

average number of terms required in the right-hand side

of (2) will be constant with t. Thus the average computa-

tional cost of one of the n recursions will be independent

of n.

3.2. Perfect simulation of changepoints

Given the values of Q(t) for t = 1, . . . , n it is straightforward

to simulate from the posterior distribution of the change-

points as follows.

The posterior distribution of the first changepoint is given

by

Pr(τ1|y1:n) = Pr(y1:n, τ1)/ Pr(y1:n)

= Pr(τ1) Pr(y1:τ1
|τ1) Pr(yτ1+1:n|τ1)Q(1)

= P(1, τ1)Q(τ1 + 1)g0(τ1)/Q(1),

for τ1 = 1, . . . , n − 1. The probability of no further change-

point being P(1, n)(1 − G0(n − 1))/Q(1).

Similarly the posterior distribution of the τ j given τ j−1 is

Pr(τ j |τ j−1, y1:n) = P(τ j−1 + 1, τ j )Q(τ j + 1)

× g(τ j − τ j−1)/Q(τ j−1 + 1),

for τ j = τ j−1 + 1, . . . , n − 1, and the probability of no

further breakpoint is P(τ j−1 + 1, n)(1 − G0(n − τ j−1 −
1))/Q(τ j−1 + 1).

Efficient simulation of large samples of changepoints from

the posterior distribution can be done by simulating the sam-

ples concurrently, using the following algorithm. We denote

the generic posterior distribution of the next changepoint,

given a changepoint at t by Pr(τ |y1:n, t), which can be calcu-

lated as above.

(1) For a sample of size M, initiate each of the M samples

with a changepoint at t = 0.

(2) For t = 0, . . . , n − 2:

(i) Calculate nt the number of samples whose last

changepoint was at time t.
(ii) If nt > 0 calculate the probability distribution

Pr(τ |y1:n, t).
(iii) Sample nt times from Pr(τ |y1:n, t) using Algorithm

1 of Carpenter et al. (1999) (see the Appendix). Use

these values to update the nt samples of changepoints

which have a changepoint at t.

There are two advantages of this algorithm. The first is that

the probability mass function Pr(τ |y1:n, t) need only be cal-

culated once regardless of the number of samples required

from it. If changepoints are sampled one at a time, then ei-

ther these densities will, potentially, need to be calculated for

each sample, or they will need to be stored. Storing these mass

functions can place large burdens on computational memory.

The storage requirements will be quadratic in n; by compar-

ison the above algorithm has storage requirements that are

linear in n.
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The second is that simulating a sample of size M from

a general discrete mass function can be achieved more effi-

ciently than sampling M samples of size 1. Algorithm 1 of

Carpenter et al. (1999) allows a sample of size M to be sim-

ulated with order n + M effort, rather than the nM effort of

sampling M samples of size 1.

3.3. Conditioning on the number of changepoints

Now consider inference conditional on m changepoints. As

in Section 2 we define the prior for the changepoints via

πm(τm) and conditional probabilities of the form πm(τ j |τ j+1).

We define P(s, t) as before, and for j = 1, . . . m, and t =
j + 1, . . . , n − m − 1 + j ,

Q(m)
j (t) = Pr(yt :n|τ j = t − 1, m changepoints).

We can derive the following set of recursions. For t = m +
1, . . . , n − 1,

Q(m)
m (t) = P(t, n)πm(τm = t − 1).

For j = 1, . . . , m − 1, and t = j + 1, . . . , n − m − 1 + j

Q(m)
j (t) =

n−m+ j∑
s=t

P(t, s)Q(m)
j+1(s + 1)

× πm(τ j = t − 1|τ j+1 = s).

Finally

Pr(y1:n|m changepoints) =
n−m∑
s=1

P(1, s)Q(m)
1 (s + 1). (5)

These can be proved in a similar way to Theorem 1.

If the number of changepoints is unknown, with prior

π (m), then the posterior distribution of m can be calculated

as

Pr(m|y1:n) ∝ π (m)Pr(y1:n|m changepoints),

with the last term, the evidence for m changepoints, being

calculated, for each m, using the recursions.

Simulation from the joint posterior distribution is possible

by first simulating M samples from Pr(m|y1:n). If the value

m is sampled Nm times, then Nm samples from the posterior

distribution of the changepoint positions, conditional on m
changepoints, can be obtained as described in Section 3.2.

The only difference is that the conditional distribution of τ j

given τ j−1 is now

Pr(τ j |τ j−1, y1:n, m) = P(τ j−1 + 1, τ j )Q(m)
j (τ j + 1)

× πm(τ j−1|τ j )/Q(m)
j−1(τ j−1 + 1).

Finally, in the case of the Markov point process prior (that

is, a geometric distribution for the distance between change-

points), exact inference is possible even if the probability

of a changepoint at any timepoint, p, is unknown. This

is because, conditional on the number of changepoints,

the positions are distributed uniformly along the interval,

independent of p. We can thus perform inference conditional

on m changepoints. Furthermore, under the Markov point

process prior for the changepoints, the conditional prior

for the number of changepoints, m, π (m|p) has a Binomial

distribution with paramters n − 1 and p. Thus the marginal

prior for m is obtained by averaging this conditional prior,

π (m|p), with respect to the prior for p.

4. Examples

4.1. Coal mining disaster data

As our first example, we consider fitting multiple change-

points to the coal mining disaster data of Jarrett (1979). This

is a standard data set for testing methods for inferring change-

points. Raftery and Akman (1986) and Carlin et al. (1992)

fit single changepoint models. Green (1995) fits a multiple

changepoint model using reversible jump MCMC, and Yang

and Kuo (2001) infer multiple changepoints using binary

segmentation. Our analysis is based on the model of Green

(1995), except that we discretize time into weekly time units,

and allow changepoints to only occur at these discrete time

points. By comparison, Green (1995) uses a continuous time

model.

The data consists of the dates of 191 coal mining disasters

between 1851 and 1962, a period of 5844 weeks. We assume

the number of disasters in any week has a Poisson distri-

bution, and the underlying Poisson mean, μ, is piecewise

constant through time. For a given segment, μ has a �(α, β)

prior density, βαμα−1e−βμ/�(α), for μ > 0. We thus obtain

from (1)

P(t, s) = �(α + ∑s
i=t yi )β

α

�(α)(β + s − t + 1)α+∑s
i=t yi

.

Our prior distribution for the number of changepoints is Pois-

son with mean 3. We consider a prior distribution for the

changepoint positions, conditional on m changepoints, which

is specified by the even order statistics of 2m + 1 uniform

draws from the numbers {1, . . . , n − 1} without replacement.

This is a discrete version of the prior of Green (1995), and

has the advantage of penalising very short segments. This

prior is specified by

πm(τ1, . . . , τm) = K −1
m

m∏
i=0

(τi+1 − τi − 1),
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where Km is the normalising constant, the number of com-

binations of picking 2m + 1 from n − 1 numbers.

We calculate the Q(m)
j s using πm(τ j = t |τ j+1 = s) = s −

t − 1. The correct value of Pr(y1:n|m changepoints) is ob-

tained by dividing through by Km in (5). The advantage of

this approach is that the Q(m)
j s, for different values of m, are

related by

Q(m)
j (t) = Q(m+k)

j+k (t),

for any integer k.

Our first analysis uses an equivalent prior for the

Poisson mean to that of Green (1995), with α = 1 and

β = 200/7. The difference in the scale parameter is due to

the different time units that we use: weeks rather than days.

The results for the posterior distribution of the number of

changepoints, and their positions conditional on 2 change-

points, are shown in Figure 1 (a)–(b).

The posterior distribution for the number of changepoints

differs from that shown in Green (1995); in the production

of those previous results the Monte Carlo simulation was

not run for long enough. A reanalysis of the data in Green

(2003), using the same model and MCMC algorithm, but

run for 25 times as many iterations, gives almost identical

results to those shown here. The only difference between

these previous analyses and ours is that we have discretised

time. This comparison, together with a simple analysis of the

data under a continuous time model with m = 1 and m = 2

using importance sampling (results not shown), suggest that

the difference introduced by discretising time is negligible.

Our algorithm took an order of magnitude longer to analyse

this data than the analysis of Green (2003): 5 minutes on a

900MHz Pentium PC rather than half a minute on an 800MHz

PC. However analysis of the data under a point process prior

(with the distribution of the time between changepoints being

negative binomial with parameters 2 and 0.001) produces

almost identical results and takes around half a minute to

run. Further computational savings may be possible using

the approximation described in Section 3.1.

Figure 1 (c)–(d) shows results for analysing the data

with the diffuse prior of Yang and Kuo (2001) for the

Poisson means (α = 0.5 and β = 10−7). The choice of prior
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Fig. 1 Analysis of the Coal-mining data for two different priors for
the Poisson means for each segment. Left-hand plots are the posterior
distribution of the number of changepoints, and right-hand plots are the
conditional posterior distributions of the position of the changepoints,

conditional on there being 2, and are obtained from perfect samples of
size 10,000 from the corresponding posterior distributions. The prior
for the Poisson means were �(α, β), with (a)–(b) α = 1 and β = 200/7;
and (c)–(d) α = 0.5 and β = 10−7
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distribution greatly affects the posterior distribution for the

number of changepoints, but has negligible effect on the

distribution of the changepoint positions (this is still true

if we condition on the presence of a different number of

changepoints). The choice of prior effectively controls how

much penalty is incurred for introducing additional change-

points, and thereby additional parameters. The more diffuse

the prior, the larger this penalty is, and the approach of Yang

and Kuo (2001) of introducing a prior to mimic an improper

prior on the parameters is inappropriate.

4.2. Well-log data

We now consider the problem of detecting changepoints

in well-log data. An example of well-log data, which

comes from Ó Ruanaidh and Fitzgerald (1996), is given in

Figure 2(a). The data consist of 4050 measurements of the

nuclear-magnetic response of underground rocks. The data

were obtained by lowering a probe into a bore-hole. Measure-

ments were taken at discrete timepoints by the probe as it was

lowered through the hole. The underlying signal is roughly

piecewise constant, with each constant segment relating to a

single rock type (that has constant physical properties). The

changepoints in the signal occur each time a new rock type

is encountered. Detecting the change-points is important in

oil-drilling; see the introduction of Fearnhead and Clifford

(2003) for more details.

These data have been previously analysed by Ó Rua-

naidh and Fitzgerald (1996), who used MCMC to fit a

change-point model with a fixed number of changepoints;

and by Fearnhead and Clifford (2003) who considered on-

line analysis of the data using particle filters. We per-

formed a batch analysis of the data, but allowed for multiple

changepoints.

Piecewise constant model

Initially we consider an analysis based on a model taken

Fearnhead and Clifford (2003). We assume a Markov point

process prior for the changepoints. There are a number of

outliers in the data which were removed before the data was

Fig. 2 Well-log data, and analysis under piecewise constant model
(left-hand column) and random walk model (right-hand column). Plots
(a) and (b) show the well-log data together with a realisation from the
posterior distribution of the signal mean (in red). Plots (c) and (d) give

marginal probabilities of changepoints at each time-point; and plots (e)
and (f) give histograms for the posterior distribution of the number of
change points
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analysed. For a time t which belongs to segment i, we model

a non-outlying observation, yt , by

yt ∼ N(μi , σ
2),

where μi is the mean associated with the ith segment, and we

assume a common known variance, σ 2 = 25002. We assume

that the segment means have independent normal priors with

mean η = 115, 000 and variance τ 2σ 2 = 10, 0002 (so τ =
4). Conditional on the segment means, the observations are

independent. For this model, we have from (1)

P(t, s) = (kτ 2 + 1)−1/2

× exp

{
− 1

2σ 2

(
k

kτ 2 + 1
(η − s1/k)2 + (

s2 − s2
1/k

))}
,

where k is the number of (non-outlier) observations between

times t and s (inclusive), and s1 and s2 are respectively the

sum of these observations and the sum of the square of these

observations. Using the methods of Section 3.3 we performed

inference for p, assuming a uniform prior for p. This gave a

posterior mode of p = 0.013, and the results we present are

for p fixed to this value.

In the left-hand column of Figure 2 we present the results

of our analysis. The plots are for the posterior distribution

of the number of changepoints and their positions (based

on 10,000 independent draws from the posterior), and one

realisation of the underlying signal. It took 26 seconds on a

3.4GHz PC to perform this analysis.

We repeated our analysis using the approximate algorithm

suggested in Section 3.1. We truncated the sums in Equations

(2) and (3), used to calculate the Q(t)s, when the value of

(4) was less than 10−10. The resulting algorithm on average

required sums of 222 terms to be calculated for each Q(t);
which compares with average sums of 2025 terms for the ex-

act algorithm. This is a nine-fold reduction in the complexity

of the algorithm. The resulting approximation of the log ev-

idence was correct to 4 decimal places, which suggests that

negligible errors were introduced.

Comparison with MCMC

For comparison we analysed the same data set under the same

model with the MCMC method of Lavielle and Lebarbier

(2001), which has been specifically designed for the Gaussian

changepoint model used for the well-log data.

This method integrates out the segment parameters, and

uses MCMC to mix over the number and position of change-

points. Let r = (r1, r, . . . rn−1) be a binary vector with rt = 1

if and only if there is a change-point at time t. At each iteration

of the algorithm, we successively use one of three possible

moves to update r. These moves propose a new vector r′,
and the move is accepted with a probability that ensures the

MCMC algorithm has the correct stationary distribution. The

possible moves are

(A) Propose a new set of changepoint positions, r′ from the

prior.

(B) Choose a time-point, t, uniformly at random from

1, 2, . . . , n − 1; if rt = 0 propose r ′
t = 1, else propose a

r ′
t = 0, with r ′

s = rs for s �= t .
(C) Choose uniformly at random two time-points, t and t ′

such that rt = 1 and rt ′ = 0. Propose a move to r ′
t =

0, r ′
t ′ = 1 and rs = r ′

s for s �= t, t ′.

We ran this MCMC algorithm for a total of 500,000 iterations

(where one iteration involves an application of each of moves

(A)-(C)). Of the moves which change the number of change-

points, move (A) had negligible acceptance probability (such

a move was never accepted in our run), and move (B) had an

acceptance probability of 0.4%. The autocorrelation for the

number of changepoints was 0.97 at lag 100, and the esti-

mated autocorrelation time was around 6,000. This suggests

that 6 × 107 iterations would be required to have the same

amount of information as 10,000 independent draws from

the posterior. Such a run would take around two orders of

magnitude longer than the direct simulation method.

Inclusion of hyperpriors

We now consider an extension of the above model where all

parameters in our model were unknown, and we introduce

hyperpriors for them. This introduces dependence between

the segments, and our direct simulation algorithm has to be

used within an MCMC scheme.

We used a uniform prior for p, and an improper prior for

σ, π (σ ) ∝ 1/σ . We parameterised the prior for the segment

means as

μi ∼ N(η, τ 2σ 2),

and used improper hyperpriors on η and τ : π (η) ∝ 1 and

π (τ ) ∝ 1/τ .

We analysed this model using MCMC. The MCMC algo-

rithm used the following three updates:

(1) Update the changepoints conditional on σ, p, η, and τ .

We used an independent proposal from the true posterior

distribution conditional on σ = 2, 330, p = 0.013, η =
115000, and τ = 4.3.

(2) Update σ, p and the μi s from their full conditional dis-

tribution given the changepoints and η and τ .

(3) Update η and τ from their full-conditionals given the μi s.
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Each of these moves satisfies detailed balance. Steps (2)

and (3) are Gibbs steps, and thus the proposed values are

always accepted. Step (1) is not a Gibbs step. Although it

would be possible to make it so, there is a substantial over-

head to calculating the posterior distribution of the change-

points at each iteration. Thus while this algorithm may mix

more slowly, a single iteration will be substantially quicker,

and hence we hope it will be more efficient. In updating

the changepoints in step (1) we throw away the segment

means. This is an example of collapsing (Liu, 2001, pages

146–151), which usually improves the mixing of the Markov

Chain.

We ran this Markov chain for 10,000 iterations. The ac-

ceptance probability of step (1) was 61.8%. The 1-lag au-

tocorrelation for each of the parameters was less than 0.03,

which suggests that the chain is mixing extremely quickly.

The advantage of using the direct simulation method for up-

dating the number and position of changepoints rather than

proposing these from the prior (as in step (A) of the MCMC

algorithm Lavielle and Lebarbier, 2001) is significant (see

above).

The reason why this MCMC algorithm performs so well is

because the posterior probability of the parameters is concen-

trated in a small region of the parameter space. Over this small

region, the parameters are almost independent; the maximum

absolute value of the correlation between any pair of param-

eters is 0.01. Furthermore, the conditional distribution of the

changepoints changes little over this range of parameter val-

ues, which means that the average acceptance probability in

step (1) of the algorithm is high. This situation is likely to oc-

cur in other situations where there is a large and informative

data set with many changepoints.

Alternative models

The model used in the previous Section is based around those

previously used in the literature for this data. However the

realisations from the posterior distribution have many more

changepoints, and thus suggest many more rock strata, than

is realistic. It appears that the piecewise constant model used

is overly simplistic for the data, and that this has resulted in

the need for too many changepoints in order to fit the data.

We have considered numerous extensions to the model.

Two possibilities are: (i) to allow different noise variances

for different segments; and (ii) to model each segment using

a mean-shifted AR(1) model (Albert and Chib, 1993). Both

of these models can be analysed via our direct simulation

method, though for (ii) we need to numerically integrate out

the autoregressive coefficient (this can be done in a simi-

lar way to that described below). However neither of these

extensions enable the data to be fit with substantially fewer

change points (results not shown).

Instead we consider the following state-space model for

the data within a segment, where if t − 1 and t both lie within

segment i

μt ∼ N
(
μt−1, τ

2
i

)
yt ∼ N(μt , σ

2) .

The initial μ value for each segment is drawn from the same

independent normal priors as before. This is an extension of

the piecewise constant model which allows the signal within

a segment to perform a random walk. We allow the variance

of the random walk to vary among segments, and assume a

Gamma prior for τi with parameters 2 and 1/40. This prior

places most probability mass on values of τi which lie in the

interval [0,150].

The idea of this model is that the random walk element can

fit the small-scale variation in the underlying signal without

the need to infer changepoints.

If τi were known for each segment then it would be

straightforward to apply our direct simulation method, us-

ing the Kalman Filter (Harvey, 1989) to integrate out the

underlying signal. To incorporate a prior on τi we resort to

numerical integration to calculate the P(t, s) values required

by our algorithm. A simple, but adequate, approach to nu-

merical integration is based on using a grid of τi values,

and we obtained such a grid as follows. For a grid with K
points, first simulate for k = 1, . . . , K , a realisation, uk , of

a uniform random variable on [(k − 1)/K , k/K ]; then fix

the kth grid point to be the uk th quantile from the prior

for τi .

In practice we found that a grid of 100 points produced ac-

curate results; and for such a grid it took less than 19 minutes

to simulate 10,000 draws from the joint posterior distribution

of changepoint positions on a 3.4GHz PC. The results of the

analysis (assuming σ = 2, 500 and p = 0.013) are shown in

Figure 2. This model gives more realistic inferences about

the number and positions of the changepoints.

5. Discussion

We have described ways in which recursions, based on

the Forward-Backward algorithm, can be used to perform

Bayesian analysis of multiple changepoint problems. As

mentioned previously, the work we present is closely related

to work by Barry and Hartigan (1992). The main novelty of

what we propose is that we demonstrate how the recursions

can be used for perfect simulation from the posterior dis-

tribution of the number and position of change-points, and

hence from the posterior distribution of the parameters. Pre-

senting results from a Bayesian analysis via simulations from

the posterior distribution is both quicker than calculating the
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posterior means (as done by Barry and Hartigan, 1992, where

the cost is cubic in the number of observations), and also en-

capsulates information about uncertainty about parameters,

which is one of the advantages of Bayesian inference. We

have also extended the use of recursions to inference condi-

tional on the number of changepoints. Further extensions to

allow for model-choice within segments (Fearnhead, 2005b)

and online inference (Fearnhead and Liu, 2005) are also

possible.

The ability to simulate from posterior distributions also

enables the algorithms we present to be used in analysing

more complex models, for example by embedding our algo-

rithm within an MCMC algorithm (see Section 4.2). While it

may seem natural in such cases just to use standard MCMC

algorithms, the use of direct simulation enabled us to con-

struct an MCMC algorithm for the Well-log data that had

exceptional mixing properties.
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Appendix

To simulate in linear time a sample of size n from a discrete

distribution Pr(τ ), which takes values of τ = 1, 2, . . .:

1(a) for i = 1, . . . , n + 1, simulate xi a realisation from an

exponential distribution with rate parameter 1;

1(b) Calculate S = ∑n+1
i=1 xi ;

1(c) Set u1 = x1/S and for i = 2, . . . , n ui = ui−1 + xi/S.

2 Set Q = 0, U = u1, j = 1 and i = 1.

3 If U < Q + Pr(τ = j) then output j and set U = ui+1

and i = i + 1; otherwise set Q = Pr(τ = j) and j =
j + 1. Repeat until i = n + 1.
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