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 The Annals of Statistics
 1973, Vol. 1, No. 2, 209-230

 A BAYESIAN ANALYSIS OF SOME

 NONPARAMETRIC PROBLEMS'

 BY THOMAS S. FERGUSON

 University of California, Los Angeles

 1. Introduction and summary. The Bayesian approach to statistical problems,

 though fruitful in many ways, has been rather unsuccessful in treating non-

 parametric problems. This is due primarily to the difficulty in finding workable
 prior distributions on the parameter space, which in nonparametric ploblems is

 taken to be a set of probability distributions on a given sample space. There are

 two desirable properties of a prior distribution for nonparametric problems.

 (I) The support of the prior distribution should be large-with respect to some
 suitable topology on the space of probability distributions on the sample space.

 (II) Posterior distributions given a sample of observations from the true prob-

 ability distribution should be manageable analytically.

 These properties are antagonistic in the sense that one may be obtained at the
 expense of the other. This paper presents a class of prior distributions, called
 Dirichlet process priors, broad in the sense of (I), for which (II) is realized, and

 for which treatment of many nonparametric statistical problems may be carried
 out, yielding results that are comparable to the classical theory.

 In Section 2, we review the properties of the Dirichlet distribution needed for

 the description of the Dirichlet process given in Section 3. Briefly, this process
 may be described as follows. Let m be a space and vf a a-field of subsets, and
 let a be a finite non-null measure on (2, SV). Then a stochastic process P
 indexed by elements A of sV, is said to be a Dirichlet process on (2, _) with
 parameter a if for any measurable partition (A1, . . ., Ak) of <, the random vector

 (P(A,), * * *, P(Ak)) has a Dirichlet distribution with parameter (a(A,), * * *, a(Ak)).
 P may be considered a random probability measure on (2, J), The main
 theorem states that if P is a Dirichlet process on ( _Q /) with parameter a,

 and if Xi, * * *, X, is a sample from P, then the posterior distribution of P given
 X ..., X, is also a Dirichlet process on (? , SV) with parameter a + n Xi,
 where 3. denotes the measure giving mass one to the point x.

 In Section 4, an alternative definition of the Dirichlet process is given. This
 definition exhibits a version of the Dirichlet process that gives probability one
 to the set of discrete probability measures on (JV V). This is in contrast to
 Dubins and Freedman [2], whose methods for choosing a distribution function
 on the interval [0, 1] lead with probability one to singular continuous distri-
 butions. Methods of choosing a distribution function on [0, 1] that with prob-
 ability one is absolutely continuous have been described by Kraft [7]. The
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 210 THOMAS S. FERGUSON

 general method of choosing a distribution function on [0, 1], described in Section

 2 of Kraft and van Eeden [10], can of course be used to define the Dirichlet

 process on [0, 1].

 Special mention must be made of the papers of Freedman and Fabius.

 Freedman [5] defines a notion of tailfree for a distribution on the set of all

 probability measures on a countable space 2. For a tailfree prior, posterior

 distribution given a sample from the true probability measure may be fairly

 easily computed. Fabius [3] extends the notion of tailfree to the case where 6'?
 is the unit interval [0, 1], but it is clear his extension may be made to cover

 quite general 2. With such an extension, the Dirichlet process would be a

 special case of a tailfree distribution for which the posterior distribution has a

 particularly simple form.

 There are disadvantages to the fact that P chosen by a Dirichlet process is

 discrete with probability one. These appear mainly because in sampling from a

 P chosen by a Dirichlet process, we expect eventually to see one observation

 exactly equal to another. For example, consider the goodness-of-fit problem of

 testing the hypothesis H. that a distribution on the interval [0, 1] is uniform.
 If on the alternative hypothesis we place a Dirichlet process prior with parameter

 a itself a uniform measure on [0, 1], and if we are given a sample of size n > 2,

 the only nontrivial nonrandomized Bayes rule is to reject H. if and only if two
 or more of the observations are exactly equal. This is really a test of the hy-

 pothesis that a distribution is continuous against the hypothesis that it is discrete.

 Thus, there is still a need for a prior that chooses a continuous distribution with

 probability one and yet satisfies properties (I) and (II).

 Some applications in which the possible doubling up of the values of the

 observations plays no essential role are presented in Section 5. These include

 the estimation of a distribution function, of a mean, of quantiles, of a variance

 and of a covariance. A two-sample problem is considered in which the Mann-

 Whitney statistic, equivalent to the rank-sum statistic, appears naturally. A

 decision theoretic upper tolerance limit for a quantile is also treated. Finally, a

 hypothesis testing problem concerning a quantile is shown to yield the sign test.

 In each of these problems, useful ways of combining prior information with

 the statistical observations appear.

 Other applications exist. In his Ph. D. dissertation [ 1], Charles Antoniak finds

 a need to consider mixtures of Dirichlet processes. He treats several problems,

 including the estimation of a mixing distribution, bio-assay, empirical Bayes

 problems, and discrimination problems.

 2. The Dirichlet distribution. The discussion of this section is well known but

 our definition of the Dirichlet distribution is slightly more general than the usual

 one. The Dirichlet distribution makes its appearaince in problems involving
 order statistics. A discussion of these applications and of the main properties of

 the Dirichlet distribution may be found in the book of S. S. Wilks [11]. The
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 BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS 211

 Dirichlet distribution is known to Bayesians as the conjugate prior for the

 parameters of a multinomial distribution. See, for example, the book by I. J.

 Good [7].

 We denote by V'(a, j) the gamma distribution with shape prarameter a > 0,
 and scale parameter ,B > 0. For a = 0, this distribution is degenerate at zero; for

 a > 0, this distribution has density with respect to Lebesgue measure on the

 real line

 (1) f(zI a, ) = e-zI(,za-IO)(Z)
 F(a)pa

 where Is(z) represents the indicator function of the set S.

 We define the Dirichlet distribution slightly more generally than in Wilks [ 1],
 by allowing some of the variables to be degenerate at zero.

 Let Z1, Z2, *.., Zk be independent random variables with Z, e V(ai, 1), where
 aj > O forallj, and a, > O forsomej, j = 1, 2, . . ., k.

 The Dirichlet distribution with parameter (a1, *.*, ak), denoted by (a,1 * * *, ak),

 is defined as the distribution of (Y1, *.*, Yk), where

 (2) y= Zj/ t =1 Zi for j = 1, 2, , k .

 Use of the notation BT(a,, ..*, ak) is taken to imply that a, > 0 for all j, and
 a, > 0 for some ]. This distribution is always singular with respect to Lebesgue
 measure in k-dimensional space since Y1 + . . . + Yk = 1. In addition, if any

 a, = 0, the corresponding Yj is degenerate at zero. However, if aj > 0 for all
 j, the (k - 1)-dimensional distribution of (Y1, *.., Yk-1) is absolutely continuous
 with density

 (3) f(Yll .. Yk-1 I a,, ** ak)

 - ((a + ..+ ak) (kl,_,yj a )(I - l_yj) T ky)klIS(y1 *, Yk-)
 17(a,) ... F(ak) (i k1

 where $ is the simplex

 S = {(Yl ... , Ykl)k y 0 , > :yj ? 11.

 For k = 2, (3) reduces to the Beta distribution, denoted by We(ai, a2).
 The main property of the Dirichlet distribution as used below is

 P. If (Y1, * * *, YJ) e !?(a1, *, ak) and rl, * , r, are integers such that
 0 < r, < -. < r, = k, then

 (z1 yi, ]r2+1 YS, s rl_+ Yi) ri(11A ai Er2+1 a, r_+1 a,, r

 This follows directly from the definition of the Dirichlet distribution and the

 additive property of the gamma distribution: If Z1 e V(a1, 1), if Z2 e V(a2, 1)
 and if Z1 and Z2 are independent, then Z1 + Z2 e SV(al + a2, 1).

 In particular, the marginal distribution of each Yj is Beta: Yj e G'e(aj,
 (El kai) - af)

 We record for future use the first two moments of the Dirichlet distribution.

This content downloaded from 
������������129.240.223.221 on Wed, 06 Oct 2021 13:31:14 UTC������������ 

All use subject to https://about.jstor.org/terms



 212 THOMAS S. FERGUSON

 ii . If (Y1, * * Yk) e _2a1r(a*' * ak), then

 Y= ajla

 f Yi= ai(ai + l)/(a(a + 1)) and

 KY Yj = aiaj/(a(a + 1)) for i =1j

 where a = ak ti.

 The following Bayes property of the Dirichlet distribution is well known.

 iiio. If the prior distribution of (Y1, * *, Yk) is a(.1 * *,?) and if

 '4X = jlI Y1 s, Yk} -_ Yj a. s. for j = 1, e ,k ,

 then the posterior distribution of (Y1, *, Y.) given X = j is ?2(ar1i), *,
 where

 a'j'=ai if i *j

 = Xj + I if i =j.

 Contained in this property is a formula that will prove useful. Let us use
 D(yl, * * *, Yk 1, l ..., ak) to denote the distribution function of the Dirichlet
 distribution, _7(a1 *.*, ak). Then, the equality

 -9?{X = I, Yl Zl, ... I Yk < Zk}

 = 9{X = j'9f Y, < Z1 ,Yk < Zk I X=

 may be expressed in terms of D(y1, Ya ** *, ak), using ii? and iiio, as

 (4) sol .. Z ky dD(yl, * ,yk I a,l ,a.t)

 = a D(zl, Z I a1l(, ak, ?()
 a

 It should be noted that this formula is true even if a, = 0.

 3. The Dirichlet process. Let -- be a set and let s/be a a-field of subsets of
 s/ We define below a random probability, P, on ( i /, ) by defining the joint
 distribution of the random variables (P(A1), * *, P(A.)) for every m and every
 sequence A1, * * , Am of measurable sets (Ai e _/for all i). We then verify the
 Kolmogorov consistency conditions to show there exists a probability, ?, on
 ([O, 1 ]-, BJ/'>) yielding these distributions. Here, [0, 1 ]-v represents the space
 of all functions from JQ into [0, 1], and BY represents the a-field generated
 by the field of cylinder sets (Kolmogorov [8]).

 For our purposes, it is more convenient to define the random probability, P,
 by defining the joint distribution of (P(B1), * * *, P(Bk)) for all k and all measur-
 able partitions (B1, . . ., Bk) of 5. (We say (B1, * *, Bk) is a measurable partition
 of 2 if Bie for all i, B, n B= 0 for i j, and U=lB = t) From
 these distributions, the joint distribution of (P(A1), * P(A,,)) for arbitrary
 measurable sets A1, ... I Am may be defined using the hoped for finite additivity
 of P as follows,
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 BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS 213

 Given arbitrary measurable sets A,, * * *, A., form the k = 2"1 sets obtained by
 taking intersections of the Ai and their complements; that is, define Bpl, ... for

 each P, = 0 or 1 as

 (1) BPI,*.pm =n i

 where A,' is interpreted as A,, and A,0 is interpreted as A;, the complement of
 A,. Thus the {B, 1, ..., n } form a measurable partition of Z. If we are given the
 joint distribution of

 (2) {P(Bi,"..."9M); vj = 0 or 1,j = 1, *, m},
 then we may define the joint distribution of (P(A,), *, P(A,)) to be that ob-
 tainable from (2) upon defining for i = 1, * * *, m

 (3) P(Ai) = in) a. v^3i=l P(BPl. ."i)
 We note that if (Al, *. ., A,,) was a measurable partition to start with, then this
 does not lead to contradictory definitions of the distribution of (P(Al),***, P(Am))
 provided

 (4) P(0) is degenerate at 0.

 (We are assuming that the distributions of the random variables are defined free
 of their order, so that Kolmogorov's condition (2) ([8] page 29) is automatic.)

 Under condition (4), the distribution of (P(Al), . . ., P(A.)) for arbitrary measur-
 able Al, *, Am is defined uniquely, once the distributions of (P(B,), ** , P(Bk))
 are given for arbitrary measurable partitions (B,, ., Bk).

 If we are given a system of distributions of (P(BI), * *, P(Bk)) for all k and all
 measurable partitions (B,, . . *, Bk), there is one consistency criterion we would

 certainly like to have satisfied; namely,

 CONDITION C. If (B,', . . ., BA,) and (B,, ** , Bk) are measurable partitions,
 and if (B,', .., B',) is a refinement of (B,, *.., Bk) with B, = Ur Bi', B2 =
 ur21 Bi, ..., B-U A:+ B ', then the distribution of

 (1 iP(B, ),r2+1 P(Bi ), 7k-+1 P(Bs ))

 as determined from the joint distribution of (P(Bl'), * * *, P(B',)), is identical to
 the distribution of (P(B,), *, P(Bk)).

 As the following lemma shows, this condition is sufficient for the validity of

 the Kolmogorov consistency conditions for the distributions of (P(Al), . . ., P(Am))
 defined as in (2) and (3). In fact the lemma is valid also as a description of a
 random finitely additive set function, with finite values (by letting P(Ai) take
 values in the real line, R). However our interest in the present paper is with
 random probability measures. We will say that P is a random probability
 measure on ( _V 3), if C is satisfied, if P(A) takes values only in [0, 1], and
 if P(,-%e) is degenerate at 1.

 LEMMA 1. If a system of joint distributions of (P(B,), ** , P(Bk)) for all k and
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 214 THOMAS S. FERGUSON

 measurable partitions (B1, ** , Bk) is defined satisfying Condition C, and if for arbi-

 trary measurable sets A1, * *, A., the distribution of (P(A1), * * *, P(A.)) is defined
 as in (1), (2), and (3), then there exists a probability JAon ([O, lB<, B<--)yielding

 these distributions.

 PROOF. Since 62 u 0 = X, it follows from Condition C that P(0) is de-

 generate at zero, and thus that the distribution of (P(A1), ** , P(A.)) is well-
 defined by (2) and (3). To check the Kolmogorov consistency conditions, we

 must show that, for arbitrary m and measurable sets A,, * * *, A., the marginal
 distribution of (P(A1), .*, P(A-,,)) derived from the distribution of (P(A1), ..
 P(Am)) is identical to the defined distribution of (P(A1), * * *, P(Am_i)).

 The marginal distribution of (P(A1), . . ., P(Am_i)) derived from the distribution

 of (P(A1), ., P(A.)) is identical to the distribution of

 (5) ((1..p, pm)V=1 P(B ... pM) I.. * *, (pi, ..., , 1V M)1 _1=l P(B,,1, " "1,))

 derived from the distribution of (2). The distribution of (P(A1), ** , P(Am_-))
 is defined as the distribution of

 (6) (E> .'ml,llP(Bpl, 1, "' _)in *) * ...I P -l m- P(B,,1 p'1m_l))

 derived from the distribution of [P(Bpl .... vi = 0 or 1, i = 1, ** , m - 1}
 where

 = U7-1 A .

 Since B .. 1 = B1 .. 1_ 1 u B1,1,...,1,mi 0' Condition C implies that the distri-
 bution of {P(B1,j...,1 -1); v = 0 or 1, j = 1, ** , m - 1} is identical to the
 distribution of {P(B,1,... _,1l l) + P(B>1 ,..., p^_10); Vj = 0 or 1,1 = 1, *.., m - 1)
 as determined from the distribution of (2). Thus, the distribution of (6) can

 also be found from the distribution of (2) upon replacing P(BL,1,., -m-i) by
 P(Bp . LI-1.1) + P(B,1 ... im_i,o). With this replacement, (6) becomes formally
 identical to (5), proving that their distributions are identical.

 DEFINITION 1. Let a be a non-null finite measure (nonnegative and finitely

 additive) on ( -Q/ S). We say P is a Dirichlet process on ( _V tV) with parame-
 ter a if for every k = 1, 2, *, and measurable partition (B1, * * , Bk) of J<7,
 the distribution of (P(B1), * *, P(Bk)) is Dirichlet, 53(a(B1), . * *, a(Bk)).

 The consistency Condition C for the Dirichlet process is exactly property i?

 of the Dirichiet distribution. It follows from Lemma 1 that the Kolmogorov

 consistency conditions are satisfied so that this actually defines a random process.
 In addition, since P(f'?) is degenerate at 1, we call P a random probability
 measure.

 The following three propositions show a close relationship between properties

 of the random probability measure, P, and properties of the parameter of the

 process, a.

 PROPOSITION 1. Let P be a Dirichlet process on (Z2, .W') with parameter a,
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 BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS 215

 and let A e -V. If a(A) = 0, then P(A) = 0 with probability one. If a(A) > 0,

 then P(A) > 0 with probability one. Furthermore, WP(A) = a(A)/a(zf2).

 PROOF. By considering the partition (A, AC), it is seen that P(A) has a Beta
 distribution, !e(a(A) a(Ac)). The proof follows immediately.

 This proposition would seem to say that a and P have the same null sets, in

 other words, that a and P are mutually absolutely continuous. This interpre-

 tation is false; in fact, it is shown in the next section that P is essentially a

 discrete distribution. Thus, a and P may be mutually singular. The point is

 that the null set outside of which the conclusion of Proposition 1 holds may

 depend upon A.

 PROPOSITION 2. Let P be a Dirichlet process on ( -V J) with parameter a. If
 a is a-additive, then so is P in the sense that for a fixed decreasing sequence of measur-

 able sets A, \, 0, we have P(A") -+ 0 with probability one.

 PROOF. Since A. \\ 0 and a is additive, a(A.) O-0. Hence there exists a
 subsequence {nj, such that T a(A,.) < oo. For fixed e > 0,

 J19{P(Aaj) > --) < 2] z-WP(Anj) = s-1 at(A,X)/ar(_2) < oo.

 Hence, from the Borel-Cantelli lemma, 9{JP(A".)> s i.o.} = 0. This proves

 that P(A,3) -> 0 with probability one. The proof is completed by noting that
 P(A.) > P(A.+1) with probability one for all n, and hence, P(A1) > P(A2) > * * .
 with probability one. The converse is also true: if a is not a-additive, then with

 probability one P is not a-additive.

 PROPOSITION 3. Let P be a Dirichlet process on ( - j ) with parameter a, and

 let Q be a fixed probability measure on (r, >v) with Q < a. Then, for any posi-
 tive integer m and measurable sets Al,.**, A. and s > O,

 '9PJP(Aj - Q(Aj)j < s for i = 1 **, ml > O .

 PROOF. Form B,L .. L as in (1) and note that

 _91P(Ai) - Q(A)l < is for i =1, ... , m}

 -9{E(Pl 9Vj=I JP(Bpl ...) -Q(B, )I.. ,)j < e for i = 1, * * *, m}l
 Therefore, it is sufficient to show

 ,9 I P(B,,L,)- Q(Bi. i,*m )I < 2-"e for all (pl, * *,)} > 0.

 If a (B, , V. .) = 0, then Q(B1, l...) = 0 and P(B 1, ...,Pi) = 0 with probability
 one, so that IP(B,l...pm) - Q(BPl.. in)I = 0 with probability one. For those
 (VI, * * IV,.) for which a(B,1 ... ) > 0, the distribution of the corresponding
 P(B,, ... p ) gives positive weight to all open sets in the set

 plenm)t3a(Bep,...,ro)f

 completing the proof.
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 216 THOMAS S. FERGUSON

 This proposition is a version of the desirable property (I) mentioned in the

 introduction. To discuss the support of a random probability measure, the
 topology on the space of probability measures on (i', JV) must be specified. If

 the topology is chosen to be that of pointwise convergence (Q. -* Q, if for every
 A e _V, Q.(A) -> Q(A)), Proposition 3 states that the support of the Dirichlet
 process on ( _V S) with parameter a contains the set of all probability measures
 absolutely continuous with respect to a. It is easy to see conversely, that any
 measure Q not absolutely continuous with respect to a is not in the support of P.

 If (??, X) is the real line with the Borel sets, we may consider the topology
 of convergence in distribution on the set of a-additive probability measures on
 (?, Sf). With this topology, it may be shown that if a is a-additive, the
 support of P is the set of all a-additive probability measures whose support is
 contained in the support of a.

 DEFINITION 2. Let P be a random probability measure on (', f). We say
 that X1, * * *, X,, is a sample of size n from P if for any m = 1, 2, * and measur-
 able sets A1, ... , A,, Ci, * * C,,

 (7) .9{X, e C1, l * , Xn e C,n I P(A1), . * P(A,,), P(C1), * * P(Cn)}

 ==II1 P(Cj) a.s.
 Roughly, X1, X.., ,, is a sample of size n from P, if, given P(C1), ..., P(Cn)

 the events {X1 e C1}, * *, {X, e C" are independent of the rest of the process, and

 are independent among themselves, with A{X, e Cj I P(C1), . * *, P(C,,)} = P(Cj)
 a.s. for j ] 1, . ., n. This definition determines the joint distribution of X1,
 X", P(Al), *.., P(Am), once the distribution of the process is given, since

 (8) 9{X1 eC1 Cl*, , Xn E C,C, P(A1) < y1, * * * .P(A) < ym}

 may be found by integrating (7) with respect to the joint distribution of P(A1),* ,

 P(Am), P(C1), . . *, P(C,,) over the set [O'YJ] x ... x [0,Ym] x [0, 1] x ... x
 [0, 1]. The Kolmogorov consistency conditions may easily be checked to show

 that (8) determines a probability 9` over (,%2"I X [0, l]y, fVn x BJY-').

 PROPOSITION 4. Let P be a Dirichlet process on (6?, Sf) with parameter a and
 let X be a sample of size 1 from P. Then for A e Xf,

 ?9(Xe A) = a(A)/a(2).

 PROOF. Since 9J(X e A I P(A)) = P(A) a.s.,

 S72(Xe A) = Q7-(Xe A I P(A))
 = KP(A)

 = (A)1a(t) s
 completing the proof.

 PROPOSITION 5. Let P be a Dirichlet process on (%e, Xf) with parameter a, and
 let X be a sample of size 1 from P. Let (B1, * * *, Bk) be a measurable partition of
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 BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS 217

 , and let A e v. Then,

 (9) VlXc- A, P(B1) < yl, * * *, P(Bk) _ Yk}

 = zk a(B3 n A) D(y1, * Yk I 1 . , k )

 where D(y1, * , )k j a1, ** , ak) is the distribution function of the Dirichlet distri-
 bution, ?F21(a1 .*, ak), and where

 a*(i) a(B.) if i #j

 =a(B,) + I if i =j.

 PROOF. Define B3 1 = B, n A, and B10 = B. n AC for j =1,..,k. Let
 Y ,, = P(Bj ,) forj = 1, .. .,kand v = 0, 1. Then, from (7)

 (10) {XE AI Yj, P,j = 1, . . ., k, and = 0, 1) = I a.s.

 Hence for arbitrary y,, e [0, 1], for] = 1, ..., k and v = 0, 1,

 7{Xe A, Yj5 1 y , for = 1, *,k, and v = 0, 1}

 can be found by integrating (10) with respect to the distribution of the Y6,,, over
 the set {Yj,, < yj p, j = 1, .., k and v - 0 1}. This integration turns out to be
 (see (4) of Section 2)

 E kja (B,1 D(y I a('))

 where Y = (Yi,o, * * *, Y,,o, Yii * * *, Yi) and a(i) = (a'j*, a (), a(i), a*i)),
 and where

 ar3= a(Bi, ) if i # j

 =a(B,,,)+ 1 if i=j.
 The conclusion of the proposition follows from this using property i? of the

 Dirichlet distribution, since P(B3) = Yj,0 + Y6,, a.s., and since the process of
 finding marginal distributions of random variables is linear.

 We are now prepared to find the conditional distribution of a Dirichlet pro-

 cess P, given a sample X1, * * *, X,, from P. It turns out that this conditional
 distribution is also a Dirichlet process.

 For x e , let 5. denote the measure on ( _ , ) giving mass one to the point x:

 3,(A) = 1 if xe A
 =0 if x A .

 THEOREM 1. Let P be a Dirichlet process on ( _V, J) with parameter a, and let

 Xi, * * , Xn be a sample of size n from P. Then the conditional distribution of P given

 x, * * *, X., is as a Dirichlet process with parameter a + ,1 axi.

 PROOF. It is sufficient to prove the theorem for n = 1, since the theorem

 would then follow by induction upon repeated application of the case n = 1.

 Let (B1, * * *, Bk) be a measurable partition of ,e and let A e _V, It is easy to
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 218 THOMAS S. FERGUSON

 check that the marginal distributions of a conditional distribution of a process
 are identical to the conditional distributions of the marginals. Hence, we must

 show that the conditional distribution of P(B1), * , P(Bk) given X, a sample of
 size one from P, has distribution function

 ( 1) D(yl, * * *I Yk I a(Bl) + bx(B1), * *, a(Bk) + 3x(Bk))
 This may be done by showing that the integral of (11) with respect to the mar-

 ginal distribution of X over A is equal to the probability (9). Using the marginal

 distribution of X as found in Proposition 4, we compute

 SA D(yl, . , I a(B1) + 5.(Bl), * * , a(Bk) + 6Z(Bk)) da(x)/a(z?)

 - }=l SBjnA D(yI, * * *, Yk I a1l(1, *,ak(j)) da(x)/ca(ct?f)

 - I1=1 a(B6 n A) D(y1, -Y| a1 - , . I a*k)

 completing the proof.

 4. An alternative definition of the Dirichlet process. In this section, we define
 a random probability measure which is a Dirichlet process on ( -, X) with

 parameter a and which with probability one is a discrete probability measure
 on (te, J/).

 The basic idea is that since the Dirichlet distribution is definable, as in (2) of
 Section 2, as the joint distribution of a set of independent gamma variables

 divided by the sum, so also should the Dirichlet process be definable as a gamma
 process with independent "increments" divided by the sum. Using a represen-

 tation of a process with independent increments as a sum of a countable number

 of jumps of random height at a countable number of random points, as found in
 [4], we may divide by the total heights of the jumps and obtain a discrete prob-

 ability measure, which should be distributed as a Dirichlet process.

 The gamma distribution, W(a, 1), a > 0, has characteristic function (see
 Gnedenko and Kolmogorov ([6] pages 86-87)),

 (1) s,(a) = ( -it)-a

 = exp So (eiux - 1) dN(x)
 where

 (2) N(x) =-a S - e-8y-1dy for 0 < x < oo.

 We define the distribution of random variables J1, J2, ... as follows.

 (3) 9X(J1 < xI) = eN'xl) for xl > 0

 and forj = 2, 3, * .

 (4) .i?(Jj ? x3 I = x-1, J .., = x1) = exp [N(x,) -N(x-
 for 0 < x, < xj,1.

 In other words, the distribution function of J1 is expN(x,) and for j = 2, 3, *..,
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 BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS 219

 the distribution of J, given J,-,, * *, J1, is the same as the distribution of J1
 truncated above at J,_1. The following theorem is taken from the main theorem
 of [4].

 THEOREM 1. Let G(t) be a distribution function on [0, 1]. Let

 (5) Z a= j=lJsI[o,G(t)(Uj)

 where (i) the distribution of J1, J2, * is given in (3) and (4), and

 (ii) U1, U2 * * * are independent identically distributed variables, uniformly distri-

 buted on [0, 1], and independent of J1, J2, * a .. Then, with probability one, Zt con-
 verges for all t e [0, 1] and is a gamma process with independent increments, with

 Zt c26(aG(t), 1).

 In particular, Z, - J, converges with probability one and Z1 e '<(a, 1).
 If we define

 (6) Pi = Jjl,

 then P. > 0 and E Pj = 1 with probability one.
 We now define the Dirichlet process. As before, let ( _ V) be a measur-

 able space, and let a(.) be a finite non-null measure on -s. Let V1, V2, * * * be
 a sequence of independent identically distributed random variables with values

 in , and with probability measure Q, where Q(A) = a(A)/a(2i't). (More

 specifically, let (i?j, j Qj) be identical copies of (f V V, Q), and let V, be
 the identity map from i- to e. Then the V, are extended to be defined on
 the infinite product space (II f fi Vjf i Qj) in the usual manner.)

 We identify the a in formulas (1) and (2) with a(dt'), and define the random
 probability measure, P, on (t', -V), as

 (7) P(A) = IT Pj v(A) v
 THEOREM 2. The random probability measure defined by (7) is a Dirichlet process

 on (', S) with parameter a.

 PROOF. Let (B1, * , Bk) be a measurable partition of t2 Then

 (P(B1), P(Bk)) = 1 T lJ1( 3vj(B), (B

 From the assumption on the distribution of V1, V2, **

 Mi = (dvj(B,), * dvj(Bk))
 are independent identically distributed random vectors having a multinomial
 distribution with probability vector (Q(B1), * *, Q(Bk)). Hence, the distribution

 of J, M, must be the same as the distribution of

 (Zllk, Z2/k -Zl/k, .. , - Z(k-l)Ik)

 where Zt is the gamma process defined by (5) with G(t) chosen so that
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 220 THOMAS S. FERGUSON

 Hence, E - J (B) are, for i = 1, * *, k, independent random variables, with
 E jJ av 5(B,) e (a(Bi), 1) Since Z1 is the sum of these independent gamma
 variables, (P(B1), ** , P(Bk)) C 2(a(B1), * a*, a(Bk)) from the definition of the
 Dirichlet distribution. Thus, P satisfies the definition of the Dirichlet process.

 THEOREM 3. Let P be the Dirichlet process defined by (7), and let Z be a measur-
 able real valuedfunction defined on (29j ). If S IZI da < oo, then S IZI dP < oo
 with probability one, and

 K 5 ZdP = 5 Zd P = a ) Z 5 zda .

 PROOF. From (7)

 (8) IZI dP = L21 IZ(Vj)lPj

 so that the monotone convergence theorem gives

 ' S I ZI dP = E 1 dlZ( Vj) I ,;`Pj
 - cx(flg>)-1 5 |Z| dcx J=1 vPj

 - az(2~ &t')S ZI dca

 where we have used the independence of the VJ, and the Pj. Therefore, S IZi dP
 is finite with probability one, and hence

 S ZdP =El=1Z(Vi)Pi

 is absolutely convergent with probability one. Since this series is bounded by
 (8), which is integrable, the bounded convergence theorem implies

 W 5 Z dP = E j eZ( Vj) P;
 = S(2< 5 Zda

 completing the proof.

 This theorem emphasises the close relationship between a and the random

 probability measure P. It implies, in particular, that if (2e, _V) were the real
 line and the Borel sets, and if a has a finite kth moment, then with probability
 one P has a finite kth moment.

 THEOREM 4. Let P be the Dirichlet process defined by (7), and let Z1 and- Z2 be
 measurable real valuedfunctions defined on (;, iV. If 5 IZ1I da < o, 5 JZ2 da <
 oo and 5 1Z1Z21 dca < oo, then

 ,-5 Z1 dP 5 Z2dP = 12 + l + 2

 where

 =x(c2)-> S Z dcx id= 1, 2 and
 'g12= ac(-I2)1 5 Z1Z2 da -P1P2

 PROOF. As in Theorem 3

 (11) 5 ZjdP S Z2 dP = Zj(Vj)P Ej Z2(Vj)Pj
 = Li E j Z1( Vi)Z2( vj)Pi Pj
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 BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS 221

 since both series are absolutely convergent with probability one. This is bounded
 in absolute value by

 (12) Ei Ej IZ1(Vi)Z2(V,)fP1P,

 If this is an integrable random variable, we may take an expectation of (11) inside

 the summation sign and obtain

 e 5 Z1 dP 5 Z2 dP = Ei E K(Z1(Vi)Z2(V,))K(Pi Pj)

 = E E WZ1(Vi)2(Vj)W(PtPi)
 i*j

 + Ei KZ( Vi)Z2( Vi))i2

 using the independence of the Pi and the V1, and the independence of the V;
 among themselves. The equation continues

 = 2 (PiPj) + (a12 + t1P2) ii2
 i*j

 = t12 + a12 ' ; PJ2.

 An analogous equation shows that (12) is integrable. The proof will be complete
 when we show

 J=1 P a(=-2) I

 This seems difficult to show directly from the definition of the P;, so we proceed
 as follows. The distribution of the P, depends on a only through the value of
 a(w ). So choose 52' to be the real line, a to give mass a(,')/2 to -1 and mass

 a(t?')/2 to + 1, and Z1(x) = Z2(x) to be identically x. Then p,u = P2 = 0 and
 T12 = 1. Hence

 E o Pi2 = x( S X dP(x))2 = (2P({ 1) - 1)2

 a(z) + 1

 since P({ 1}) e ?e(a(')/2, a(,2)/2), completing the proof.

 This theorem states that the covariance of the random variables 5 Z1 dP and

 S Z2 dP is equal to (a(z2') + I )- times the covariance of Z1 and Z2 as random
 variables on (, J, Q) where Q = WP = a/a(t). In particular, the correla-
 tion coefficient of 5 Z1 dP and 5 Z2 dP is equal to the correlation coefficient of
 Z1 and Z2 as random variables on (, X, Q) (assuming the finiteness of 5 Z12 da
 and 5 Z22 da).

 5. Applications. Throughout this section, a is taken to denote a or-additive
 non-null finite measure on (, JV). We write P e _(a) as a notation for the
 phrase "P is a Dirichlet process on (t% ) with parameter a." We let JR
 denote the real line and Mthe a-field of Borel sets. In most of the applications
 we take (c, JV) = (1R, ?).

 The nonparametric statistical decision problems we consider are typically
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 222 THOMAS S. FERGUSON

 described as follows. The parameter space is the set of all probability measures

 P on (2 J). The statistician is to choose an action a in some space, thereby

 incurring a loss, L(P, a). There is a sample X1, * *, Xn from P available to the
 statistician, upon which he may base his choice of action. He seeks a Bayes rule

 with respect to the prior distribution, P e BS(a).
 With such a prior distribution, the posterior distribution of P given the obser-

 vations is B9(a + Y1 xf), where dx denotes the measure giving mass one to the
 point x. Thus, if we can find a Bayes rule for the no-sample problem (with

 n = 0), a Bayes rule for the general problem may be found by replacing a with

 a + x,. In the problems considered below, we first find the Bayes rule for
 the no-sample problem, and then state the Bayes rule for the general problem.

 (a) Estimation of a distribution function. Let (6, J) = (R, ), and let the
 space of actions of the statistician be the space of all distribution functions on

 R. Let the loss function be

 L(P, F) = S (F(t) - (t))2 dW(t)

 where W is a given finite measure on (R, .?fW) (a weight function), and where

 ( 1 ) F(t) = P((-oo, t]) .

 If P e _12f(a), then F(t) e Me(a((- oo, t]), a((t, oo))) for each t. The Bayes risk

 for the no-sample problem,

 KL(P , F) = W (F(t) -f(t))2 d W(t),

 is minimized by choosing t(t) for each t to minimize e(F(t) -(t))2. This is
 achieved by choosing F(t) to be fF(t). Thus, the Bayes rule for the no-sample

 problem is

 F(t) = eF(t) = Fo(t)

 where

 (2) Fo(t) = a((- oo, t])/a(R)

 represents our prior guess at the shape of the unknown F(t).

 For a sample of size n, the Bayes rule is therefore

 (3) . . = a((-cc, t]) + ox^((oo, t])

 =p Fo(t) + (1 -p")F,(t I X1, Xn)
 where

 (4) Pit= a(R)/(a(R) + n)
 and

 F(t I X1, **, X",) =-Zi"= x.((c, t])

 is the empirical distribution function of the sample.
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 BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS 223

 The Bayes rule (3) is a mixture of our prior guess at F and of the empirical

 distribution function, with respective weights p,n and (1 ps). If a(R) is large
 compared to n, little weight is given to the observations. If a(R) is small com-
 pared to n, little weight is given to the prior guess at F. One might interpret
 a(R) as a measure of faith in the prior guess at F measured in units of numbers
 of observations. As a(R) tends to zero (the "noninformative" Dirichlet prior),

 the Bayes estimate converges to the empirical distribution function.
 It is interesting to note that whatever be the true distribution function, the

 Bayes estimate (3) converges to it uniformly almost surely. This follows from
 the Glivenko-Cantelli theorem and the observation that p,n -- 0 as n -> oo.

 The results for estimating a k-dimensional distribution function are completely
 analogous.

 (b) Estimation of the mean. Again let (,2, J) = (R, ), and suppose the
 statistician is to estimate the mean with squared error loss

 L(P, ,t)=(- )2

 where

 (5) ,= x dP(x).

 We assume P e 92(a), where a has finite first moment. The mean of the cor-

 responding probability measure a( )/1a(R) is denoted by p,i:

 (6) po = C x da(x)/a(R)

 By Theorem 3, the random variable pe defined by (5) exists. The Bayes rule for
 the no-sample problem is the mean of u, which, again by Theorem 3, is ,d = o

 For a sample of size n, the Bayes rule is therefore

 (7) ,(X1, * *, X.) = (a(R) + n)-1 S x d(a(x) + E x(x))

 P. Po + ( - POTw)

 where p,n is given by (4) and A', is the sample mean,

 xn I - - xi
 n

 The Bayes estimate is thus between the prior guess at s, namely po, and the
 sample mean. As a(R) - 0, jn converges to X,. Also, as n -- oo, p,n -- 0 so
 that, in particular, the Bayes estimate (7) is strongly consistent within the class
 of distributions with finite first moment.

 More generally, for arbitrary (2 V), if Z is real-valued measurable defined
 on (, XV), and if we are to estimate

 0 = 5 ZdP

 with squared error loss and prior P e ?2(a), where a is such that

 00 = S Z da/a(2) < cc,
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 224 THOMAS S. FERGUSON

 then the estimate a = 60 is Bayes for the no-sample problem. For a sample of
 size n,

 On(X1, * * XI) = Pn 0o + (1 -Pn)- Z Z(Xi)
 n

 is Bayes, where p. = a(?')/(a(t?) + n). Results for estimating a mean vector
 in k-dimensions are completely analogous.

 (c) Estimation of the median. Again let ( _, V) = (R, ?,') and suppose the
 statistician is to estimate the median

 (8) m = med P

 of an unknown probability measure P on (R, ). If P e ?Y(a), the median of
 P is unique with probability one. To see this, note that F(t), defined by (1),

 increases whenever a increases, with probability one. Any multiple medians of

 P must occur on an interval of measure zero of a. There are only a countable

 number of such intervals, and the probability that any such interval is an inter-

 val of medians is just 9{F(t) = 21 for t any interior point of the interval. This

 is zero since F(t) has a Beta distribution. Thus, for P e 9(a), m defined by (8)
 is a random variable.

 The Bayes estimate of m for the no-sample problem with Dirichlet process

 prior and squared error loss is the expectation of m. Unfortunately, this expec-

 tation is difficult to compute, and may, in fact, not even exist. Instead, we seek
 the Bayes estimate of m under absolute error loss,

 L(P, m) = Im - Al

 As is well known, any median of the distribution of m is a Bayes estimate of m.

 For the Dirichlet process prior, any median of the distribution of m is a median

 of the expectation of P, and conversely:

 (9) med (dist. med P) = med X P.

 This may be seen as follows. A number t is a median of the distribution of m

 if and only if

 (10) '9Dm < t} < I < 'a7-m < t} .

 Since 9~?{m < t} = a17{F(t) > } by the definition of m, and since F(t) has a
 Me(a((- oo, t]), a((t, oo))) distribution, whose median is a non-decreasing func-
 tion of t with value one-half if and only if the two parameters are equal, we see
 that t satisfies (10) if and only if

 (11) ~ ~~~(( o t)) < a< a((- o]).
 a(R) a(R)

 Such t are exactly the medians of fP, proving (9).
 Thus, any number t satisfying (11) is a Bayes estimate of m for prior .2(a)

 and absolute error loss. For Fo defined by (2),

 m = median of F0.
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 BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS 225

 For a sample of size n, the Bayes estimate is therefore

 ** , X,,) = median of Fn

 where Fn, is the Bayes estimate of F given by (3).

 (d) Estimation of quantiles. We extend the analysis of part (c) to the estima-

 tion of the qth quantile of P, denoted by t,:

 P((-oo, tQ)) < q < P((-oo, tq])

 As in the case of the median, it is easy to see that for 0 < q < 1, the qth quantile
 of P e 92(a) is unique with probability one, so that tq is a well-defined random

 variable.

 We consider the problem of estimating tq with loss for some p, 0 < p < 1,

 L(P, tq)= p(tq-tq) if tq f tq

 = ( 1 ~p)(tq - tq) if tq< tq .

 As is well known, any pth quantile of the distribution of tq is a Bayes estimate

 of tq under this loss. The distribution of tq may be found from the formtula

 (12) J9Ztq < t} = _i7{F(t) > q}

 = Fi r(M) ZUM-l(l - z)(1-u)m-1dz
 q F(uM)L((l - u)M)

 where
 M = a(R)

 u = a((-oo, t])/a(R) = Fo(t)

 To find the pth quantile of tq, we set (12) equal to p and solve for t.

 (13) S1 r(M) zuM-1(1 _ z)(1-U)m-1 dz = p
 q '(uM)r((l - u)M)

 For fixed p, q, and M, we let (13) define a function u(p, q, M). The Bayes esti-

 mate of tq for the no-sample problem is the uth quantile of F0,

 tq = u(p, q, a(R))th quantile of F,.

 For a sample of size n, the Bayes estimate of tq is therefore

 (14) tq(Xl * , X.) = u(p, q, a(R) + n)th quantile of F,

 where F,, is the Bayes estimate of F given by (3). If p and q are both j, this
 reduces to the estimate of (c), since u(2, 2, M) = 1 for all M, as is seen from (13).

 If tables of the function u(p, q, M) were available, it would be an easy mat-

 ter to find the estimate (14). Unfortunately, it is difficult to obtain values of

 u(p, q, M) from existing tables of the incomplete Beta function. The author

 has tables of u for p = .05(.05).95, q = .05(.05).95, and M = 1(1)10.

 (e) Estimation of a variance and a covariance. Consider the problem of
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 estimating the variance of an unknown probability distribution P with squared

 error loss

 L(P, a2) = (Var p - a 2)2

 If P e 9(a), and if a has a finite second moment, then

 Var P = 5 x2dP(x) -(5 x dP(x))2

 is a random variable whose expectation (a Bayes estimate for the no-sample

 problem) may be computed from Theorems 3 and 4 as follows

 f7 Var P = e 5 x2P(x) -(5 x dP(x))2

 = (6o2 + [e02) - ( + Po 2
 a(R) + 1

 - (ta(R) 2
 a(R) + 1 0

 where fo is given by (6) and where

 co2= a(R)-' 5 x2 da(x) -_o 2

 is the variance of Fo, the prior guess at F.
 For a sample of size n, the Bayes rule is therefore

 2 *X , Xc- a(R)?+n VAr
 a(R) + n + 1

 where Fn is given by (3). Using an easy formula for the variance of a mixture,

 we find

 On 2 X a* * R X |) - (R) + n + Var (pn Fo + (1 - p")F")

 (15) = _a(R) + n + 1 Or(2 + p ) 3
 a(R) +n +

 + p,(l - Pj)(po - X)2)

 where I 0lo, pno2, p and If are as before, and where si, is the sample variance

 S2 =-=1(X,,-X)
 n

 An alternative form of the estimate (15) expresses a.2 as a mixture of three dif-
 ferent estimates of the variance:

 2(Xl* * *, X")

 a(R) + n ( + ( P) (- (X 2

 a(R) + n+ 1 n' 0 F 1 ) If we let our prior sample size a(R) tend to zero, keeping Fo fixed, we find that

 or2 converges to the estimate

 n1 X
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 This estimate is well known as the best invariant or minimax estimate of the

 variance of a normal distribution under relative squared error loss (squared error

 divided by (Var P)2). Its appearance in this problem is rather surprising.

 To estimate the covariance of a distribution P in the plane,

 Cov P = S xydP- SxdP SydP,

 a similar analysis may be carried out. Here, 2represents the Euclidean plane
 R2, 2v represents the Borel subsets, and a represents a finite measure thereon.

 With squared error loss, the Bayes estimate of Cov P with respect to the prior
 P e _9Y(a), is for the no-sample problem

 K Cov P a(R 2) f1
 a(R2) + I

 where, as in Theorem 4, ?12 is the covariance of the distribution 'P,

 2 = a(R2)-1 S xyda(x,y) -_[M1/2

 , = a(R2)'l S x da(x, y)

 2= a(R2)-1 5 y da(x, y)

 For a sample of size n, the Bayes estimate is

 612(XII Yl, * * Xn, Yn) = a(R2) + n ? (P. OI2 + (1-PO)S12

 + PX(l - P)(1 - X)(12 -

 where S12 iS the sample covariance

 S12 = - 1 (Xi X )( Yi - )
 n

 (f) Estimation of 5 F dG for a two-sample problem. Let F and G be two distri-

 bution functions on the real line, and let X1, * * , X[ be a sample from F and

 Y1, . * *, Y. a sample from G. Consider the problem of estimating probability
 that X1 < Y1, denoted by A,

 A = 5 FdG

 with squared error loss. As a prior distribution for (F, G), we assume that F is
 the distribution function of P1 e _(a1), that G is the distribution function of

 P2 e Z(a2) and that P1 and P2 are independent. A computation similar to that

 found in Theorems 3 and 4 shows that the Bayes rule for the no-sample prob-

 lem is

 AO= KA = 5 Fo dGo

 where FO = WF and Go = KG.
 Given the two samples, the Bayes rule is

 A(X,l * * * Xm, Yi, *.*. YO) = S tm dGn
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 where Fm and 6" are the respective Bayes estimates of F and G, as in (3). This
 may be written

 A(X1,I, Xn, * Y Y, Yn) = Pl,,P2,n A0 + PI,.(' -P2,.) ?E Fo(Y,)
 n

 + (1 - Plm)P2,1 Em- (1 -Go(Xj-))

 + (1 - p,1m)(1 - P2,n) u
 mn

 where pi, al(R) , I p2 a2(R)
 a1(IR) +m 2 a2(R)?+n

 and where U, the number of pairs (Xi, Y,) for which X, < Yj,

 U = Ei E I(_,yj1](Xi)

 is the Mann-Whitney statistic, a linear function of the rank-sum statistic. It is

 interesting to note that the estimate A is a simple mixture of four separate esti-
 mates of A. As both a1(R) and a2(R) tend to zero, the estimate A converges to
 (mn)1'U, the usual nonparametric estimate.

 (g) "Tolerance" regions. The notion of tolerance regions that we treat is not

 the usual one, but rather the decision theoretic analogue. Consider the problem

 of estimating the qth quantile tq of an unknown distribution P on the real line
 by an upper "tolerance" point a with loss function

 L(P, a) = pP((-oo, a]) + qI(,oo)(tq)

 where p is a constant 0 < p < 1. If tq is known exactly, L is minimized by
 choosing a = tq. But if tq is only vaguely known, it is best to "overestimate" tq
 to keep the expectation of the second term small, provided the expectation of the
 first term is not too enlarged.

 If P e !2(ca), the Bayes risk for the no-sample problem is

 ML(P, a) = pf'P((-oo, a]) + q&9{tq > a}

 (16) = pFO(a) + q_9'{F(a) < q}
 Pu ? q ~ 1(M) z"ff-'( - Z)(I1)M-1 dz

 Pu + q s r(uM)((l - u)M) (

 where u represents Fo(a) and M = aQ(R). Since this Bayes risk depends on a only
 through FO(a), we seek that value of u in [0, 1] that minimizes (16). It is not
 difficult to show uniqueness of the point at which the minimum occurs, but
 assuming uniqueness, and letting u = f(p, q, M) denote the point at which the
 minimum occurs, the Bayes rule for the no-sample problem is

 a = f(p, q, a(R))th quantile FO.
 For a sample of size n, the Bayes rule is

 an,(Xl* * , Xn) = f(p, q, a(R) + n)th quantile of Jn.
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 (h) Tests of hypotheses involving quantiles. Consider the problem of testing the

 hypothesis that the qth quantile tq of an unknown distribution P on the real line

 does not exceed a given constant, taken without loss of generality to be zero.

 There are two actions available to the statistician, ao and a,, with loss functions

 L(P, a0) = WoI(o,o)(tq)

 L(P, al) = wl!(_,0o](tq)

 where w0 and w, are positive constants. Suppose P e B_(a). The Bayes rule for
 the no-sample problem is to select the action with smaller expected risk. This

 rule is: take action ao if

 9{F(O) > q}> WO
 Wi + wo

 and take action a, otherwise. In terms of the function u(p, q, M) defined by (13),
 we would take action ao if

 u q WO ,q, a(R)) < Fo(O).
 W1 + wo

 For a sample of size n, the Bayes rule is: take action ao if

 u ( O , q, a(R) + n < pFO(O) + (p)W
 \Wo + W1 /nf

 where p,n is an in (4), and where W, is the number of X; less than or equal to
 zero. This is essentially the sign test.

 Since u(j, ", M) = a for all M, the above formula simplifies when testing for
 the median with wo = w1. This test becomes: accept the hypothesis that the
 median does not exceed zero if

 Wn > in + a(R)(j - Fo(O))
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