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Abstract
Marginal structural models (MSMs) allow for causal analysis of longitudinal data. The
standard MSM is based on discrete time models, but the continuous-time MSM is a
conceptually appealing alternative for survival analysis. In applied analyses, it is often
assumed that the theoretical treatmentweights are known, but theseweights are usually
unknown and must be estimated from the data. Here we provide a sufficient condition
for continuous-time MSM to be consistent even when the weights are estimated, and
we show how additive hazardmodels can be used to estimate such weights. Our results
suggest that continuous-time weights perform better than IPTW when the underlying
process is continuous. Furthermore, we may wish to transform effect estimates of
hazards to other scales that are easier to interpret causally. We show that a general
transformation strategy can be used onweighted cumulative hazard estimates to obtain
a range of other parameters in survival analysis, and explain how this strategy can be
applied on data using our R packages ahw and transform.hazards.

Keywords Additive hazard models · Causal inference in survival analysis ·
Continuous time marginal structural models · Continuous time weights

1 Introduction

MSMs can be used to obtain causal effect estimates in the presence of confounders,
which e.g. may be time-dependent (Robins et al. 2000). The procedure is particularly
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appealing because it allows for a sharp distinction between confounder adjustment
and model selection (Joffe et al. 2004): first, we adjust for observed confounders by
weighing the observed data to obtain balanced pseudopopulations. Then, we calculate
effect estimates from these pseudopopulations based on our structural model.

Traditional MSM techniques for survival analysis have considered time to be a
discrete processes (Hernán et al. 2000b). In particular, inverse probability of treatment
weights (IPTWs) are used to create the pseudopopulations, and then e.g. several subse-
quent logistic regressions are fitted for discrete time intervals to mimic a proportional
hazards model.

However, time is naturally perceived as a continuous process, and it also seems
natural to analyse time-to-event outcomeswith continuousmodels. Inspired by the dis-
crete time MSMs, Røysland (2011) suggested a continuous-time analogue to MSMs.
Similar to the discrete MSMs, it has been shown that the continuous MSMs can be
used to obtain consistent effect estimates when the theoretical treatment weights are
known (Røysland 2011). In particular, additive hazard regressions can be weighted
with the theoretical continuous-time weights to yield consistent effect estimates. Nev-
ertheless, the weights are usually unknown in real life and must be estimated from the
data.

In this article, we show that continuous-time MSMs also perform desirable when
the treatment weights are estimated from the data: we provide a sufficient condition
to ensure that weighted additive hazard regressions are consistent. Furthermore, we
show how such weighted hazard estimates can be consistently transformed to obtain
other parameters that are easier to interpret causally. To do this, we use stability theory
of SDEs, which allows us to target a range of parameters expressed as solutions of
ordinary differential equations. Many examples of such parameters can be found in
Ryalen et al. (2018b). This is immediately appealing for causal survival analysis: first,
we can use hazard models, that are convenient for regression modeling, to obtain
weights. Estimates on the hazard scale are hard to interpret causally per se (Robins
and Greenland 1989; Hernán 2010; Aalen et al. 2015; Stensrud et al. 2017), but we
present a generic method to consistently transform these effect estimates to several
other scales that are easier to interpret.

The continuous-time weights and the causal parameters can be estimated using the
R package ahw. We show that this ahw weight estimator, which is based on additive
hazard regression, is consistent in Theorem 2. We have implemented code for trans-
forming cumulative hazard estimates in the package transform.hazards. These
packages make continuous-time marginal structural modeling easier to implement for
applied researchers.

2 Weighted additive hazard regression

2.1 Motivation

We will present a strategy for dealing with confounding and dependent censoring in
continuous time. Confounding, which may be time-varying, will often be a problem

123



The additive hazard estimator is consistent for… 613

when analysing observational data, e.g. coming from health registries. The underlying
goal is to assess the effect a treatment strategy has on an outcome.

We can describe processes in continuous time using local (in)dependence rela-
tions, and we can use local independence graphs to visualise these relations. A precise
description of local independence can be found in Røysland (2011). The local inde-
pendence graph we will focus on is

C L D

A

.

Heuristically, the time-dependent confounders L and the exposure A can influence
the censoring process C and the event of interest D. Moreover, the time-dependent
confounders can both influence and be influenced by the exposure process.We include
baseline variables, some of which may be confounders, in Sect. 2.2.

The above graph can e.g. describe a follow-up study ofHIV-infected subjects,where
the initiation and adjustment of HIV treatment depend on CD4 count measurements
over time (Hernán et al. 2000a). The CD4 count is a predictor of future survival, and it
is also a diagnostic factor that informs initiation of zidovudine treatment; a CD4 count
below a certain threshold indicates that treatment is needed. The CD4 count will, in
turn, tend to increase in response to treatment, and is monitored over time to inform the
future treatment strategy. Hence, it is a time-dependent confounder. In most follow-up
studies there is a possibility for subjects to be censored, and we allow the censoring
to depend on the covariate and treatment history, as long as subjects are alive.

In Ryalen et al. (2018a) we analysed a cohort of Norwegian males diagnosed with
prostate cancer, using the theory from this article to compare treatment effectiveness
of radiation and surgery, even though time-dependent confounding were thought to be
a minor issue. The continuous-time MSMs allowed us to estimate causal cumulative
incidences on the desired time-scale, starting from the time of diagnosis. This example
shows that (continuous-time) MSMs can also be a preferable choice in the absence of
time-dependent confounding.

2.2 Hypothetical scenarios and likelihood ratios

We consider observational event-history data where n i.i.d. subjects are followed over
the study period [0, T ]. Let Ni,A and Ni,D respectively be counting processes that
jump when treatment A and outcome D of interest occur for subject i . Furthermore,
let Y i,A,Y i,D be the at-risk processes for A and D. We let V0 be the collection of
baseline variables that are not confounders, as well as the treatment and outcome
processes. L are the (time-dependent) confounders. For now, we assume independent
censoring, but we will show how our methods can be applied in some scenarios with
dependent censoring in Sect. 6.

Let F i,V0∪L
t denote the filtration that is generated by all the observable events for

individual i . Moreover, let Pi denote the probability measure onF i,V0∪L
T that governs

123



614 P. C. Ryalen et al.

the frequency of observations of these events, and λ
i,D
t denote the intensity for Ni,D

with respect to Pi and the filtration F i,V0∪L
t .

We aim to estimate the outcome in a hypothetical situation where a treatment
intervention is made according to a specified strategy. Suppose that the frequency of
observations we would have seen in this hypothetical scenario is described by another
probability measure P̃i on F i,V0∪L

T . Furthermore, assume that all the individuals are
also i.i.d. in the hypothetical scenario and that P̃i � Pi , i.e. that there exists a
likelihood ratio

Ri
t :=

d P̃i |F i,V0∪L
t

d Pi |F i,V0∪L
t

for each time t . We will later describe how an explicit form of {Ri }i can be obtained.
It relies on the assumption that the underlying model is causal, a concept we define
in Sect. 3. For the moment we will not require this, but only assume that λi,Dt defines
the intensity with respect to F i,V0∪L

t for both Pi and P̃i ; that is, the functional form
of λ

i,D
t is identical under both Pi and P̃i .
Suppose that Ni,D has an additive hazard with respect to P̃i and the filtrationF i,V0

t
that is generated by the components of V0. We stress that we consider the intensity
process marginalised over L, and it is thereby defined with respect to F i,V0

t , and not
F i,V0∪L
t . In other words, we assume that the hazard for event D with respect to the

filtration F i,V0
t is additive, and can be written as

XXXiᵀ
t−bbbt , (1)

where bbbt is a bounded and continuous vector-valued function, and the components of
XXXi are covariate processes or baseline variables from V0.

2.3 Re-weighted additive hazard regression

Our main goal is to estimate the cumulative coefficient function in (1), i.e.

BBBt :=
∫ t

0
bbbsds (2)

from the observational data distributed according to P = P1 ⊗ · · · ⊗ Pn . If we had
known all the true likelihood ratios, we could try to estimate (2) by re-weighting
each individual in Aalen’s additive hazard regression (Andersen et al. 1993, VII.4)
according to its likelihood ratio. However, the true weights are unlikely to be known,
even if the model is causal. In real-life situations, we can only hope to have consistent
estimators for these weights.We therefore considerF1,V0∪L

t ⊗· · ·⊗Fn,V0∪L
t -adapted

estimates {R(i,n)
t }n that converge to Ri

t under relatively weak assumptions, such that

Aalen’s additive hazard regression for the outcome re-weighted according to {R(i,n)
t }
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gives consistent estimates of the causal cumulative hazard. The estimator we will
consider is defined as follows: let NNN (n) be the vector of counting processes and XXX (n)

the matrix containing the XXXi ’s, that is,

NNN (n)
t :=

⎛
⎜⎝
N 1,D
t
...

Nn,D
t

⎞
⎟⎠ and XXX (n)

s :=
⎛
⎜⎝
X1,1
s . . . X1,p

s
...

...

Xn,1
s . . . Xn,p

s

⎞
⎟⎠ , (3)

and let YYY (n),D
s denote the n × n-dimensional diagonal matrix where the i’th diagonal

element is Y i,D
s · R(i,n)

s− . The weighted additive hazard regression is given by:

BBB(n)
t :=

∫ t

0
(XXX (n)ᵀ

s− YYY (n),D
s XXX (n)

s−)−1XXX (n)ᵀ
s− YYY (n),D

s dNNN (n)
s . (4)

2.3.1 Parameters that are transformations of cumulative hazards

It has recently been emphasised that the common interpretation of hazards in survival
analysis as the causal risk of death during (t, t + Δ] for an individual that is alive at
t , is often not appropriate; see e.g. Hernán (2010). An example in Aalen et al. (2015)
shows that this can also be a problem in RCTs; if N is a counting process that jumps at
the time of the event of interest, A is a randomised treatment, andU is an unobserved
frailty, the following causal diagram describes such a situation:

A Nt U

Nt+Δ

.

If we consider the probability of an event before Nt+Δ, conditioning on no event at
time t , we condition on a collider that opens a non-causal path from A to the outcome.
This could potentially have dramatic consequences since much of survival analysis is
based on the causal interpretation of hazards, e.g. hazard ratios.

In Ryalen et al. (2018b), we have suggested a strategy to handle this situation: even
if it is difficult to interpret hazard estimates causally per se, we can use hazard models
to obtain other parameters that have more straightforward interpretations. Population
based measures such as the survival function, the cumulative incidence functions, and
the restrictive mean survival function, do not condition on survival and will therefore
not be subject to the selection bias. Moreover, these measures, and many others (see
Ryalen et al. 2018b; Stensrud et al. 2018 for examples), solve differential equations
driven by cumulative hazards, i.e. they are functionsηηηt that can be written on the form

ηηηt = ηηη0 +
∫ t

0
F(ηηηs−)dBBBs, (5)
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where BBB are cumulative hazard coefficients, and F is a Lipschitz continuous matrix-
valued function. In Ryalen et al. (2018b), we showed how to estimate ηηη by replacing
the integrator in (5) with an estimator BBB(n) that can be written as a counting process
integral. Examples of such BBB(n) include the Nelson–Aalen, or more generally Aalen’s
additive hazard estimator. This gave rise to the stochastic differential equation

ηηη
(n)
t = ηηη

(n)
0 +

∫ t

0
F(ηηη

(n)
s−)dBBB(n)

s , (6)

that is easy to solve on a computer; it is a piecewise constant, recursive equation that
jumps whenever the integrator BBB(n) jumps. Hence, (6) can be solved using a for loop
over the jump times of BBB(n), i.e. the survival times of the population.

A simple example of a parameter on the form (5) is the survival function, which
reads St = 1 − ∫ t

0 SsdBs , where B is the cumulative hazard for death. In this case,
the estimation strategy (6) yields the Kaplan–Meier estimator. Nevertheless, some
commonly studied parameters cannot be written on the form (5), such as the median
survival, and the hazard ratio.

In Ryalen et al. (2018b) we showed that ηηη(n) provides a consistent estimator of ηηη if

– limn→∞ P(supt≤T |BBB(n)
t − BBBt | ≥ ε) = 0 for every ε > 0, i.e. the cumulative

hazard estimator is consistent, and
– the estimator BBB(n) is predictably uniformly tight, abbreviated P-UT.

The additive hazard estimator satisfies both these criteria, and additive hazard
regression can thus be used as an intermediate step for flexible estimation of sev-
eral parameters, such as the survival, the restricted mean survival, and the cumulative
incidence functions (Ryalen et al. 2018b). In Theorem 1, we show that also the re-
weighted additive hazard regression satisfies these properties, which is a major result
in this article. Thus, we can calculate causal cumulative hazard coefficients, and trans-
form them to estimate MSMs that solve ordinary differential equations consistently.
In Sect. 4.4 we illustrate how such estimation can be done, by including an example
of a marginal structural relative survival model on simulated data.

A mathematically precise definition of P-UT is given in Jacod and Shiryaev (2003,
VI.6a). We will not need the full generality of this definition here. Rather, we will use
(Ryalen et al. 2018b, Lemma 1) to determine if processes are P-UT. The Lemma states
that whenever {JJJ (n)

t }n is a sequence of semi-martingales on [0, T ] with Doob–Meyer
decompositions

JJJ (n)
t =

∫ t

0
ρρρ(n)
s ds + MMM (n)

t ,

where {MMM (n)}n are square integrable local martingales and {ρρρ(n)}n are predictable
processes such that

lim
a→∞ sup

n
P

(
sup
s

|ρρρ(n)
s |1 ≥ a

)
= 0 and (7)
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lim
a→∞ sup

n
P

(
Tr〈MMM (n)〉T ≥ a

)
= 0, (8)

then {JJJ (n)
t }n is P-UT. Here, Tr is the trace function, and 〈·〉 is the predictable variation.

2.4 Consistency and P-UT property

The consistency and P-UT property of BBB(n) introduced in Sect. 2.3 is stated as a
Theorem below. A proof can be found in the “Appendix”.

Theorem 1 (Consistency of weighted additive hazard regression) Suppose that

(I) The conditional density of R(i,n)
t given F i,V0∪L

t does not depend on i ,
(II)

EP [sup
t≤T

|λ1,Dt |2] < ∞ and EP [sup
t≤T

|XXX1
t |2] < ∞

(III) Let

ΓΓΓ
(n)
t :=

(
1

n
XXX (n)ᵀ
t− YYY (n),D

t XXX (n)
t−

)
=

(
1
n

∑n
k=1 R

(k,n)
t− Xk,i

t−Y k,D
t Xk, j

t−
)
i, j

,

and suppose that

lim
a→∞ inf

n
P

(
sup
t≤T

Tr
(
ΓΓΓ

(n)−1
t

)
> a

)
= 0,

(IV) Suppose that {Ri }i and {R(i,n)}i,n are uniformly bounded and

lim
n−→∞ P

(∣∣R(i,n)
t − Ri

t

∣∣ > δ
) = 0 (9)

for every i , δ > 0 and t.

Then {BBB(n)}n is P-UT and

lim
n−→∞ P

(
sup
t≤T

∣∣BBB(n)
t − BBBt

∣∣ ≥ δ

)
= 0, (10)

for every δ > 0.

Heuristically, condition (I) states that if we know individual i’s realisation of the
variables and processes in V0 ∪ L up to time t , no other information on individual
i is used for estimating her weight at t . Condition (II) ensures that the number of
outcome events will not blow up, or suddenly grow by an extreme amount. Condition
(III) implies that there can be no collinearity among the covariates, or more precisely
that the inverse matrix of

(
E[X1,i

t X1, j
t ])i, j is uniformly bounded in t . Condition (IV)
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states that the weight estimator converges to the theoretical weights Ri
t , in a not very

strong sense. The uniform boundedness of {Ri }i is a positivity condition similar to
the positivity condition required for standard inverse probability weighting.

3 Causal validity and a consistent estimator for the individual
likelihood ratios

We can model the individual likelihood ratio in many settings where the underlying
model is causal. To do this, we assume that each subject is represented by the outcomes
of r baseline variables Q1, . . . Qr , and d counting processes N 1, . . . , Nd . Moreover,
we let Ft denote the filtration that is generated by all their possible events before t .

Suppose that λ1, . . . , λd are the intensities of the counting processes N 1, . . . , Nd

with respect to the filtration Ft and the observational probability P . Now, by Jacod
(1975), P|FT is uniquely determined by all the intensities and the conditional densities
at baseline of the form dP

(
Qk |Qk−1, . . . , Q1

)
, because the joint density at baseline

factorises as a product of conditional densities.
Suppose that the observational scenario,where the frequencyof events are described

by P , is subject to an intervention on the component represented by N j . Our model is
said to be causal if such an intervention would not change the ’local characteristics’
of the remaining nodes. More precisely this means that

– The functional form of the intensities on which we do not intervene coincide under
P and the intervened scenario P̃ , i.e. λk would also define the intensity for Nk

with respect to P̃ when k �= j , and
– The conditional density of each Qk , given Qk−1, . . . , Q1 would be the same with
respect to both P and P̃ , i.e.

dP
(
Qk |Qk−1, . . . , Q1) = d P̃

(
Qk |Qk−1, . . . , Q1)

for k = 1, · · · r .
If the intervention instead were targeted at a baseline variable, say Q j , and this

intervention would replace dP
(
Qk |Qk−1, . . . , Q1

)
by d P̃

(
Qk |Qk−1, . . . , Q1

)
, for

k = 1, · · · r , the model is said to be causal if

– The intensity process for Nk with respect to P and P̃ coincide for all k = 1, · · · p,
and

– The remaining conditional densities at baseline coincide, i.e.

dP
(
Qk |Qk−1, . . . , Q1) = d P̃

(
Qk |Qk−1, . . . , Q1),

for k �= j .

Note that the latter is in agreement with Pearl’s definition of a causal model (Pearl
2000).
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This notion of causal validity leads to an explicit formula for the likelihood ratio.
If the intervention is aimed at N j , changing the intensity from λ j to λ̃ j , then the
likelihood ratio takes the form

Rt =
(∏
s≤t

θΔN j
s

s

)
exp

(∫ t

0
λ
j
s − λ̃

j
s ds

)
, (11)

where θt := λ̃
j
t

λ
j
t
, see Røysland (2011) and Jacod (1975).

If the intervention is targeted at a baseline variable, the likelihood ratio corresponds
to the ordinary propensity score

R0 := d P̃
(
Q j |Q j−1, . . . , Q1

)
dP

(
Q j |Q j−1, . . . , Q1

) . (12)

Interventions on several nodes yield a likelihood ratio that is a product of terms on
the form (11) and (12). The terms in the product could correspond to baseline inter-
ventions, time-dependent treatment interventions, or interventions on the censoring
intensity. It is natural to estimate the likelihood ratio, or weight process by a product
of baseline weights, treatment weights, and censoring weights.

We want, of course, to identify the likelihood ratio that corresponds to P̃ , as this is
our strategy to assess the desired randomised trial. Following Eqs. (11) and (12), we
see that the intervened intensities and baseline variables must be modeled correctly,
and specifically that a sufficient set of confounders must be included when modeling
the treatment intensity. Additionally, the MSM for the outcome must be correctly
specified. An important consequence of the results in this paper is that a class of
MSM parameters that solve ODEs driven by cumulative hazards can be estimated
consistently.

As long as the intervention acts on a counting process or a baseline variable, the same
formula would hold in much more general situations where the remaining covariates
are represented by quite general stochastic processes. The assumption of ’coinciding
intensities’ must then be replaced by the assumption that the ’characteristic triples’,
a generalisation of intensities to more general processes, coincides for P and P̃; see
Jacod and Shiryaev (2003, II.2).

3.1 Estimation of continuous-time weights using additive hazard regression

Suppose we have a causal model as described in the beginning of Sect. 3, allowing us
to obtain a known form of the likelihood ratio Ri . To model the hypothetical scenario,
we need to rely on estimates of the likelihood ratio. In the following, we will only
focus on a causal model where we replace the intensity of treatment by λ̃i,A, the
intensity of Ni,A with respect to P and the subfiltration FV0

t . It is a consequence of
the innovation theorem (Andersen et al. 1993) that E[λi,At |FV0

t− ] = λ̃
i,A
t . Moreover,

an exercise in asymptotics of stochastic processes shows that if we discretise time, the
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associated marginal model structural weights from Robins et al. (2000) approximate
(11) gradually as the time-resolution increases.

We will not follow the route of Robins et al. (2000) to estimate Ri . Instead, we will
use that (11) is the unique solution to the stochastic differential equation

Ri
t = Ri

0 +
∫ t

0
Ri
s−dK i

s

K i
t =

∫ t

0
(θ is − 1)dNi,A

s +
∫ t

0
λi,As ds −

∫ t

0
λ̃i,As ds,

with θ i = λ̃i,A

λi,A
. To proceed, we assume that λi,A and λ̃i,A satisfy the additive hazard

model, i.e. that there are vector valued functions hhht and h̃̃h̃ht , and covariate processes
ZZZt and Z̃̃Z̃Z t that are adapted to F i,V0∪L

t and F i,V0
t respectively, and

λ
i,A
t = Y i,A

t ZZZiᵀ
t hhht and λ̃

i,A
t = Y i,A

t Z̃̃Z̃Z iᵀ
t h̃̃h̃ht . (13)

The previous equation translates into the following:

Ri
t = Ri

0 +
∫ t

0
Ri
s−dK i

s

K i
t =

∫ t

0
(θ is − 1)dN A,i

s +
∫ t

0
Y i,A
s ZZZiᵀ

s dHHHs −
∫ t

0
Y i,A
s Z̃̃Z̃Z iᵀ

s d H̃̃H̃Hs,

where HHHt = ∫ t
0 hhhsds and h̃̃h̃ht = ∫ t

0 h̃̃h̃hsds.

Our strategy is to replace Ri
0, HHH , H̃̃H̃H and θ i by estimators. This gives the following

stochastic differential equation:

R(i,n)
t = R(i,n)

0 +
∫ t

0
R(i,n)
s− dK (i,n)

s

K (i,n)
t =

∫ t

0
(θ

(i,n)
s− − 1)dNi,A

s +
∫ t

0
Y i,A
s ZZZiᵀ

s−dHHH (n)
s −

∫ t

0
Y i,A
s Z̃̃Z̃Z iᵀ

s−dH̃̃H̃H (n)
s , (14)

where the quantity R(i,n)
0 is assumed to be a consistent estimator of Ri

0.Wewill use the
additive hazard regression estimatorsHHH (n) and H̃̃H̃H (n) for estimatingHHH and H̃̃H̃H (Andersen
et al. 1993). Moreover, suppose that θ(i,n)

0 is a consistent estimator of θ i0, the intensity

ratio evaluated at zero. Our candidate for θ
(i,n)
t when t > 0 depends on the choice of

an increasing sequence {κn}n with limn−→∞ κn = ∞ such that supn
κn√
n

< ∞. This
estimator takes the form

θ
(i,n)
t =

⎧⎨
⎩

θ
(i,n)
0 , 0 ≤ t < 1/κn∫ t
t−1/κn

Y i,A
s Z̃̃Z̃Z iᵀ

s−dH̃̃H̃H
(n)
s∫ t

t−1/κn
Y i,A
s ZZZiᵀ

s−dHHH
(n)
s

, 1/κn ≤ t ≤ T .
(15)
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The additive hazard estimator is consistent for… 621

κn can thus be interpreted as a smoothing parameter. We let YYY (n),A be the diagonal
matrix where the i’th diagonal element is Y i,A. The following Theorem says that the
above strategy works out.

Theorem 2 Suppose that

a. Each θ i is uniformly bounded, and right-continuous at t = 0.
b. For each i ,

lim
δ→0

P
(
inf
t≤T

|Z̃̃Z̃Z iᵀ
t h̃̃h̃ht | ≤ δ

) = 0, (16)

c. E
[
sup
s≤T

|ZZZi
s |33

]
< ∞ and E

[
sup
s≤T

|Z̃̃Z̃Z i
s |33

]
< ∞ for every i

d.

lim
a→∞ sup

n
P

(
sup
s≤T

Tr

((
1

n
ZZZ (n)ᵀ
s YYY (n),A

s ZZZ (n)
s

)−1
)

≥ a

)
= 0

and

lim
a→∞ sup

n
P

(
sup
s≤T

Tr

((
1

n
Z̃̃Z̃Z (n)ᵀ
s YYY (n),A

s Z̃̃Z̃Z (n)
s

)−1
)

≥ a

)
= 0

Then we have that

lim
n→∞ P

(
sup
t≤T

|R(i,n)
t − Ri

t | > δ

)
= 0 (17)

for every δ > 0 and i .

For Theorem 1 to apply we need that our additive hazard weight estimator and the
likelihood ratio are uniformly bounded. The latter will for instance be the case if both
λi,A − λ̃i,A and λ̃i,A/λi,A are uniformly bounded. We will, however, only assume that
the theoretical weights Ri are uniformly bounded. In that case we can also make our
weight estimator R(i,n) uniformly bounded, by merely truncating trajectories that are
too large.

4 Example

4.1 Software

We have developed R software for estimation of continuous-time MSMs that solve
ordinary differential equations, in which additive hazard models are used to model
both the time to treatment and the time to the outcome of interest. Our procedure
involves two steps: first, we estimate continuous-time weights using fitted values of
the treatment model. These weights can be used to re-weight the sample for estimating
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the outcomemodel. Second,we take the cumulative hazard coefficients of theweighted
(or causal) outcomemodel and transform them to estimate ODE parameters that have a
more appealing interpretation than cumulative hazards. The two steps canbeperformed
using the R packages ahw and transform.hazards, both of which are available
in the repository github.com/palryalen. Below, we show an example on how
to use the packages on simulated data.

4.2 A simulation study

We simulate an observational study where individuals may experience a terminating
event D, so that the hazard for D depends additively on the treatment A and a covariate
process L . A and L are counting processes that jump from 0 to 1 for an individual at
the instant treatment is initiated or the covariate changes, respectively. The subjects
receive treatment depending on L , such that L is a time-dependent confounder. The
subjects in the L = 1 group can move into treatment, while the subjects in the L = 0
group may receive treatment or move to the L = 1 group in any order. All subjects are
at risk of experiencing the terminating event. The following data generating hazards
for D, A, and L are utilised:

αD
t = α

D|0
t + α

D|A
t At− + α

D|L
t Lt− + α

D|A,L
t At−Lt− (18)

αA
t = α

A|0
t + α

A|L
t Lt−

αL
t = α

L|0
t + α

L|A
t At−. (19)

We want to assess the effect of A on D we would see if A were randomised, i.e. if
treatment initiation did not depend on L . To find the effect A has on D we perform a
weighted analysis.

We remark that this scenario could be made more complicated by e.g. allowing
the subjects to move in and out of treatment, or have recurrent treatments. We could
also have included a dependent censoring process, and re-weighted to a hypothetical
scenario in which censoring were randomised (see Sect. 6).

4.3 Weight calculation using additive hazardmodels

Weassume that the longitudinal data is organised such that each individual hasmultiple
time-ordered rows; one row for each time either A, L or D changes.

Our goal is to convert the data to a format suitable for weighted additive hazard
regression. Heuristically, the additive hazard estimates are cumulative sums of least
square estimations evaluated at the event times in the sample. The main function will
therefore need to do two jobs; (a) the data must be expanded such that every individual,
as long as he is still at risk of D, has a row for each time D occurs in the population,
and (b) each of those rows must have an estimate of his weight process evaluated just
before that event time.

Our software relies on the aalen function from the timereg package.We fit two
additive hazard models for the transition from untreated to treated. The first model
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assesses the transitions that we observe, i.e. where treatment is influenced by a subjects
realisation of L . Here, we use (19), i.e. the true data generating hazard model for
treatment initiation; an additive hazard model with intercept and L as a covariate.
The second model describes the transitions under the hypothetical randomised trial in
which each individual’s treatment initiation time is a random draw of the treatment
initiation times in the population as a whole. The treatment regime in our hypothetical
trial is given by the marginal treatment initiation hazard of the study population, which
is the hazard obtained by integrating out L from (19). We estimate the cumulative
hazard using theNelson–Aalen estimator for the time to treatment initiation, by calling
a marginal aalen regression.

In this way we obtain a factual and a hypothetical aalen object that are used
as inputs in our makeContWeights function. Other input variables include the
bandwidth parameter used in (15), weight truncation options, and an option to plot the
weight trajectories.

The output of the makeContWeights function is an expanded data frame where
each individual has a row for every event time in the population, with an additional
weight column containing time-updated weight estimates. To do a weighted addi-
tive hazard regression for the outcome, we will use the aalen function once again.
Weighted regression is performed on the expanded data frame by setting the weights
argument equal to the weight column.

When the weighted cumulative hazard estimates are at hand, we can transform our
cumulative hazard estimates as suggested in Sect. 2.3.1, to obtain effect measures that
are easier to interpret. This step can be performed using the transform.hazards
package; see the GitHub vignette for several worked examples.

4.4 Amarginal structural model

We now suppose the intervention that imposes a marginal treatment initiation rate
is causally valid. This implies that the intensity for the event D has the same form
under the randomised scenario P̃ , i.e. that the hazard for D under P̃ for the filtration
F A∪D∪L
t , generated by A, D, and L , takes the same functional form as (18). We are,

however, interested in the hazard with respect to P̃ and the subfiltration F A∪D
t , the

filtration generated by A and D (note thatF A∪D∪L
t andF A∪D

t respectively correspond

toFV0∪L
t andFV0

t from Sect. 2.2). By the innovation theorem the hazard with respect
to P̃ and F A∪D

t takes the form

β(t |A) = β0
t + β A

t At−.

A straightforward regression analysis of the observational data cannot yield causal
estimates. Using the ideas from Sect. 2, we can estimate the cumulative coefficients
BA=0
t = ∫ t

0 β0
s ds and BA=1

t − BA=0
t = ∫ t

0 β A
s ds consistently by performing a

weighted additive hazard regression.
Cumulative hazards, however, are not easy to interpret. We therefore assess effects

on the survival scale, using a marginal structural relative survival model. In this exam-
ple, our marginal structural relative survival RSA solves
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RSA=a
t = 1 +

∫ t

0

(−RSA=a
s RSA=a

s

)
d

(
BA=a
s

BA=0
s

)
. (20)

The quantity RSA=1 can be understood as the survival probability a subject would
have if he were exposed at time 0, relative to the survival probability he would have
if he were never exposed. Our suggested plugin-estimator is obtained by inserting the
estimated causal cumulative coefficients, i.e. the weighted estimates B̂ A=a and B̂ A=0:

R̂S
A=a
t = 1 +

∫ t

0

(
−R̂S

A=a
s− R̂S

A=a
s−

)
d

(
B̂ A=a
s

B̂ A=0
s

)
.

4.5 Simulation details and results

We simulate subjects, none of which are treated at baseline. Initially, all the patients
start with L = 0, and the hazards for transitioning from one state to another is constant.
As described in Sect. 4.3, we fit additive hazard models for the time to treatment
initiation, one for the observed treatment scenario, i.e. (19), andone for the hypothetical
randomised scenario. These models are inserted into makeContWeights to obtain
weight estimates. Finally, we estimate the additive hazardmodel by calling the aalen
function where the weights option is set equal to the weight column in the expanded
data set.

We make comparisons to the discrete-time, stabilised IPTWs, calculated using
pooled logistic regressions. To do this, we discretise the study period [0, 10] into K
equidistant subintervals, and include the time intervals as categorical variables in the
regressions. We fit two logistic regressions; one for the weight numerator, regressing
only on the intercept and the categorical time variables, and a covariate-dependent
model for the weight denominator, regressing on the intercept, the categorical time
variables, and the time-updated covariate process.We then calculate IPTWsby extract-
ing the predicted probabilities of the two logistic regression model fits, and inserting
them into the cumulative product formula [Robins et al. 2000, eq. (17)].

In the upper three rows of Fig. 1 we display estimates of the causal cumulative
hazard coefficient, i.e. estimates of BA=1 − BA=0, for a range of sample sizes. We
include estimates weighted according to our estimator (14), the IPTW estimator, and
the theoretical weights, i.e. the true likelihood ratios {Ri }i . Compared to the discrete
weight estimators, our continuous-time weight estimator (14) gives better approxi-
mations to the curves that are estimated with the theoretical weights. In the lowest

row of Fig. 1 we plot R̂S
A=1

, i.e. transformed estimates of the cumulative hazard
coefficients re-weighted according to the different weight estimators. We used the
transform.hazards package to perform the plugin-estimation.

5 Performance

In Fig. 2 we plot mean weight estimates based on aggregated simulations of the
set-up in Sect. 4. The plot suggests that the discrete weights gradually approximate

123



The additive hazard estimator is consistent for… 625

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2 4 6 8 10

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0 2 4 6 8 10

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0 2 4 6 8 10

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Fig. 1 The upper three rows: three realisations of the cumulative treatment effect estimates for the same
scenario, with n = 500, 1000, and 2000 from top to bottom. A red line based on estimates re-weighted
with the true Ri ’s is included for reference. The green line shows the unweighted estimates, the gray lines
are obtained using the IPTW estimates, while the black line is obtained using our additive hazard weight
estimates. The discrete weights were estimated using pooled logistic regressions based on K = 4, 8, and 16
time intervals. Increasing the number of intervals moved the curves closer to the red curve. The lowermost
row: estimated causal effect of being treated at t = 0 versus never being treated according to the relative
survival MSM, based on the n = 2000 sample (Color figure online)
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Fig. 2 Average weights based on a sample size of 3000. The theoretical weights have expected value 1.
Included are our additive hazard weights, as well as IPTW with K = 4, 8, and 16 time intervals. We see
that the discrete weights are biased approximations of the theoretical likelihood ratio, while our additive
hazard weight estimator appears to be less biased

the continuous likelihood ratio as the time discretisation is refined. However, the
continuous-time weights (14) are closer to the expected value of 1 at all times t ,
indicating less bias.

Choosing the bandwidth parameterwill influence theweight estimator andweighted
additive hazard estimator in a bias-variance tradeoff; a small κn will yield estimates
with large bias and small variance, while a large κn will give rise to small bias but large
variance. It is difficult to provide an exact recipe for choosing the bandwidth parameter,
since a good choice depends on several factors, such as the sample size, the distribution
of the treatment times, as well as the form and complexity of the true treatment model:
if the true treatment hazard is constant, a small κn is often appropriate. If the treatment
hazard is highly time-varying, κn should be chosen to be large, depending on the
sample size. Heuristically, several treatment times in the interval [t −1/κn, t] for each
t would be desirable, but this is not possible in every situation, e.g. when the treatment
time distribution is skewed. Such distributions can lead to instable, and possibly large
weights for some subjects, even if the chosen bandwidth parameter is a good choice for
most other subjects. One option is to truncate weights that are larger than a specified
threshold, at the cost of introducing bias. We can assess sensitivity concerning the
choice of the bandwidth by performing an analysis for several bandwidth values,
truncating weights if necessary, and comparing the resulting weighted estimators.
This approach was taken in Ryalen et al. (2018a, see e.g. Supplementary Figure 4),
where no noticeable difference was found for four values of κn .
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Fig. 3 Bias and variance as a function of n, for four bandwidth refinement strategies

We inspect the bias and variance of our weight estimator for sample sizes n under
four bandwidth choices κ z

n , z = 1, 2, 3, 4 at a specified time t0. By aggregating esti-
mates of k samples for each n we get precise estimates of the bias and variance as a
function of n for each choice. The bandwidth functions are scaled such that they are
identical at the smallest sample n0, with κ1

n0 = κ2
n0 = κ3

n0 = κ4
n0 = 1/t0. Otherwise

they satisfy κ1
n ∝ n1/2, κ2

n ∝ n1/3, κ3
n ∝ n1/5, and κ4

n ∝ n1/10.
We simulate a simple scenario where time to treatment initiation depends on a

binary baseline variable, such that λ
i,A
t = Y i,A

t (α0
t + αA

t x
i ) for individual i with at-

risk indicator Y i,A and binary variable xi . We calculate weights that re-weight to a
scenariowhere the baseline variable has beenmarginalised out, i.e.where the treatment
initiation intensity is marginal. Utilising the fact that the true likelihood ratio Ri has
a constant mean equal to 1, we can find precise estimates of the bias and variance of
the additive hazard weight estimator (14) at time t0.

We plot the bias and variance of the weight estimator as a function of n under the
strategies κ1

n , κ
2
n , κ3

n and κ4
n in Fig. 3. We see that the convergence strategy κ1

n yields
a faster relative decline in bias, but a higher variance as the sample size increases.
Meanwhile, the strategy κ4

n has a slower decline in bias, but a smaller variance than
the other strategies. Finally, the strategies κ2

n and κ3
n lie mostly between κ1

n and κ4
n both

concerning bias and variance, as a function of the sample size. We also see empirical
justification for the requirement supn κn/n1/2 < ∞, as the variance under the strategy
κ1
n declines very slowly as n is increased.

6 Censoring weights

Most standard martingale-based estimators in survival analysis are consistent when
we have independent censoring, see Andersen et al. (1993, III.2.1). We have assumed
independent censoring when conditioning on V0. A likely situation where this is vio-
lated is when we have independent censoring when conditioned on L ∪ V0, but have
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dependent censoring if we only condition on V0. If the model is causal with respect
to an intervention that randomises censoring sufficiently, we can model the scenario
where this intervention had been applied, and censoring is independent when condi-
tioning on V0. This means that many estimators that are common in survival analysis
will be consistent. Suppose that Ni,c is a counting process that jumpswhen individual i
is censored. Moreover, let λi,ct denote the intensity of Ni,c with respect to the filtration
F i,V0∪L
t , and let λ̃i,ct denote its intensity of with respect to the filtration F i,V0

t .
Suppose that there is a meaningful intervention that would give a scenario with

frequencies that are governed by P̃ and its intensity for censoring with respect to
F i,V0∪L
t , is replaced by λ̃

i,c
t . If the model is causal with respect to this intervention,

the corresponding likelihood ratio process is given by

Ri,c
t =

∏
s≤t

(
λ̃
i,c
s

λ
i,c
s

)ΔNi,c
s

exp

(
−

∫ t

0
λ̃i,cs − λi,cs ds

)
. (21)

However, as we only need to apply weights to observations strictly before the time of
censoring, we only need to consider

Ri,c
t = exp

(
−

∫ t

0
λ̃i,cs − λi,cs ds

)
. (22)

This process is a solution to the equation

Ri,c
t = 1 +

∫ t

0
Ri,c
s (λi,cs − λ̃i,cs )ds. (23)

Furthermore, we assume additive hazard models, i.e. that

λct = Y i,c
t UUUiᵀ

t−gggt and λ̃
i,c
t = Y i,c

t Ũ̃ŨUiᵀ
t−g̃̃g̃gt , (24)

for an F i,V0∪L
t -adapted covariate processUUUi , and an F i,V0

t -adapted covariate process
Ũ̃ŨUi , and vector valued functions ggg and g̃̃g̃g. Following Theorem 2, we see that these
weights are consistently estimated by R(i,n,c) defined by the equation:

R(i,n,c)
t = 1 +

∫ t

0
R(i,n,c)
s− dK (i,n,c)

s

K (i,n,c)
t =

∫ t

0
Y i,c
s UUUiᵀ

s−dGGG(n)
s −

∫ t

0
Y i,c
s Ũ̃ŨUiᵀ

s−dG̃̃G̃G(n)
s ,

where GGG(n) and G̃̃G̃G(n) are the usual additive hazards estimates of
∫ ·
0 gggsds and

∫ ·
0 g̃̃g̃gsds.
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7 Discussion

Marginal structural modeling is an appealing concept for causal survival analysis.
Here we have developed theory for continuous-time MSMs that may motivate the
approach for practical research. Indeed, we show that the continuous-time MSMs
yield consistent effect estimates, even if the treatment weights are estimated from
the data. Our continuous-time weights seem to perform better than the discrete time
weights when we study processes that develop in continuous time. Furthermore, our
weights can be estimated using additive hazard regressions, which are easy to fit in
practice. Importantly, we also show that causal effect estimates on the hazard scale,
e.g. weighted cumulative hazard estimates, can be transformed consistently to estimate
other parameters that are easier to interpret causally. We thereby offer a broad strategy
to obtain causal effect estimates for time-to-event outcomes. Previously, Huffer and
McKeague (1991) and McKeague (1987) derived results on weighted additive hazard
regression, but they do not cover our needs, as our weights are estimates of likelihood
ratios with respect to filtrations that are larger than the filtration for the additive hazard
that we want to estimate.

Estimators of IPTWs may be unstable and inefficient, e.g. when there are strong
predictors of the treatment allocation. In practice, applied researchers will often face a
bias-variance tradeoff when considering confounder control and efficient weight esti-
mation. This bias-variance tradeoff has been discussed in the literature, and weight
truncation has been suggested to reduce the variance, at the cost of introducing bias;
see e.g. Cole and Hernán (2008). Similar to IPTWs, and for the same reasons, our
continuous-time weight estimator may be instable, and proper weight estimation
requires a delicate balance between confounder control and precision in most practical
situations.

We have considered the treatment process A to be a time-to-event variable, but our
strategy can be generalised to handle recurrent, or piecewise constant exposures. If A
is allowed to have multiple jumps, the estimation procedure becomes more complex,
but the same estimators (4) and (14) can be used with few modifications. We think,
however, that many important applications can be explored assuming that A is the
time to an event.

A different approach that accounts for time-dependent confounding is the structural
nested model, which parameterises treatment effects directly in a structural model
(Robins 2014). While this procedure avoids weighting, and will often be more stable
and efficient, it relies on other parametric assumptions and can be harder to implement
(Vansteelandt and Sjolander 2016).

We conjecture that there is a similar consistency result as Theorem 1 when the
outcome model is a weighted Cox regression. However, using a Cox model in the
hypothetical scenario after marginalisation leads to restrictions on the data generating
mechanisms that are not properly understood, see e.g. Havercroft and Didelez (2012).
This issue is related to the non-collapsibility of the Cox model, and it is a problem
regardless of the weights being used are continuous or discrete.

Funding The authors were all supported by The Research Council of Norway, Grant NFR239956/F20—
Analyzing clinical health registries: Improved software and mathematics of identifiability.
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Appendix: proofs

We need some lemmas to prove Theorem 1.

Lemma 1 Suppose that {V i }i are processes on [0, T ] such that supi E
[
sups |V i

s |
]

<

∞, then

lim
a→∞ sup

n
P

(
sup
s

∣∣1
n

n∑
i=1

V i
s

∣∣ ≥ a

)
= 0. (25)

Proof By Markov’s inequality, we have for every a > 0 that

P

(
sup
s

∣∣1
n

n∑
i=1

V i
s

∣∣ ≥ a

)
≤ 1

na

n∑
i=1

EP

[
sup
s

∣∣V i
s

∣∣
]
,

which proves the claim. ��

Lemma 2 (A perturbed law of large numbers) Suppose

(I) p−1 + q−1 = 1, p < ∞,
(II) {Vi }i ⊂ L p(P), {Si }i ⊂ Lq(P) such that {(Vi , Si )}i is i.i.d., and Vi , Si are

measurable with respect to a σ -algebra Fi ,
(III) Triangular array {S(i,n)}n,i≤n such that

lim
n−→∞ P

(|S(1,n) − S1| ≥ ε
) = 0 (26)

for every ε > 0, and there exists a S̃ ∈ Lq(P) such that S̃ ≥ |S(1,n)| for every n,
(IV) The conditional density of S(i,n) given Fi does not depend on i .

This implies that

lim
n−→∞ E

[∣∣∣∣1n
n∑

i=1

S(i,n)Vi − EP [S1V1]
∣∣∣∣
]

= 0. (27)

Proof From the triangle inequality and condition (IV) we have that

E

[∣∣∣∣1n
n∑

i=1

S(i,n)Vi − 1

n

n∑
i=1

Si Vi

∣∣∣∣
]

≤ 1

n

n∑
i=1

E
[∣∣(S(i,n) − Si

)
Vi

∣∣]

= E
[∣∣(S(1,n) − S1

)
V1

∣∣].
The dominated convergence theorem implies that the last term converges to 0. Finally,
the weak law of large numbers and the triangle inequality yields
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lim
n−→∞ E

[∣∣∣∣1n
n∑

i=1

S(i,n)Vi − EP [S1V1]
∣∣∣∣
]

≤ lim
n−→∞ E

[∣∣∣∣1n
n∑

i=1

S(i,n)Vi − 1

n

n∑
i=1

Si Vi

∣∣∣∣
]

+ E

[∣∣∣∣1n
n∑

i=1

Si Vi − E[S1V1]
∣∣∣∣
]

= 0.

��
Lemma 3 {Vi }i i.i.d. non-negative variables in L2(P), then

lim
n→∞ P

(
1

n
max
i≤n

Vi ≥ ε

)
= 0 (28)

for every ε > 0.

Proof Note that

P

(
1

n
max
i≤n

Vi > ε

)
= 1 − P

(
max
i≤n

Vi ≤ εn

)
= 1 − P

(
V1 ≤ εn

)n

= 1 −
(
1 − P

(
V1 > εn

))n

If n > ‖V1‖2ε−1, we therefore have by Chebyshev’s inequality that

P

(
1

n
max
i≤n

Vi > ε

)
≤ 1 −

(
1 − E[V 2

1 ]
n2ε2

)n

,

where the last term converges to 0when n → ∞ since limn−→∞ n log
(
1− E[V 2

1 ]
n2ε2

) = 0
for every ε > 0. ��
Lemma 4 Define γ i

s := Y i,D
s XXXi

sbbbs, where XXX
i
s is the i’th row of XXX (n)

s . If the assumptions
of Theorem 1 are satisfied, then

lim
n−→∞ P

(
sup
t

∣∣∣∣
∫ t

0
ΓΓΓ (n)−1 1

n

n∑
i=1

R(i,n)
s− XXXiᵀ

s−(λi,Ds − γ i
s )ds

∣∣∣∣ ≥ δ

)
= 0 (29)

for every δ > 0.

Proof Assumption (III) from Theorem 1 and Lemma 1 implies that

lim
J→∞ inf

n
P

(
sup
t

∣∣Γ (n)−1
t

1

n

n∑
i=1

R(i,n)
t− XXXiᵀ

t−(λ
i,D
t − γ i

t )
∣∣ > J

)
= 0. (30)

Moreover, Lemma 2 implies that

1

n

n∑
i=1

R(i,n)
t− XXXiᵀ

t−(λ
i,D
t − γ i

t )
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converges in probability to

EP
[
R1
t−XXX

1ᵀ
t−(λ

1,D
t − γ 1

t )
]

However, from the innovation theorem we have that this equals

EP̃

[
XXX1ᵀ
t−(λ

1,D
t − γ 1

t )
] = EP̃

[
XXX1ᵀ
t−(EP̃ [λ1,Dt |F1,V0

t− ] − γ 1
t )

] = 0,

since XXX1
t− and γ 1

t are F1,V0
t− measurable. This and (30) enables us to apply Andersen

et al. (1993, Lemma II.5.3) to obtain (29). ��

Lemma 5 Suppose that (II) and (III) from Theorem 1 are satisfied and let MMM (n)
t :=(

N 1,D
t − ∫ t

0 λ
1,D
s ds, . . . , Nn,D

t − ∫ t
0 λ

n,D
s ds

)ᵀ
. Then

ΞΞΞ
(n)
t := 1

n

∫ t

0
ΓΓΓ (n)−1

s XXX (n)ᵀ
s− YYY (n),D

s dMMM (n)
s (31)

defines a square integrable local martingale with respect to the filtration F1,V0∪L
s ⊗

· · · ⊗ Fn,V0∪L
s and

lim
n→∞ P

(
Tr(〈ΞΞΞ(n)〉T ) ≥ δ

)
= 0 (32)

for every δ > 0.

Proof Writing λλλ(n) for the diagonal matrix with i’th diagonal element equal to λi,D ,
we have that

Tr(〈ΞΞΞ(n)〉T ) =
∫ T

0

1

n2
Tr

(
ΓΓΓ (n)−1

s XXX (n)ᵀ
s− YYY (n),D

s λλλ(n)
s YYY (n),D

s XXX (n)
s−ΓΓΓ (n)−1

s

)
ds. (33)

Moreover,

1

n2
Tr

(
ΓΓΓ (n)−1

s XXX (n)ᵀ
s− YYY (n),D

s λλλ(n)
s YYY (n),D

s XXX (n)
s−ΓΓΓ (n)−1

s

)
(34)

≤ 1

n2
Tr

(
ΓΓΓ (n)−1

s XXX (n)ᵀ
s− YYY (n),D

s XXX (n)
s−ΓΓΓ (n)−1

s

)
max
i≤n

Y i,D
s R(i,n)

s− λi,Ds (35)

≤ Tr

(
ΓΓΓ (n)−1

s

)(1
n
max
i≤n

λi,Ds

)‖R(i,n)‖∞ (36)

≤ Tr

(
ΓΓΓ (n)−1

s

)(1
n

∑
i≤n

λi,Ds

)‖R(i,n)‖∞ (37)
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Now, (III), (37) and Lemma 1 implies that

lim
a→∞ inf

n
P

(
sup
s

1

n2
Tr

(
ΓΓΓ (n)−1

s XXX (n)ᵀ
s− YYY (n),D

s λλλ(n)
s YYY (n),D

s XXX (n)
s−ΓΓΓ (n)−1

s

)
≥ a

)
= 0.

On the other hand, Lemma 3, (36) and (III) gives us that

lim
n→∞ P

(
1

n2
Tr

(
ΓΓΓ (n)−1

s XXX (n)ᵀ
s− YYY (n),D

s λλλ(n)
s YYY (n),D

s XXX (n)
s−ΓΓΓ (n)−1

s

)
≥ δ

)
= 0

for every s and δ > 0, so Andersen et al. (1993, Propositon II.5.3) implies that (31)
also holds. ��
Proof of Theorem 1 We have the following decomposition:

BBB(n)
t − BBBt =

∫ t

0
(XXX (n)ᵀ

s− YYY (n),D
s XXX (n)

s−)−1(XXX (n)ᵀ
s− YYY (n),D

s λλλ(n)
s − XXX (n)ᵀ

s− YYY (n),D
s XXX (n)

s−bs
)
ds

+
∫ t

0
(XXX (n)ᵀ

s− YYY (n),D
s XXX (n)

s−)−1XXX (n)ᵀ
s− YYY (n),D

s dMMM (n)
s

=
∫ t

0
ΓΓΓ (n)−1 1

n

n∑
i=1

R(i,n)
s− XXXiᵀ

s−(λi,Ds − γ i
s )ds + ΞΞΞ

(n)
t .

Leglarts inequality (Jacod and Shiryaev 2003, Lemma I.3.30) together with Lemma 5
implies thatΞΞΞ(n) converges uniformly in probability to 0.Moreover, Lemma 4 implies
that

∫ ·
0 ΓΓΓ (n)−1 1

n

∑n
i=1 R

(i,n)
s− XXXiᵀ

s−(λ
i,D
s − γ i

s )ds converges in same sense to 0, which
proves the consistency.

To see that BBB(n) is P-UT, note that it coincides with the sum of BBBt , ΞΞΞ(n) and∫ ·
0 ΓΓΓ

(n)−1
s

1
n

∑n
i=1 R

(i,n)
s− XXXiᵀ

s−(λis − γ i
s )ds. According to Ryalen et al. (2018b, Lemma

1), the latter is P-UT since (III) and Lemma 1 implies (7). Moreover, BBBt = ∫ ·
0 bbbsds

is clearly P-UT, since bbbt is uniformly bounded. ΞΞΞ(n) is also P-UT since Lemma 5
implies that (8) is satisfied. Finally, as BBB(n) is a sum of three processes that are P-UT,
it is necessarily P-UT itself. ��

Proof of Theorem 2

Lemma 6 Suppose that c. and d. from Theorem 2 are satisfied, and that

(I)

lim
a→∞ sup

n
P

(
sup
t

∣∣θ(i,n)
t

∣∣ ≥ a

)
= 0,

(II) θ
(i,n)
t− converges to θ it in probability for each i and t.
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Then we have that K (i,n) is predictably uniformly tight (P-UT) and

lim
n

P

(
sup
t

∣∣K (i,n)
t − Ki

t

∣∣ ≥ ε

)
= 0 (38)

for every i and ε > 0.

Proof Note that

K (i,n)
t − Ki

t =
∫ t

0
(θ

(i,n)
s− − θ is )dN

i,A
s + n−1/2

∫ t

0
Y i
s ZZZ

iᵀ
s−dWWW (n)

s

−n−1/2
∫ t

0
Y i,A
s Z̃̃Z̃Z iᵀ

s−dW̃̃W̃W (n)
s , (39)

whereWWW (n)
t := n1/2(HHH (n)

t −HHHt ) and W̃̃W̃W
(n)
t := n1/2(H̃̃H̃H (n)

t − H̃̃H̃H t ) are square-integrable
martingales with respect to F1,V0∪L

t ⊗ · · · ⊗ Fn,V0∪L
t and F1,V0

t ⊗ · · · ⊗ Fn,V0
t

respectively.
Let τ be an optional stopping time and note that

E

[∣∣∣∣
∫ τ

0
(θ

(i,n)
s− − θ is )dN

i,A
s

∣∣∣∣
]

≤ E

[ ∫ τ

0

∣∣θ(i,n)
s− − θ is

∣∣dNi,A
s

]

= E

[ ∫ τ

0

∣∣θ(i,n)
s− − θ is

∣∣λi,As ds

]
,

so by Lenglarts inequality, (Jacod and Shiryaev 2003, I.3.30), we see that

lim
n−→∞ P

(
sup
t≤T

∣∣∣∣
∫ t

0
(θ

(i,n)
s− − θ is )dN

i,A
s

∣∣∣∣ ≥ ε

)
= 0 (40)

for every ε > 0 if

lim
n−→∞ P

( ∫ T

0

∣∣θ(i,n)
s− − θ is

∣∣λi,As ds ≥ ε

)
= 0, (41)

for every ε > 0. The latter property holds due to (I), (II) and Andersen et al. (1993,
Proposition II.5.3).

Since {∫ t
0 Y

i,A
s ZZZiᵀ

s−dWWW
(n)
s }n converges in the skorokhod topology, we have that

{supt≤T | ∫ t
0 Y

i,A
s ZZZiᵀ

s−dWWW
(n)
s |}n is tight (Jacod and Shiryaev 2003, Theorem VI.3.21).

Therefore, we also get that

lim
n−→∞ P

(
sup
t≤T

|n−1/2
∫ t

0
Y i,A
s ZZZiᵀ

s−dWWW (n)
s | ≥ ε

)
= 0 (42)
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for every ε > 0. For the same reason we also have

lim
n−→∞ P

(
sup
t≤T

|n−1/2
∫ t

0
Y i,A
s Z̃̃Z̃Z iᵀ

s−dW̃̃W̃W (n)
s | ≥ ε

)
= 0. (43)

By combining (42), (43) and (40), we obtain that

lim
n−→∞ P

(
sup
t≤T

|K (i,n)
t − Ki

t | ≥ ε

)
= 0 (44)

for every ε > 0.
To see that K (i,n) is P-UT, note that the compensator of

∫ ·
0(θ

(i,n)
s− − 1)dNi,A

s equals∫ ·
0(θ

(i,n)
s− − 1)λi,As ds and

〈∫ ·

0
(θ

(i,n)
s− − 1)dNi,A

s −
∫ ·

0
(θ

(i,n)
s− − 1)λi,As ds

〉
T

=
∫ T

0
(θ

(i,n)
s− − 1)2λi,As ds.

The assumptions (I) in this Lemma and c) together with Ryalen et al. (2018b, Lemma
1) therefore imply that

∫ ·
0(θ

(i,n)
s− − 1)dNi,A

s is P-UT.

To see that
∫ ·
0 Y

i
s Z̃̃Z̃Z

iᵀ
s−dH̃̃H̃H

(n)
s is P-UT, note that

∫ ·

0
Y i
s Z̃̃Z̃Z

iᵀ
s−dH̃̃H̃H (n)

s = n−1/2
∫ ·

0
Y i
s Z̃̃Z̃Z

iᵀ
s−dW̃̃W̃W (n)

s +
∫ ·

0
Y i
s Z̃̃Z̃Z

iᵀ
s−dH̃̃H̃Hs . (45)

An analogous decompositon yields that
∫ ·
0 Y

i
s ZZZ

iᵀ
s−dHHH

(n)
s is P-UT. This means that

K (i,n) is a sum of three processes that are P-UT, and must therefore be P-UT itself. ��
Lemma 7 Suppose that

(I) {κn}n increasing sequence of positive numbers such that

lim
n−→∞ κn = ∞ and sup

n

κn√
n

< ∞,

(II) hhht is a bounded and continuous vector valued function,
(III) ZZZi is caglad with E[supt≤T |ZZZi

t |33] < ∞,
(IV)

lim
J→∞ sup

n
P

(
Tr

((1
n
ZZZ (n)ᵀ
t− YYY (n),A

t ZZZ (n)
t− )−1

)
≥ J

)
= 0 (46)

(V) Y i,AZZZiᵀ
·−hhh defines the intensity for Ni,A with respect to P and F i,V0· . Now,

lim
n−→∞ P

(
sup

1/κn≤t≤T

∣∣∣κn
∫ t

t−1/κn
Y i,A
s ZZZiᵀ

s−dHHH (n)
s − Y i,A

t ZZZiᵀ
t−hhht

∣∣∣ ≥ ε

)
= 0. (47)
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Proof Note that

κn

∫ t

t−1/κn
Y i,A
s ZZZiᵀ

s−dHHH (n)
s − Y i,A

t ZZZiᵀ
t−hhht (48)

= κn√
n

∫ t

0
Y i,A
s ZZZiᵀ

s−dWWW (n)
s − κn√

n

∫ t−1/κn

0
Y i,A
s ZZZiᵀ

s−dWWW (n)
s (49)

+ κn

∫ t

t−1/κn
Y i,A
s ZZZiᵀ

s−hhhsds − Y i,A
t ZZZiᵀ

t−hhht . (50)

The martingale central limit theorem implies that {WWW (n)} is a sequence of mar-
tingales that converges in law to a continuous Gaussian processes with independent
increments, see Andersen et al. (1993). Moreover, Ryalen et al. (2018b, Proposition
1) says that {WWW (n)}n is P-UT.

Therefore Jacod and Shiryaev (2003, Theorem VI 6.22) implies that
∫ ·
0 Y

i,A
s ZZZiᵀ

s−d
WWW (n)

s converges in law to a continuous process, so it is C-tight. Moreover, from Jacod
and Shiryaev (2003, Proposition VI.3.26) we have that

lim
n−→∞ P

(
sup

1/κn≤t≤T

∣∣∣
∫ t

0
Y i,A
s ZZZiᵀ

s−dWWW (n)
s −

∫ t−1/κn

0
Y i,A
s ZZZiᵀ

s−dWWW (n)
s

∣∣∣ ≥ ε

)
= 0

(51)

for every ε > 0. The mean value theorem of elementary calculus implies that

lim
n−→∞ sup

1/κn≤t≤T

∣∣∣κn
∫ t

t−1/κn
Y i,A
s ZZZiᵀ

s−hhhsds − Y i,A
t ZZZiᵀ

t−hhht
∣∣∣ = 0 (52)

P a.s. Combining (51) and (52) yields the claim. ��
Proof of Theorem 2 Combining (16) and the decomposition in the proof of Lemma 7,
we see that

lim
n−→∞ P

(
sup

1/κn≤t≤T

∣∣∣∣κn
∫ t

t−1/κn
Y i,A
s Z̃̃Z̃Z iᵀ

s−dH̃̃H̃H (n)
s /λ̃

i,A
t − 1

∣∣∣∣ ≥ ε

)
= 0. (53)

Combining (16) and a. we also have

lim
n−→∞ P

(
sup

1/κn≤t≤T

∣∣∣∣κn
∫ t

t−1/κn
Y i,A
s ZZZiᵀ

s−dHHH (n)
s /λ

i,A
t − 1

∣∣∣∣ ≥ ε

)
= 0. (54)
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Whenever t ≥ 1/κn , we have that by the continuous mapping theorem that

lim
n−→∞ P

(
sup

1/κn≤t≤T

∣∣θ(i,n)
t − θ it

∣∣ ≥ ε

)

= lim
n−→∞ P

⎛
⎝ sup

1/κn≤t≤T

∣∣θ it
⎛
⎝κn

∫ t
t−1/κn

Y i,A
s Z̃̃Z̃Z iᵀ

s−dH̃̃H̃H
(n)
s /λ̃

i,A
t

κn
∫ t
t−1/κn

Y i,A
s ZZZiᵀ

s−dHHH
(n)
s /λ

i,A
t

− 1

⎞
⎠ ∣∣ ≥ ε

⎞
⎠

= 0.

Since θ i is right-continuous at t = 0, we have that

lim
n−→∞ P

(
sup

0≤t≤T

∣∣θ(i,n)
t − θ it

∣∣ ≥ ε

)
= 0. (55)

Finally, Jacod andShiryaev (2003,CorollaryVI3.33) implies that {(R(i,n)
0 , K (i,n))}n

converges to (Ri
0, K

i ) in probability. Since K (i,n) is P-UT,

R(i,n)
t = 1 +

∫ t

0
R(i,n)
s− dK (i,n)

s

and

Ri
t = 1 +

∫ t

0
Ri
s−dK i

s

Jacod and Shiryaev (2003, Theorem IX 6.9) implies that R(i,n) converges to Ri in
probability. ��
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