Notes for MAT-INF1310 -1Snorre Christiansen, January 25, 2005

Calculus 1

Exercise 1.1 Suppose u is a function of class C^1 on some open interval I, which is twice differentiable at a point $t \in I$. Prove:

$$\ddot{u}(t) = \lim_{h \to 0} \frac{u(t+h) - 2u(t) + u(t-h)}{h^2}.$$
 (1)

2 Transforming equations

Exercise 2.1 Transform the initial value problem for the second order scalar equation:

$$\ddot{\theta}(t) = -\sin\theta(t), \tag{2}$$

$$\theta(0) = 0, \tag{3}$$

$$\dot{\theta}(0) = 1. \tag{4}$$

into an equivalent initial value problem for a first order equation in dimension

Exercise 2.2 Transform the initial value problem for the non-autonomous scalar equation:

$$\dot{\theta}(t) = -t\theta(t), \tag{5}$$

$$\dot{\theta}(t) = -t\theta(t), \qquad (5)$$

$$\theta(0) = 0, \qquad (6)$$

into an equivalent initial value problem for an autonomous first order equation in dimension 2.

3 Uniqueness of solutions

Exercise 3.1 Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by:

$$f(x) = \sqrt{x} \quad for \quad x > 0, \tag{7}$$

$$f(x) = 0 \quad for \quad x \le 0. \tag{8}$$

Find three distinct solutions to the initial value problem:

$$\dot{x}(t) = f(x(t)), \quad for \quad t \ge 0,$$
 (9)

$$x(0) = 0, (10)$$

Hint: Find one solution in the form $t \mapsto \alpha t^{\beta}$.

Notice that in the following exercise we do not assume that f is Lipschitz.

Exercise 3.2 Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous non-increasing function. Pick $x_0 \in \mathbb{R}$. Show that the initial value problem:

$$\dot{x}(t) = f(x(t)), \quad for \quad t \ge 0, \tag{11}$$

$$x(0) = x_0, (12)$$

has at most one solution (for $t \geq 0$).

The following is a more elaborate version of the preceding exercise:

Exercise 3.3 Denote by $(x,y) \mapsto x \cdot y$ the (standard) Euclidean scalar product on \mathbb{R}^n . Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function such that:

$$\forall x, y \in \mathbb{R}^n \quad (F(x) - F(y)) \cdot (x - y) \le 0. \tag{13}$$

Show that for any given $x_0 \in \mathbb{R}^n$ the initial value problem:

$$\dot{x} = F(x), \tag{14}$$

$$x(0) = x_0, (15)$$

has at most one solution (for positive times!). Prove that if F(0) = 0 then this solution is bounded.

For the following exercise it might be useful to know the definition and existence of a greatest lowerbound inf A for subsets A of \mathbb{R} which are bounded below¹.

Exercise 3.4 Suppose $f: \mathbb{R} \to \mathbb{R}$ is a Lipschitz function and that f(0) = 0. Suppose that $x: t \mapsto x(t)$ satisfies:

$$\dot{x} \leq f(x), \tag{16}$$

$$\dot{x} \leq f(x), \tag{16}$$

$$x(0) \leq 0. \tag{17}$$

Show that for all $t \geq 0$, $x(t) \leq 0$.

Hint: Suppose on the contrary that for some $t_1 > 0$, $x(t_1) > 0$. Construct a t_2 such that $t_2 < t_1$ and $x(t) \ge 0$ for all $t \in [t_2, t_1]$, and $x(t_2) = 0$. Obtain a contradiction by applying a Gronwall estimate on $[t_2, t_1]$.

The following exercise is a more elaborate version of the preceding one:

Exercise 3.5 Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous and Lipschitz in the sense that for some $M \in \mathbb{R}_+$:

$$\forall t, x, y \quad |f(t, x) - f(t, y)| \le M|x - y|. \tag{18}$$

 $Pick \ x_0 \in \mathbb{R}$. Suppose that $x : \mathbb{R}_+ \to \mathbb{R}$ is a (continuously differentiable) function solving the initial value problem:

$$\dot{x}(t) = f(t, x(t)) \quad \text{for} \quad t \ge 0 \quad \text{and} \quad x(0) = x_0.$$
 (19)

Suppose that $y: \mathbb{R}_+ \to \mathbb{R}$ is a continuously differentiable function satisfying:

$$\dot{y}(t) \le f(t, y(t)) \quad for \quad t \ge 0 \quad and \quad y(0) \le x_0.$$
 (20)

Prove that:

$$\forall t \ge 0 \quad y(t) \le x(t). \tag{21}$$

A lower bound of A is an $x \in \mathbb{R}$ such that $\forall y \in A \ x \leq y$. Let L(A) denote the set of lower bounds of A. If L(A) is non-empty then L(A) has a greatest element: that is, there is a (unique) element $x \in L(A)$ such that $\forall y \in L(A)$ $y \leq x$. It is denoted inf A.