Notes for MAT-INF1310-1
 Snorre Christiansen, January 25, 2005

1 Calculus

Exercise 1.1 Suppose u is a function of class C^{1} on some open interval I, which is twice differentiable at a point $t \in I$. Prove :

$$
\begin{equation*}
\ddot{u}(t)=\lim _{h \rightarrow 0} \frac{u(t+h)-2 u(t)+u(t-h)}{h^{2}} \tag{1}
\end{equation*}
$$

2 Transforming equations

Exercise 2.1 Transform the initial value problem for the second order scalar equation:

$$
\begin{align*}
\ddot{\theta}(t) & =-\sin \theta(t) \tag{2}\\
\theta(0) & =0 \tag{3}\\
\dot{\theta}(0) & =1 \tag{4}
\end{align*}
$$

into an equivalent initial value problem for a first order equation in dimension 2.

Exercise 2.2 Transform the initial value problem for the non-autonomous scalar equation:

$$
\begin{align*}
\dot{\theta}(t) & =-t \theta(t) \tag{5}\\
\theta(0) & =0 \tag{6}
\end{align*}
$$

into an equivalent initial value problem for an autonomous first order equation in dimension 2.

3 Uniqueness of solutions

Exercise 3.1 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by:

$$
\begin{align*}
& f(x)=\sqrt{x} \quad \text { for } \quad x>0 \tag{7}\\
& f(x)=0 \quad \text { for } \quad x \leq 0 \tag{8}
\end{align*}
$$

Find three distinct solutions to the initial value problem:

$$
\begin{align*}
\dot{x}(t) & =f(x(t)), \quad \text { for } \quad t \geq 0 \tag{9}\\
x(0) & =0 \tag{10}
\end{align*}
$$

Hint: Find one solution in the form $t \mapsto \alpha t^{\beta}$.
Notice that in the following exercise we do not assume that f is Lipschitz.

Exercise 3.2 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous non-increasing function. Pick $x_{0} \in \mathbb{R}$. Show that the initial value problem:

$$
\begin{align*}
\dot{x}(t) & =f(x(t)), \quad \text { for } \quad t \geq 0 \tag{11}\\
x(0) & =x_{0} \tag{12}
\end{align*}
$$

has at most one solution (for $t \geq 0$).
The following is a more elaborate version of the preceding exercise:
Exercise 3.3 Denote by $(x, y) \mapsto x \cdot y$ the (standard) Euclidean scalar product on \mathbb{R}^{n}. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuous function such that:

$$
\begin{equation*}
\forall x, y \in \mathbb{R}^{n} \quad(F(x)-F(y)) \cdot(x-y) \leq 0 \tag{13}
\end{equation*}
$$

Show that for any given $x_{0} \in \mathbb{R}^{n}$ the initial value problem:

$$
\begin{align*}
\dot{x} & =F(x), \tag{14}\\
x(0) & =x_{0}, \tag{15}
\end{align*}
$$

has at most one solution (for positive times!). Prove that if $F(0)=0$ then this solution is bounded.

For the following exercise it might be useful to know the definition and existence of a greatest lowerbound $\inf A$ for subsets A of \mathbb{R} which are bounded below ${ }^{1}$.

Exercise 3.4 Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz function and that $f(0)=0$. Suppose that $x: t \mapsto x(t)$ satisfies:

$$
\begin{align*}
\dot{x} & \leq f(x), \tag{16}\\
x(0) & \leq 0 . \tag{17}
\end{align*}
$$

Show that for all $t \geq 0, x(t) \leq 0$.
Hint: Suppose on the contrary that for some $t_{1}>0, x\left(t_{1}\right)>0$. Construct a t_{2} such that $t_{2}<t_{1}$ and $x(t) \geq 0$ for all $t \in\left[t_{2}, t_{1}\right]$, and $x\left(t_{2}\right)=0$. Obtain a contradiction by applying a Gronwall estimate on $\left[t_{2}, t_{1}\right]$.

The following exercise is a more elaborate version of the preceding one:
Exercise 3.5 Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous and Lipschitz in the sense that for some $M \in \mathbb{R}_{+}$:

$$
\begin{equation*}
\forall t, x, y \quad|f(t, x)-f(t, y)| \leq M|x-y| \tag{18}
\end{equation*}
$$

Pick $x_{0} \in \mathbb{R}$. Suppose that $x: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a (continuously differentiable) function solving the initial value problem:

$$
\begin{equation*}
\dot{x}(t)=f(t, x(t)) \quad \text { for } \quad t \geq 0 \quad \text { and } \quad x(0)=x_{0} \tag{19}
\end{equation*}
$$

Suppose that $y: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a continuously differentiable function satisfying:

$$
\begin{equation*}
\dot{y}(t) \leq f(t, y(t)) \quad \text { for } \quad t \geq 0 \quad \text { and } \quad y(0) \leq x_{0} \tag{20}
\end{equation*}
$$

Prove that:

$$
\begin{equation*}
\forall t \geq 0 \quad y(t) \leq x(t) \tag{21}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ A lower bound of A is an $x \in \mathbb{R}$ such that $\forall y \in A \quad x \leq y$. Let $L(A)$ denote the set of lower bounds of A. If $L(A)$ is non-empty then $L(A)$ has a greatest element: that is, there is a (unique) element $x \in L(A)$ such that $\forall y \in L(A) \quad y \leq x$. It is denoted inf A.

