Notes for MAT-INF1310-2
 Snorre Christiansen, January 27, 2005

(the first set of notes was modified and detailed on January 25-th in the evening)

1 Coordinates and vector notations

Let $n \geq 1$ be an integer. In \mathbb{R}^{n+1} the first variable will be called time, whereas the n other will be called space variables. Let $f_{i}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ for $i \in\{1, \cdots, n\}$ be n continuous functions. Pick an element $y=\left(y_{1}, \cdots, y_{n}\right) \in \mathbb{R}^{n}$. We consider the problem of finding an interval $I \subset \mathbb{R}$ containing 0 and n differentiable functions $x_{i}: I \rightarrow \mathbb{R}$ (for $i \in\{1, \cdots, n\}$) satisfying the differential equations:

$$
\begin{align*}
\dot{x}_{1}(t) & =f_{1}\left(t, x_{1}(t), \cdots, x_{n}(t)\right), \tag{1}\\
& \cdots \tag{3}\\
\dot{x}_{i}(t) & =f_{i}\left(t, x_{1}(t), \cdots, x_{n}(t)\right), \\
& \cdots \\
\dot{x}_{n}(t) & =f_{n}\left(t, x_{1}(t), \cdots, x_{n}(t)\right) .
\end{align*}
$$

and the initial conditions:

$$
\begin{align*}
x_{1}(0) & =y_{1} \tag{6}\\
& \ldots \tag{7}\\
x_{i}(0) & =y_{i} \tag{8}\\
& \ldots \tag{9}\\
x_{n}(0) & =y_{n}
\end{align*}
$$

Often it is convenient to introduce more compact notations. First we combine all the space variables $x_{1}, \cdots, x_{n} \in \mathbb{R}$ into a single vector $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$. We also identify a vector $\left(t, x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n+1}$ with the vector $(t, x) \in \mathbb{R} \times \mathbb{R}^{n}$. Define a function $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ by:

$$
\begin{equation*}
\forall(t, x) \in \mathbb{R} \times \mathbb{R}^{n} \quad F(t, x)=\left(f_{1}(t, x), f_{2}(t, x), \cdots, f_{n}(t, x)\right) \tag{11}
\end{equation*}
$$

The above system of (coupled) scalar ordinary differential equations can then be reformulated as finding one vector-valued differentiable function $x: I \rightarrow \mathbb{R}^{n}$ such that:

$$
\begin{equation*}
\dot{x}(t)=F(t, x(t)), \tag{12}
\end{equation*}
$$

whereas the initial condition can be written in the form:

$$
\begin{equation*}
x(0)=y \tag{13}
\end{equation*}
$$

2 Making an ODE autonomous

The above non-autonomous system can be transformed into an autonomous one by the following trick. We introduce an additional function $x_{0}: I \rightarrow \mathbb{R}$ and remark that the condition:

$$
\begin{equation*}
\forall t \in I \quad x_{0}(t)=t \tag{14}
\end{equation*}
$$

is equivalent to the conditions:

$$
\begin{equation*}
\forall t \in I \quad \dot{x}_{0}(t)=1 \quad \text { and } \quad x_{0}(0)=0 . \tag{15}
\end{equation*}
$$

Therefore the above system of scalar ordinary differential equations is equivalent to the problem of finding $n+1$ scalar functions $x_{i}: I \rightarrow \mathbb{R}($ for $i \in\{0,1, \cdots, n\})$ satisfying:

$$
\begin{align*}
\dot{x}_{0}(t) & =1 \tag{16}\\
\dot{x}_{1}(t) & =f_{1}\left(x_{0}(t), x_{1}(t), \cdots, x_{n}(t)\right), \tag{17}\\
& \cdots \tag{18}\\
\dot{x}_{i}(t) & =f_{i}\left(x_{0}(t), x_{1}(t), \cdots, x_{n}(t)\right), \tag{19}\\
& \cdots \tag{20}\\
\dot{x}_{n}(t) & =f_{n}\left(x_{0}(t), x_{1}(t), \cdots, x_{n}(t)\right) . \tag{21}
\end{align*}
$$

and the initial conditions:

$$
\begin{align*}
x_{0}(0) & =0, \tag{22}\\
x_{1}(0) & =y_{1}, \tag{23}\\
& \cdots \tag{24}\\
x_{i}(0) & =y_{i}, \\
& \cdots \\
x_{n}(0) & =y_{n} .
\end{align*}
$$

In more compact notations this problem corresponds to the one of finding one vector-valued function $x: I \rightarrow \mathbb{R}^{n+1}$ (notice the dimension of the target space) satisfying the ODE:

$$
\begin{equation*}
\dot{x}(t)=G(x(t)) \tag{28}
\end{equation*}
$$

where $G: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ is defined by:

$$
\begin{equation*}
\forall x \in \mathbb{R}^{n+1} \quad G(x)=(1, F(x)), \tag{29}
\end{equation*}
$$

as well as the initial condition:

$$
\begin{equation*}
x(0)=\left(0, y_{1}, \cdots, y_{n}\right) \tag{30}
\end{equation*}
$$

Example 2.1 The scalar IVP:

$$
\begin{equation*}
\dot{y}(t)=t \sin y(t) \quad \text { and } \quad y(0)=1 \tag{31}
\end{equation*}
$$

is equivalent to the 2-dimensional ODE:

$$
\begin{align*}
\dot{x}(t) & =1 \tag{32}\\
\dot{y}(t) & =x(t) \sin y(t) \tag{33}
\end{align*}
$$

with initial conditions:

$$
\begin{align*}
& x(0)=0 \tag{34}\\
& y(0)=1 \tag{35}
\end{align*}
$$

3 Reducing the order of an equation

For simplicity we just consider scalar equations. Fix an integer $k \geq 2$. Let $f: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ be a continuous function, and pick $y \in \mathbb{R}^{k}$. We consider the initial value problem of finding an interval $I \subset \mathbb{R}$ containing 0 and a k times differentiable function $x: I \rightarrow \mathbb{R}$ such that:

$$
\begin{equation*}
\forall t \in I \quad x^{(k)}(t)=f\left(t, x^{(0)}(t), x^{(1)}(t), \cdots, x^{(k-1)}(t)\right) \tag{36}
\end{equation*}
$$

where $x^{(i)}$ denotes the i-th derivative of x, as well as the initial condition :

$$
\begin{equation*}
\left(x^{(0)}(0), x^{(1)}(0), \cdots, x^{(k-1)}(0)\right)=y . \tag{37}
\end{equation*}
$$

This IVP can be transformed into an IVP for a vector-valued function involving only first order derivatives, as follows. First introduce k functions $z_{i}: I \rightarrow \mathbb{R}$. We notice that the condition:

$$
\begin{equation*}
\forall i \in\{0, \cdots, k-1\} \quad z_{i}=x^{(i)} \tag{38}
\end{equation*}
$$

is equivalent to the conditions:

$$
\begin{equation*}
z_{0}=x \quad \text { and } \quad \forall i \in\{0, \cdots, k-2\} \quad \dot{z}_{i}=z_{i+1} \tag{39}
\end{equation*}
$$

Therefore the initial value problem for the function x is equivalent to saying that x should be the first component of a vector-valued function $z: I \rightarrow \mathbb{R}^{k}$ satisfying:

$$
\begin{align*}
\dot{z}_{0}(t) & =z_{1}(t) \tag{40}\\
& \cdots \tag{41}\\
\dot{z}_{k-2}(t) & =z_{k-1}(t) \tag{42}\\
\dot{z}_{k-1}(t) & =f\left(t, z_{0}(t), \cdots, z_{k-1}(t)\right)
\end{align*}
$$

and the initial conditions:

$$
\begin{equation*}
\left(z_{0}(0), \cdots, z_{k-1}(0)\right)=y \tag{44}
\end{equation*}
$$

To obtain more compact notations we can introduce the function $F: \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k}$ defined by for all $\left(t, z_{0}, \cdots, z_{k-1}\right) \in \mathbb{R}^{k+1}$:

$$
\begin{equation*}
F\left(t, z_{0}, \cdots, z_{k-1}\right)=\left(z_{1}, \cdots, z_{k-1}, f\left(t, z_{0}, \cdots, z_{k-1}\right)\right) \tag{45}
\end{equation*}
$$

Then the IVP is:

$$
\begin{equation*}
\dot{z}(t)=F(t, z(t)) \quad \text { and } \quad z(0)=0 \tag{46}
\end{equation*}
$$

Notice that sometimes we use z_{i} to denote a function $I \rightarrow \mathbb{R}$ and sometimes to denote an element of \mathbb{R}. This is of course very bad but most people do it.

Example 3.1 The second order scalar equation:

$$
\begin{equation*}
\ddot{\theta}(t)=-\sin \theta(t) \quad \text { and } \quad \theta(0)=0, \quad \dot{\theta}(0)=1 \tag{47}
\end{equation*}
$$

is equivalent to finding the first component of the 2-dimensional system:

$$
\begin{align*}
\dot{x}(t) & =y(t) \tag{48}\\
\dot{y}(t) & =-\sin x(t) \tag{49}
\end{align*}
$$

with initial conditions:

$$
\begin{align*}
& x(0)=0 \tag{50}\\
& y(0)=1 \tag{51}
\end{align*}
$$

