Notes for MAT-INF1310-3
 Snorre Christiansen, February 3, 2005

1 Gronwall's lemma, Lipschitz continuity and uniqueness of solutions

The following lemma is due to Gronwall.
Lemma 1.1 Let I be an interval in \mathbb{R}. Let a and b be two continuous functions $I \rightarrow \mathbb{R}$. Pick $t_{0} \in I$ and x_{0} in \mathbb{R}. Suppose $x: I \rightarrow \mathbb{R}$ is a solution of :

$$
\begin{align*}
\dot{x}(t) & =a(t) x(t)+b(t) \quad \text { for } \quad t \geq t_{0} \tag{1}\\
x\left(t_{0}\right) & =x_{0} \tag{2}
\end{align*}
$$

Suppose that $y: I \rightarrow \mathbb{R}$ is a continuously differentiable function such that:

$$
\begin{align*}
\dot{y}(t) & \leq a(t) y(t)+b(t), \quad \text { for } \quad t \geq t_{0} \tag{4}\\
y\left(t_{0}\right) & \leq x_{0} \tag{5}
\end{align*}
$$

Then for all $t \in I$ such that $t \geq t_{0}, y(t) \leq x(t)$.
Briefly put, a proof consists in substracting (1) from (4), putting all terms on the left hand side, multiplying by an integrating factor and integrating from t_{0} to t. The most frequent use of this lemma is the following special case:

Example 1.1 Suppose $y:\left[t_{0}, t_{1}\right) \rightarrow \mathbb{R}$ is a continuously differentiable function such that:

$$
\begin{equation*}
\dot{y}(t) \leq M y(t) \quad \text { for } \quad t \geq t_{0} \tag{7}
\end{equation*}
$$

Then for all $t \geq t_{0}, y(t) \leq y\left(t_{0}\right) e^{M\left(t-t_{0}\right)}$.
This example is the object of Rob. exercise 9.7 (independently of the general lemma stated above).

We equip \mathbb{R}^{n} with the Euclidean norm $\|\cdot\|$ defined by :

$$
\begin{equation*}
\forall\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n} \quad\left\|\left(x_{1}, \cdots, x_{n}\right)\right\|=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

Proposition 1.2 Suppose I is an interval and U is an open subset of \mathbb{R}^{n}. Suppose $F: I \times U \rightarrow \mathbb{R}^{n}$ is a continuous function such that for some $L \geq 0$ we have:

$$
\begin{equation*}
\forall t \in I \forall x, y \in U \quad\|F(t, x)-F(t, y)\| \leq L\|x-y\| \tag{9}
\end{equation*}
$$

Then for any $t_{0} \in I$ and $x_{0} \in U$ and any interval J such that $t_{0} \in J \subset I$, there is at most one solution on J to the initial value problem:

$$
\begin{equation*}
\dot{x}=F(t, x) \quad \text { and } \quad x\left(t_{0}\right)=x_{0} . \tag{10}
\end{equation*}
$$

Briefly put, a proof consists in supposing that we have two solutions x and y on J and defining a function $z: I \rightarrow \mathbb{R}$ by putting $z(t)=\|x(t)-y(t)\|^{2}$. Using in particular the Cauchy-Schwartz inequality, one proves an estimate like (7) for z and deduce that $z(t)=0$ for $t \geq t_{0}$. To obtain a similar estimate for $t \leq t_{0}$ one writes down a differential equation for $t \mapsto x(-t)$ and $t \mapsto y(-t)$ and repeat the reasoning for these solutions.

Actually at very little extra cost one can prove:
Exercise 1.1 Suppose that F is a function having the properties stated in the previous proposition. Suppose $t_{0} \in I$ and that $x_{0}, y_{0} \in U$. Suppose x and y are two solutions, on an interval J containing t_{0}, to the ordinary differential equation $\dot{z}(t)=F(t, z(t))$, with initial conditions $x\left(t_{0}\right)=x_{0}$ and $y\left(t_{0}\right)=y_{0}$. Prove that:

$$
\begin{equation*}
\forall t \in J t \geq t_{0} \Rightarrow\|x(t)-y(t)\| \leq\left\|x_{0}-y_{0}\right\| e^{L\left(t-t_{0}\right)} \tag{11}
\end{equation*}
$$

A function $(t, x) \mapsto F(t, x)$ having the property (9) for some $L \geq 0$ is said to be uniformly Lipschitz with respect to the space variable x (and with Lipschitz constant L). Sometimes one just says that F is Lipschitz though this is an abuse ${ }^{1}$.

We also proved that if $U \subset \mathbb{R}$ is an interval, and $(t, x) \mapsto F(t, x)$ is a function which is continuously differentiable with respect to x and $\left|\partial_{x} F(t, x)\right| \leq L$ for all $(t, x) \in I \times U$ then (9) holds. This result can be extended to higher dimensions (when $U \subset \mathbb{R}^{n}$ is a sufficiently nice subset, for instance a convex one ${ }^{2}$), and we will do that later in the semester.

Exercise 1.2 Show that when $0<\alpha<1$, the function $x \mapsto x^{\alpha}$ is not Lipschitz on any interval $[0, a]$ for $a>0$, but is Lipschitz on all intervals of the form $[a,+\infty)$ for $a>0$.

[^0]
[^0]: ${ }^{1}$ A function $G: U \rightarrow V$ where $U \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{m}$ is said to be Lipschitz when there is a constant $L \geq 0$ such that:

 $$
 \begin{equation*}
 \forall x, y \in U \quad\|G(x)-G(y)\| \leq L\|x-y\| \tag{12}
 \end{equation*}
 $$

 So the property we ask of $F: I \times U \rightarrow \mathbb{R}^{n}$ is weaker than being Lipschitz, but stronger than " $F(t, \cdot)$ is Lipschitz for each $t \in I$ ".
 ${ }^{2}$ A convex subset of \mathbb{R}^{n} is a a subset U such that for any two points x_{0} and y_{0} in U the segment joining them is also included in U (i.e. for all $s \in[0,1], s x_{0}+(1-s) y_{0} \in U$).

