
Notes for MAT-INF1310 – 5
Snorre Christiansen, March 21, 2005

1 Midterm exam - suggestions for solutions

Exercise 1

a. (2 points) For all t ∈]0, π[ we have:

f ′(t) = log′(tan(
t

2
)) tan′(

t

2
)
1
2
, (1)

=
1

tan( t
2 )

1
(cos( t

2 ))2
1
2
, (2)

=
1

2 sin( t
2 ) cos( t

2 )
, (3)

=
1

sin(t)
. (4)

b. (6 points) An integrating factor I for this linear equation is given by:

I(t) = exp(log(tan(
t

2
)) = tan(

t

2
). (5)

Multiplying the differential equation by the integrating factor and integrat-
ing from π/2 to t ∈]0, π[ gives :

x(t) tan(
t

2
)− x0 tan(

π

4
) =

∫ t

π
2

tan(
s

2
)ds. (6)

Since tan(π/4) = 1 and an antiderivative of tan on ]0, π/2[ is − log cos we get:

x(t) tan(
t

2
)− x0 = −2 log(cos(

t

2
)) + 2 log(cos(

π

4
)). (7)

Since cos(π/4) =
√

2/2 we obtain:

x(t) =
x0 − 2 log(cos( t

2 ))− log(2)
tan( t

2 )
. (8)

c. (2 points) We have:

x(
2π

3
) =

x0 − 2 log(cos(π
3 ))− log(2)

tan(π
3 )

. (9)

Since cos(π/3) = 1/2 and sin(π/3) =
√

3/2 we obtain the desired result:

x(
2π

3
) =

x0 + log(2)√
3

. (10)
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Exercise 2 (5 points) For all t ≥ 0 we have x(t) ≥ 0 and sin(t2) ≤ 1 hence:

ẋ(t) = sin(t2)x(t) ≤ x(t). (11)

Gronwall’s lemma gives, for all t ≥ 0:

x(t) ≤ x(0)et. (12)

Hence we have :
0 ≤ e−2tx(t) ≤ e−tx(0). (13)

Since e−t → 0 when t → +∞ we obtain the desired result:

lim
t→+∞

e−2tx(t) = 0. (14)

Exercise 3

a. (3 points) For any y 6= 0 we have :

φ(y)− φ(0)
y

=
sin y

y − 1

y
=

sin y − y

y2
, (15)

=
O(y3)

y2
= O(y). (16)

Hence φ is differentiable at 0 and:

φ′(y) = 0. (17)

At any point y 6= 0, φ is differentiable and:

φ′(y) =
y cos(y)− sin(y)

y2
. (18)

The function φ′ is continuous at all y 6= 0. Moreover for y 6= 0 we have:

φ′(y)− φ′(0) =
y cos(y)− sin(y)

y2
=

y(1 +O(y2))− y +O(y3)
y2

= O(y). (19)

Hence φ′ is also continuous at 0.
For this question you could also use Hopital’s rule.

b. (3 points) A first method is to do the following computations:
For t 6= 0 we have:

f(t, x) =
xt cos(xt)− sin(xt)

t2
, (20)

g(t, x) = cos(xt), (21)

hence:

∂xf(t, x) =
t cos(xt)− xt2 sin(xt)− t cos(xt)

t2
= −x sin(xt), (22)

∂tg(t, x) = −x sin(xt). (23)
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This shows that the equation is exact.
A second method is to directly try to find F such that:

∂tF (t, x) = f(t, x) and ∂xF (t, x) = g(t, x). (24)

The first condition is equivalent to:

F (t, x) = xφ(xt) + C(x) =
sin(xt)

t
+ C(x). (25)

Taking this into consideration, the second condition is equivalent to:

cos(xt) + C ′(x) = cos(xt), (26)

In order to obtain a suitable F it is enough to let C be any constant function.
The existence of a suitable F shows that the equation exact.

In the second method, or in general to construct F , you could also start with
trying to ensure the second condition, which is perhaps easier.

c. (4 points) Going through the second method for question b we are led to
define F by the formula:

F (t, x) = xφ(xt). (27)

Then F is continuously differentiable and x is a solution to (2) if and only if
t → F (t, x(t)) is constant and x(0) = x0. Hence if x is a solution we have for
all t:

x(t)φ(x(t)t) = F (t, x(t)) = F (0, x(0)) = x0. (28)

We therefore have (x(t) 6= 0 and) for t 6= 0:

x(t)
sin(x(t)t)

x(t)t
= x0, (29)

which gives:
sin(x(t)t) = x0t. (30)

Since we must have | sin(x(t)t)| ≤ 1 a solution can only be defined for t such
that |x0t| ≤ 1. Since x0 6= 0 this requires |t| ≤ |x0|−1.
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