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Snorre Christiansen, April 4, 2005

1 Vandermonde

Given n real or complex numbers ag, ai,- - ,a,—1, the associated Vandermonde
matrix is the n by n matrix A (indexed by the set [0,n—1]?) defined by A;; = a’.
The associated Vandermonde determinant is the determinant of this matrix. We
will denote it by V(ag, -+ ,an—1). Thus:
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Proposition 1.1 We have:

Viag, - an—1) = H (aj —a;). (2)

(i.9)€[0,n—1]2 : i<j

— Proof: For n =1 it is the definition of a product over an empty index set.
The statement is also trivial for n = 2 : it simply says that:

det(1 1 )zal—ao. (3)
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For greater n proceed as follows: For rows indexed by ¢ = n — 1 down to
i = 1 substract ag times row i — 1 from row 7. Row ¢ = 0 is unchanged. These
operation do not change the value of the determinant. For i between n — 1 and
1, row ¢ then looks like:

(0 (a1 —ao)ai™" - (ap—1 —ao)as_}). (4)
Column j =0 is:
1
0
(5)
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For j > 1 column j looks like:
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One gets:

V(ag, -+ ,an—1) =V(ar, - ,an-1) H (a; — ao). (7)
j€[0,n—1] : 0<j
An induction argument completes the proof. O
2 Wronski
Given n (real or complex valued) functions fo, f1,- - , fn—1 defined on some non-
trivial interval® I, their Wronskian is the function on I denoted W (fo, -+ , fn_1)

and defined by, for each t € I:
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W (fo, -+ s fam1)(t) = det | fo'(2) 1) e faa® e (®)
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In other words W (fo,- -+, fn—1)(t) is the determinant of the n by n matrix F(t)
defined by F(t);; = fi” ().
Example 2.1 Ifag, - ,a,—1 aren real (or complex) numbers and the function

fi is defined by f;(t) = exp(a;t), then we have:
W(fo, -+, fa—1)(t) = V(ao, -+ ,an—1) exp((ao + -+ + an—1)t) (9)

Proposition 2.1 If the functions fy, -, fn_1 are linearly dependent on a non-
trivial interval I their Wronskian is 0 at each point of I.

— Proof: Supposing they are linearly dependent, differentiate this linear relation
up to order n—1 and deduce that the previously defined matrix F'(t) has linearly
dependent columns. O

This proposition is often used the other way around. That is, to ensure that
functions fo,---, fn_1 are linearly independent, it is enough to find one ¢ such
that W(fo,- -, fn—1)(t) # 0. For instance we obtain from Example 2.1:

Corollary 2.2 If the numbers ag,- - ,an—1 are two by two distinct their Van-
dermonde determinant is non-zero, and the functions f; defined by f;(t) =
exp(a;t) for t € I are linearly independent (whenever the interval I is not triv-

ial).

3 Exercises

Exercise 3.1 Suppose fo, -, fu_1 are n real-valued functions on a non-trivial
interval I with the property that for each i € [0,n — 1] there exists a t; € I such
that f;(t;) # 0 but for j # i we have f;(t;) = 0. Show that the functions f;
are linearly independent. Try to find some examples of functions with these
properties.

1In these notes a non-trivial interval is an interval containing at least two points.



Exercise 3.2 Find two linearly independent real-valued functions f and g de-
fined on R which are differentiable, and such that W(f,g) is 0 at each point.
You can use the preceding exercise.

Exercise 3.3 Pick n functions f1,---, fn on an interval I with derivatives of
all orders. Suppose their Wronskian is non-zero at each point. Consider the
equation with unknown function f : W(f1,- -, fn,f) = 0. This is a linear

differential equation. What is the order? What is the coefficient correponding
to the highest order of derivation? Find a basis for the space of solutions.

Exercise 3.4 Suppose a and b are two continuous (real or complex-valued)
functions defined on an interval I. Suppose f and g are two solutions of the
second order differential equation:

R"(t) + a(t)h'(t) + b(t)h(t) = 0. (10)

Show (by direct computation) that W(f,g) satisfies the first order differential
equation:

h'(t) + a(t)h(t) = 0. (11)

Can you see a relationship between this Fxercise and Example 2.1 in the case
n=27%

4 Operators

Given a vector space V an operator on V is a linear map A:V — V. If A is
an operator and A is a scalar (a real or complex number according to the type
of vector space) A\A is defined to be the operator:

Az — A(Ax). (12)
If A and B are two operators, their sum A + B is defined to be the operator:
A+ B:xw— (Az) 4+ (Bux), (13)
and their product AB is defined to be the operator:
AB :xz+— A(B(x)). (14)

If you are unfamiliar with these definitions you should check that they really
define operators (linear maps V — V).

Given a polynomial P defined by P(X) = Y, pxX*, and an operator A :
V — V the operator P(A) is defined to be the operator >, piAF.

Exercise 4.1 Check that if A is a scalar, P and Q are two polynomials and
AV — V is an operator we have: (AP)(A) = AP(A)), (P + Q)(A) =
P(A) + Q(A) and (PQ)(A) = P(A)Q(A). Of these three identities the last is
the most interesting; notice that on the left we have a product of polynomials
evaluated on an operator and on the right we have a product of operators.



Example 4.1 Let I be a non-trivial interval. The space of real valued functions
on I is a vector space; denote it by RY. Suppose a : I — R is a real-valued
function on I. The map which to any function u on I associates the function
v defined by v(t) = a(t)u(t) is an operator on RY (check it!). In other words
if we call this operator A, we have (Au)(t) = a(t)u(t). This operator is called
multiplication by a.

Example 4.2 Fiz a real 7. Suppose u is a real-valued function defined on R.
Define Tru to be the function defined for t € R by (Tru)(t) = u(t — 7). Then
T, is an operator on the vectorspace of real-valued functions defined on R. This
operator is called the translation operator.

Exercise 4.2 Check that if 0 and T are reals, T,T: = Ty1r and that T =T,
for any n € N.

Exercise 4.3 Fiz a compler a and a real 7. Let u : R — C be the function
defined by u(t) = exp(at). Show that for any polynomial P we have : P(T;)u =
P(exp(—ar))u (notice that on the left we apply an operator to u, whereas on
the right we multiply u by a complex number). You can start by looking at the
case where P(X) is of the form X™.

Example 4.3 Let I be an interval. Let V' be the vector space of all functions
on I which are differentiable arbitrarily many times. The derivation operator
on V is the operator D : u — u'.

Exercise 4.4 Fiz a complex a. Let uw : R — C be the function defined by
u(t) = exp(at). Show that for any polynomial P we have: P(D)u = P(a)u.

Exercise 4.5 For any function a : I — R, let M, be the operator defined
as multiplication by a, as in Example 4.1. Suppose that a can be differentiated

arbitrarily many times. Prove that if D is the derivation operator as in Example
4.8 we have:
M,D — DM, =—-M,. (15)



