Notes for MAT-INF1310-7
 Snorre Christiansen, April 4, 2005

1 Vandermonde

Given n real or complex numbers $a_{0}, a_{1}, \cdots, a_{n-1}$, the associated Vandermonde matrix is the n by n matrix A (indexed by the set $\llbracket 0, n-1 \rrbracket^{2}$) defined by $A_{i j}=a_{j}^{i}$. The associated Vandermonde determinant is the determinant of this matrix. We will denote it by $V\left(a_{0}, \cdots, a_{n-1}\right)$. Thus:

$$
V\left(a_{0}, \cdots, a_{n-1}\right)=\operatorname{det}\left(\begin{array}{llll}
1 & 1 & \cdots & 1 \tag{1}\\
a_{0} & a_{1} & \cdots & a_{n-1} \\
a_{0}^{2} & a_{1}^{2} & \cdots & a_{n-1}^{2} \\
\cdots & \cdots & \cdots & \cdots \\
a_{0}^{n-1} & a_{1}^{n-1} & \cdots & a_{n-1}^{n-1}
\end{array}\right)
$$

Proposition 1.1 We have:

$$
\begin{equation*}
V\left(a_{0}, \cdots a_{n-1}\right)=\prod_{(i, j) \in \llbracket 0, n-1 \rrbracket^{2}: i<j}\left(a_{j}-a_{i}\right) \tag{2}
\end{equation*}
$$

- Proof: For $n=1$ it is the definition of a product over an empty index set. The statement is also trivial for $n=2$: it simply says that:

$$
\operatorname{det}\left(\begin{array}{cc}
1 & 1 \tag{3}\\
a_{0} & a_{1}
\end{array}\right)=a_{1}-a_{0}
$$

For greater n proceed as follows: For rows indexed by $i=n-1$ down to $i=1$ substract a_{0} times row $i-1$ from row i. Row $i=0$ is unchanged. These operation do not change the value of the determinant. For i between $n-1$ and 1 , row i then looks like:

$$
\begin{equation*}
\left(0 \quad\left(a_{1}-a_{0}\right) a_{1}^{i-1} \quad \cdots \quad\left(a_{n-1}-a_{0}\right) a_{n-1}^{i-1}\right) \tag{4}
\end{equation*}
$$

Column $j=0$ is:

$$
\left(\begin{array}{c}
1 \tag{5}\\
0 \\
\cdots \\
0
\end{array}\right)
$$

For $j \geq 1$ column j looks like:

$$
\left(\begin{array}{c}
1 \tag{6}\\
\left(a_{j}-a_{0}\right) 1 \\
\left(a_{j}-a_{0}\right) a_{j} \\
\cdots \\
\left(a_{j}-a_{0}\right) a_{j}^{n-2}
\end{array}\right)
$$

One gets:

$$
\begin{equation*}
V\left(a_{0}, \cdots, a_{n-1}\right)=V\left(a_{1}, \cdots, a_{n-1}\right) \prod_{j \in \llbracket 0, n-1 \rrbracket: 0<j}\left(a_{j}-a_{0}\right) . \tag{7}
\end{equation*}
$$

An induction argument completes the proof.

2 Wronski

Given n (real or complex valued) functions $f_{0}, f_{1}, \cdots, f_{n-1}$ defined on some nontrivial interval ${ }^{1} I$, their Wronskian is the function on I denoted $W\left(f_{0}, \cdots, f_{n-1}\right)$ and defined by, for each $t \in I$:

$$
W\left(f_{0}, \cdots, f_{n-1}\right)(t)=\operatorname{det}\left(\begin{array}{llll}
f_{0}(t) & f_{1}(t) & \cdots & f_{n-1}(t) \tag{8}\\
f_{0}^{\prime}(t) & f_{0}^{\prime}(t) & \cdots & f_{n-1}^{\prime}(t) \\
f_{0}^{\prime \prime}(t) & f_{1}^{\prime \prime}(t) & \cdots & f_{n-1}^{\prime \prime}(t) \\
\cdots & \cdots & \cdots & \cdots \\
f_{0}^{(n-1)}(t) & f_{1}^{(n-1)}(t) & \cdots & f_{n-1}^{(n-1)}(t)
\end{array}\right)
$$

In other words $W\left(f_{0}, \cdots, f_{n-1}\right)(t)$ is the determinant of the n by n matrix $F(t)$ defined by $F(t)_{i j}=f_{j}^{(i)}(t)$.

Example 2.1 If a_{0}, \cdots, a_{n-1} are n real (or complex) numbers and the function f_{i} is defined by $f_{i}(t)=\exp \left(a_{i} t\right)$, then we have:

$$
\begin{equation*}
W\left(f_{0}, \cdots, f_{n-1}\right)(t)=V\left(a_{0}, \cdots, a_{n-1}\right) \exp \left(\left(a_{0}+\cdots+a_{n-1}\right) t\right) \tag{9}
\end{equation*}
$$

Proposition 2.1 If the functions f_{0}, \cdots, f_{n-1} are linearly dependent on a nontrivial interval I their Wronskian is 0 at each point of I.

- Proof: Supposing they are linearly dependent, differentiate this linear relation up to order $n-1$ and deduce that the previously defined matrix $F(t)$ has linearly dependent columns.

This proposition is often used the other way around. That is, to ensure that functions f_{0}, \cdots, f_{n-1} are linearly independent, it is enough to find one t such that $W\left(f_{0}, \cdots, f_{n-1}\right)(t) \neq 0$. For instance we obtain from Example 2.1:

Corollary 2.2 If the numbers a_{0}, \cdots, a_{n-1} are two by two distinct their Vandermonde determinant is non-zero, and the functions f_{i} defined by $f_{i}(t)=$ $\exp \left(a_{i} t\right)$ for $t \in I$ are linearly independent (whenever the interval I is not trivial).

3 Exercises

Exercise 3.1 Suppose f_{0}, \cdots, f_{n-1} are n real-valued functions on a non-trivial interval I with the property that for each $i \in \llbracket 0, n-1 \rrbracket$ there exists a $t_{i} \in I$ such that $f_{i}\left(t_{i}\right) \neq 0$ but for $j \neq i$ we have $f_{j}\left(t_{i}\right)=0$. Show that the functions f_{i} are linearly independent. Try to find some examples of functions with these properties.

[^0]Exercise 3.2 Find two linearly independent real-valued functions f and g defined on \mathbb{R} which are differentiable, and such that $W(f, g)$ is 0 at each point. You can use the preceding exercise.

Exercise 3.3 Pick n functions f_{1}, \cdots, f_{n} on an interval I with derivatives of all orders. Suppose their Wronskian is non-zero at each point. Consider the equation with unknown function $f: W\left(f_{1}, \cdots, f_{n}, f\right)=0$. This is a linear differential equation. What is the order? What is the coefficient correponding to the highest order of derivation? Find a basis for the space of solutions.

Exercise 3.4 Suppose a and b are two continuous (real or complex-valued) functions defined on an interval I. Suppose f and g are two solutions of the second order differential equation:

$$
\begin{equation*}
h^{\prime \prime}(t)+a(t) h^{\prime}(t)+b(t) h(t)=0 \tag{10}
\end{equation*}
$$

Show (by direct computation) that $W(f, g)$ satisfies the first order differential equation:

$$
\begin{equation*}
h^{\prime}(t)+a(t) h(t)=0 \tag{11}
\end{equation*}
$$

Can you see a relationship between this Exercise and Example 2.1 in the case $n=2$?

4 Operators

Given a vector space V an operator on V is a linear map $A: V \rightarrow V$. If A is an operator and λ is a scalar (a real or complex number according to the type of vector space) λA is defined to be the operator:

$$
\begin{equation*}
\lambda A: x \mapsto \lambda(A x) \tag{12}
\end{equation*}
$$

If A and B are two operators, their sum $A+B$ is defined to be the operator:

$$
\begin{equation*}
A+B: x \mapsto(A x)+(B x) \tag{13}
\end{equation*}
$$

and their product $A B$ is defined to be the operator:

$$
\begin{equation*}
A B: x \mapsto A(B(x)) \tag{14}
\end{equation*}
$$

If you are unfamiliar with these definitions you should check that they really define operators (linear maps $V \rightarrow V$).

Given a polynomial P defined by $P(X)=\sum_{k} p_{k} X^{k}$, and an operator A : $V \rightarrow V$ the operator $P(A)$ is defined to be the operator $\sum_{k} p_{k} A^{k}$.

Exercise 4.1 Check that if λ is a scalar, P and Q are two polynomials and $A: V \rightarrow V$ is an operator we have: $(\lambda P)(A)=\lambda(P(A)),(P+Q)(A)=$ $P(A)+Q(A)$ and $(P Q)(A)=P(A) Q(A)$. Of these three identities the last is the most interesting; notice that on the left we have a product of polynomials evaluated on an operator and on the right we have a product of operators.

Example 4.1 Let I be a non-trivial interval. The space of real valued functions on I is a vector space; denote it by \mathbb{R}^{I}. Suppose $a: I \rightarrow \mathbb{R}$ is a real-valued function on I. The map which to any function u on I associates the function v defined by $v(t)=a(t) u(t)$ is an operator on \mathbb{R}^{I} (check it!). In other words if we call this operator A, we have $(A u)(t)=a(t) u(t)$. This operator is called multiplication by a.

Example 4.2 Fix a real τ. Suppose u is a real-valued function defined on \mathbb{R}. Define $T_{\tau} u$ to be the function defined for $t \in \mathbb{R}$ by $\left(T_{\tau} u\right)(t)=u(t-\tau)$. Then T_{τ} is an operator on the vectorspace of real-valued functions defined on \mathbb{R}. This operator is called the translation operator.

Exercise 4.2 Check that if σ and τ are reals, $T_{\sigma} T_{\tau}=T_{\sigma+\tau}$ and that $T_{\tau}^{n}=T_{n \tau}$ for any $n \in \mathbb{N}$.

Exercise 4.3 Fix a complex a and a real τ. Let $u: \mathbb{R} \rightarrow \mathbb{C}$ be the function defined by $u(t)=\exp (a t)$. Show that for any polynomial P we have : $P\left(T_{\tau}\right) u=$ $P(\exp (-a \tau)) u$ (notice that on the left we apply an operator to u, whereas on the right we multiply u by a complex number). You can start by looking at the case where $P(X)$ is of the form X^{n}.

Example 4.3 Let I be an interval. Let V be the vector space of all functions on I which are differentiable arbitrarily many times. The derivation operator on V is the operator $D: u \rightarrow u^{\prime}$.

Exercise 4.4 Fix a complex a. Let $u: \mathbb{R} \rightarrow \mathbb{C}$ be the function defined by $u(t)=\exp (a t)$. Show that for any polynomial P we have: $P(D) u=P(a) u$.

Exercise 4.5 For any function $a: I \rightarrow \mathbb{R}$, let M_{a} be the operator defined as multiplication by a, as in Example 4.1. Suppose that a can be differentiated arbitrarily many times. Prove that if D is the derivation operator as in Example 4.3 we have:

$$
\begin{equation*}
M_{a} D-D M_{a}=-M_{a^{\prime}} \tag{15}
\end{equation*}
$$

[^0]: ${ }^{1}$ In these notes a non-trivial interval is an interval containing at least two points.

