1 Vandermonde

Given n real or complex numbers a_0, a_1, \dots, a_{n-1} , the associated Vandermonde matrix is the n by n matrix A (indexed by the set $[0, n-1]^2$) defined by $A_{ij} = a_j^i$. The associated Vandermonde determinant is the determinant of this matrix. We will denote it by $V(a_0, \dots, a_{n-1})$. Thus:

$$V(a_0, \cdots, a_{n-1}) = \det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_0 & a_1 & \cdots & a_{n-1} \\ a_0^2 & a_1^2 & \cdots & a_{n-1}^2 \\ \cdots & \cdots & \cdots & \cdots \\ a_0^{n-1} & a_1^{n-1} & \cdots & a_{n-1}^{n-1} \end{pmatrix}.$$
 (1)

Proposition 1.1 We have:

$$V(a_0, \cdots a_{n-1}) = \prod_{(i,j) \in [\![0,n-1]\!]^2 : i < j} (a_j - a_i).$$
⁽²⁾

- *Proof:* For n = 1 it is the definition of a product over an empty index set. The statement is also trivial for n = 2: it simply says that:

$$\det \begin{pmatrix} 1 & 1\\ a_0 & a_1 \end{pmatrix} = a_1 - a_0. \tag{3}$$

For greater n proceed as follows: For rows indexed by i = n - 1 down to i = 1 substract a_0 times row i - 1 from row i. Row i = 0 is unchanged. These operation do not change the value of the determinant. For i between n - 1 and 1, row i then looks like:

$$(0 \ (a_1 - a_0)a_1^{i-1} \ \cdots \ (a_{n-1} - a_0)a_{n-1}^{i-1}). \tag{4}$$

Column j = 0 is:

$$\left(\begin{array}{c}
1\\
0\\
\cdots\\
0
\end{array}\right).$$
(5)

For $j \ge 1$ column j looks like:

$$\begin{pmatrix} 1 \\ (a_j - a_0)1 \\ (a_j - a_0)a_j \\ \cdots \\ (a_j - a_0)a_j^{n-2} \end{pmatrix}.$$
 (6)

One gets:

$$V(a_0, \cdots, a_{n-1}) = V(a_1, \cdots, a_{n-1}) \prod_{j \in [\![0, n-1]\!] : \ 0 < j} (a_j - a_0).$$
(7)

An induction argument completes the proof.

2 Wronski

Given n (real or complex valued) functions f_0, f_1, \dots, f_{n-1} defined on some nontrivial interval¹ I, their Wronskian is the function on I denoted $W(f_0, \dots, f_{n-1})$ and defined by, for each $t \in I$:

$$W(f_0, \cdots, f_{n-1})(t) = \det \begin{pmatrix} f_0(t) & f_1(t) & \cdots & f_{n-1}(t) \\ f'_0(t) & f'_0(t) & \cdots & f'_{n-1}(t) \\ f''_0(t) & f''_1(t) & \cdots & f''_{n-1}(t) \\ \cdots & \cdots & \cdots & \cdots \\ f_0^{(n-1)}(t) & f_1^{(n-1)}(t) & \cdots & f_{n-1}^{(n-1)}(t) \end{pmatrix}.$$
 (8)

In other words $W(f_0, \dots, f_{n-1})(t)$ is the determinant of the *n* by *n* matrix F(t) defined by $F(t)_{ij} = f_i^{(i)}(t)$.

Example 2.1 If a_0, \dots, a_{n-1} are n real (or complex) numbers and the function f_i is defined by $f_i(t) = \exp(a_i t)$, then we have:

$$W(f_0, \cdots, f_{n-1})(t) = V(a_0, \cdots, a_{n-1}) \exp((a_0 + \cdots + a_{n-1})t)$$
(9)

Proposition 2.1 If the functions f_0, \dots, f_{n-1} are linearly dependent on a nontrivial interval I their Wronskian is 0 at each point of I.

- *Proof:* Supposing they are linearly dependent, differentiate this linear relation up to order n-1 and deduce that the previously defined matrix F(t) has linearly dependent columns.

This proposition is often used the other way around. That is, to ensure that functions f_0, \dots, f_{n-1} are linearly independent, it is enough to find one t such that $W(f_0, \dots, f_{n-1})(t) \neq 0$. For instance we obtain from Example 2.1:

Corollary 2.2 If the numbers a_0, \dots, a_{n-1} are two by two distinct their Vandermonde determinant is non-zero, and the functions f_i defined by $f_i(t) = \exp(a_i t)$ for $t \in I$ are linearly independent (whenever the interval I is not trivial).

3 Exercises

Exercise 3.1 Suppose f_0, \dots, f_{n-1} are *n* real-valued functions on a non-trivial interval *I* with the property that for each $i \in [0, n-1]$ there exists a $t_i \in I$ such that $f_i(t_i) \neq 0$ but for $j \neq i$ we have $f_j(t_i) = 0$. Show that the functions f_i are linearly independent. Try to find some examples of functions with these properties.

¹In these notes a non-trivial interval is an interval containing at least two points.

Exercise 3.2 Find two linearly independent real-valued functions f and g defined on \mathbb{R} which are differentiable, and such that W(f,g) is 0 at each point. You can use the preceding exercise.

Exercise 3.3 Pick n functions f_1, \dots, f_n on an interval I with derivatives of all orders. Suppose their Wronskian is non-zero at each point. Consider the equation with unknown function $f: W(f_1, \dots, f_n, f) = 0$. This is a linear differential equation. What is the order? What is the coefficient corresponding to the highest order of derivation? Find a basis for the space of solutions.

Exercise 3.4 Suppose a and b are two continuous (real or complex-valued) functions defined on an interval I. Suppose f and g are two solutions of the second order differential equation:

$$h''(t) + a(t)h'(t) + b(t)h(t) = 0.$$
(10)

Show (by direct computation) that W(f,g) satisfies the first order differential equation:

$$h'(t) + a(t)h(t) = 0.$$
(11)

Can you see a relationship between this Exercise and Example 2.1 in the case n = 2?

4 Operators

Given a vector space V an operator on V is a linear map $A: V \to V$. If A is an operator and λ is a scalar (a real or complex number according to the type of vector space) λA is defined to be the operator:

$$\lambda A: x \mapsto \lambda(Ax). \tag{12}$$

If A and B are two operators, their sum A + B is defined to be the operator:

$$A + B : x \mapsto (Ax) + (Bx), \tag{13}$$

and their product AB is defined to be the operator:

$$AB: x \mapsto A(B(x)). \tag{14}$$

If you are unfamiliar with these definitions you should check that they really define operators (*linear* maps $V \rightarrow V$).

Given a polynomial P defined by $P(X) = \sum_k p_k X^k$, and an operator $A : V \to V$ the operator P(A) is defined to be the operator $\sum_k p_k A^k$.

Exercise 4.1 Check that if λ is a scalar, P and Q are two polynomials and $A : V \to V$ is an operator we have: $(\lambda P)(A) = \lambda(P(A)), (P + Q)(A) = P(A) + Q(A)$ and (PQ)(A) = P(A)Q(A). Of these three identities the last is the most interesting; notice that on the left we have a product of polynomials evaluated on an operator and on the right we have a product of operators.

Example 4.1 Let I be a non-trivial interval. The space of real valued functions on I is a vector space; denote it by \mathbb{R}^I . Suppose $a : I \to \mathbb{R}$ is a real-valued function on I. The map which to any function u on I associates the function v defined by v(t) = a(t)u(t) is an operator on \mathbb{R}^I (check it!). In other words if we call this operator A, we have (Au)(t) = a(t)u(t). This operator is called multiplication by a.

Example 4.2 Fix a real τ . Suppose u is a real-valued function defined on \mathbb{R} . Define $T_{\tau}u$ to be the function defined for $t \in \mathbb{R}$ by $(T_{\tau}u)(t) = u(t - \tau)$. Then T_{τ} is an operator on the vectorspace of real-valued functions defined on \mathbb{R} . This operator is called the translation operator.

Exercise 4.2 Check that if σ and τ are reals, $T_{\sigma}T_{\tau} = T_{\sigma+\tau}$ and that $T_{\tau}^n = T_{n\tau}$ for any $n \in \mathbb{N}$.

Exercise 4.3 Fix a complex a and a real τ . Let $u : \mathbb{R} \to \mathbb{C}$ be the function defined by $u(t) = \exp(at)$. Show that for any polynomial P we have : $P(T_{\tau})u = P(\exp(-a\tau))u$ (notice that on the left we apply an operator to u, whereas on the right we multiply u by a complex number). You can start by looking at the case where P(X) is of the form X^n .

Example 4.3 Let I be an interval. Let V be the vector space of all functions on I which are differentiable arbitrarily many times. The derivation operator on V is the operator $D: u \to u'$.

Exercise 4.4 Fix a complex a. Let $u : \mathbb{R} \to \mathbb{C}$ be the function defined by $u(t) = \exp(at)$. Show that for any polynomial P we have: P(D)u = P(a)u.

Exercise 4.5 For any function $a : I \to \mathbb{R}$, let M_a be the operator defined as multiplication by a, as in Example 4.1. Suppose that a can be differentiated arbitrarily many times. Prove that if D is the derivation operator as in Example 4.3 we have:

$$M_a D - D M_a = -M_{a'}.$$
(15)