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Snorre Christiansen, April 4, 2005

1 Vandermonde

Given n real or complex numbers a0, a1, · · · , an−1, the associated Vandermonde
matrix is the n by n matrix A (indexed by the set [[0, n−1]]2) defined by Aij = ai

j .
The associated Vandermonde determinant is the determinant of this matrix. We
will denote it by V (a0, · · · , an−1). Thus:

V (a0, · · · , an−1) = det


1 1 · · · 1
a0 a1 · · · an−1

a2
0 a2

1 · · · a2
n−1

· · · · · · · · · · · ·
an−1
0 an−1

1 · · · an−1
n−1

 . (1)

Proposition 1.1 We have:

V (a0, · · · an−1) =
∏

(i,j)∈[[0,n−1]]2 : i<j

(aj − ai). (2)

– Proof: For n = 1 it is the definition of a product over an empty index set.
The statement is also trivial for n = 2 : it simply says that:

det
(

1 1
a0 a1

)
= a1 − a0. (3)

For greater n proceed as follows: For rows indexed by i = n − 1 down to
i = 1 substract a0 times row i− 1 from row i. Row i = 0 is unchanged. These
operation do not change the value of the determinant. For i between n− 1 and
1, row i then looks like:

(0 (a1 − a0)ai−1
1 · · · (an−1 − a0)ai−1

n−1). (4)

Column j = 0 is: 
1
0
· · ·
0

 . (5)

For j ≥ 1 column j looks like:
1

(aj − a0)1
(aj − a0)aj

· · ·
(aj − a0)an−2

j

 . (6)
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One gets:

V (a0, · · · , an−1) = V (a1, · · · , an−1)
∏

j∈[[0,n−1]] : 0<j

(aj − a0). (7)

An induction argument completes the proof. �

2 Wronski

Given n (real or complex valued) functions f0, f1, · · · , fn−1 defined on some non-
trivial interval1 I, their Wronskian is the function on I denoted W (f0, · · · , fn−1)
and defined by, for each t ∈ I:

W (f0, · · · , fn−1)(t) = det


f0(t) f1(t) · · · fn−1(t)
f ′0(t) f ′0(t) · · · f ′n−1(t)
f ′′0 (t) f ′′1 (t) · · · f ′′n−1(t)
· · · · · · · · · · · ·
f

(n−1)
0 (t) f

(n−1)
1 (t) · · · f

(n−1)
n−1 (t)

 . (8)

In other words W (f0, · · · , fn−1)(t) is the determinant of the n by n matrix F (t)
defined by F (t)ij = f

(i)
j (t).

Example 2.1 If a0, · · · , an−1 are n real (or complex) numbers and the function
fi is defined by fi(t) = exp(ait), then we have:

W (f0, · · · , fn−1)(t) = V (a0, · · · , an−1) exp((a0 + · · ·+ an−1)t) (9)

Proposition 2.1 If the functions f0, · · · , fn−1 are linearly dependent on a non-
trivial interval I their Wronskian is 0 at each point of I.

– Proof: Supposing they are linearly dependent, differentiate this linear relation
up to order n−1 and deduce that the previously defined matrix F (t) has linearly
dependent columns. �

This proposition is often used the other way around. That is, to ensure that
functions f0, · · · , fn−1 are linearly independent, it is enough to find one t such
that W (f0, · · · , fn−1)(t) 6= 0. For instance we obtain from Example 2.1:

Corollary 2.2 If the numbers a0, · · · , an−1 are two by two distinct their Van-
dermonde determinant is non-zero, and the functions fi defined by fi(t) =
exp(ait) for t ∈ I are linearly independent (whenever the interval I is not triv-
ial).

3 Exercises

Exercise 3.1 Suppose f0, · · · , fn−1 are n real-valued functions on a non-trivial
interval I with the property that for each i ∈ [[0, n− 1]] there exists a ti ∈ I such
that fi(ti) 6= 0 but for j 6= i we have fj(ti) = 0. Show that the functions fi

are linearly independent. Try to find some examples of functions with these
properties.

1In these notes a non-trivial interval is an interval containing at least two points.
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Exercise 3.2 Find two linearly independent real-valued functions f and g de-
fined on R which are differentiable, and such that W (f, g) is 0 at each point.
You can use the preceding exercise.

Exercise 3.3 Pick n functions f1, · · · , fn on an interval I with derivatives of
all orders. Suppose their Wronskian is non-zero at each point. Consider the
equation with unknown function f : W (f1, · · · , fn, f) = 0. This is a linear
differential equation. What is the order? What is the coefficient correponding
to the highest order of derivation? Find a basis for the space of solutions.

Exercise 3.4 Suppose a and b are two continuous (real or complex-valued)
functions defined on an interval I. Suppose f and g are two solutions of the
second order differential equation:

h′′(t) + a(t)h′(t) + b(t)h(t) = 0. (10)

Show (by direct computation) that W (f, g) satisfies the first order differential
equation:

h′(t) + a(t)h(t) = 0. (11)

Can you see a relationship between this Exercise and Example 2.1 in the case
n = 2?

4 Operators

Given a vector space V an operator on V is a linear map A : V → V . If A is
an operator and λ is a scalar (a real or complex number according to the type
of vector space) λA is defined to be the operator:

λA : x 7→ λ(Ax). (12)

If A and B are two operators, their sum A + B is defined to be the operator:

A + B : x 7→ (Ax) + (Bx), (13)

and their product AB is defined to be the operator:

AB : x 7→ A(B(x)). (14)

If you are unfamiliar with these definitions you should check that they really
define operators (linear maps V → V ).

Given a polynomial P defined by P (X) =
∑

k pkXk, and an operator A :
V → V the operator P (A) is defined to be the operator

∑
k pkAk.

Exercise 4.1 Check that if λ is a scalar, P and Q are two polynomials and
A : V → V is an operator we have: (λP )(A) = λ(P (A)), (P + Q)(A) =
P (A) + Q(A) and (PQ)(A) = P (A)Q(A). Of these three identities the last is
the most interesting; notice that on the left we have a product of polynomials
evaluated on an operator and on the right we have a product of operators.
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Example 4.1 Let I be a non-trivial interval. The space of real valued functions
on I is a vector space; denote it by RI . Suppose a : I → R is a real-valued
function on I. The map which to any function u on I associates the function
v defined by v(t) = a(t)u(t) is an operator on RI (check it!). In other words
if we call this operator A, we have (Au)(t) = a(t)u(t). This operator is called
multiplication by a.

Example 4.2 Fix a real τ . Suppose u is a real-valued function defined on R.
Define Tτu to be the function defined for t ∈ R by (Tτu)(t) = u(t − τ). Then
Tτ is an operator on the vectorspace of real-valued functions defined on R. This
operator is called the translation operator.

Exercise 4.2 Check that if σ and τ are reals, TσTτ = Tσ+τ and that Tn
τ = Tnτ

for any n ∈ N.

Exercise 4.3 Fix a complex a and a real τ . Let u : R → C be the function
defined by u(t) = exp(at). Show that for any polynomial P we have : P (Tτ )u =
P (exp(−aτ))u (notice that on the left we apply an operator to u, whereas on
the right we multiply u by a complex number). You can start by looking at the
case where P (X) is of the form Xn.

Example 4.3 Let I be an interval. Let V be the vector space of all functions
on I which are differentiable arbitrarily many times. The derivation operator
on V is the operator D : u → u′.

Exercise 4.4 Fix a complex a. Let u : R → C be the function defined by
u(t) = exp(at). Show that for any polynomial P we have: P (D)u = P (a)u.

Exercise 4.5 For any function a : I → R, let Ma be the operator defined
as multiplication by a, as in Example 4.1. Suppose that a can be differentiated
arbitrarily many times. Prove that if D is the derivation operator as in Example
4.3 we have:

MaD −DMa = −Ma′ . (15)
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